
Solutions to practice problems

1. Let E ⊂ R be bounded, nonempty, and suppose supE 6∈ E. Show that E is infinite.

If E were finite, E = {x1, . . . , xn}, then supE would be the largest of x1, . . . , xn, and would
belong to E.

(Or: assume a = supE 6∈ E, and choose x1 ∈ E. Then x1 < a, so x1 is not an upper bound
for E, so E contains x2 > x1. Again, x2 < a, so x2 is not an upper bound for E, so E contains
x3 > x2. Proceeding by induction, we construct infinitely many distinct elements xn ∈ E).

2. Let U, V ⊂ R2 be open subsets satisfying Ū = R2, V̄ = R2. Prove that U ∩ V = R2.
(Hint: if E ⊂ X then Ē = X if and only if every non-empty open set in X has non-empty
intersection with E).

Using the hint: given a non-empty open subset G ⊂ R2, G ∩ U is non-empty (since U is dense)
and open (G and U are open); so (G ∩ U) ∩ V = G ∩ (U ∩ V ) is non-empty (since V is dense). So
every non-empty open subset of R2 intersects U ∩ V , so U ∩ V is dense in R2.

(Proof of the hint: recall Ē = X if and only if ∀x ∈ X, ∀r > 0, Nr(x) intersects E. First assume
every non-empty open set in X intersects E, then ∀x ∈ X, ∀r > 0, Nr(x) is open and non-empty
so Nr(x) intersects E, which proves that Ē = X. Conversely, Ē = X and assume G ⊂ X is open
and non-empty. Take x ∈ G: then x is interior of G, so there exists r > 0 such that Nr(x) ⊂ G.
Since Nr(x) intersects E, we deduce that G also intersects E.)

Solution without using the hint: let x ∈ R2, and let r > 0. We have to prove that Nr(x) intersects
U ∩ V (which shows that x ∈ U ∩ V ). First, since x ∈ Ū = X, we know that Nr(x) intersects U ;
let y ∈ Nr(x) ∩ U . Since U and Nr(x) are open, so is Nr(x) ∩ U , so there exists r′ > 0 such that
Nr′(y) ⊂ Nr(x)∩U . Since y ∈ V̄ = X, we know that Nr′(y) intersects V . Let z ∈ Nr′(y)∩V . Since
Nr′(y) ⊂ Nr(x) ∩ U , we have z ∈ (U ∩ V ) ∩Nr(x). Therefore U ∩ V intersects all neighborhoods
of x, and so x ∈ U ∩ V .

3. If A and B are compact subsets of X, show that A ∪B is compact.

Let {Gα} be an open cover of A∪B: then
⋃

Gα ⊃ A, and A is compact, so there exist α1, . . . , αn

such that Gα1
∪ · · · ∪ Gαn

⊃ A. Similarly, there exist α′

1, . . . , α
′

m such that Gα′

1
∪ · · · ∪ Gα′

m
⊃ B.

Then Gα1
∪ · · · ∪Gαn

∪Gα′

1
∪ · · · ∪Gα′

m
is a finite subcover of A ∪B.

4. Let {xn} be a sequence satisfying |xn| ≤ 1
3n for each n ≥ 1. Put yn = x1 + · · · + xn.

Prove that the sequence {yn} is convergent.

The series
∑ 1

3n is convergent, so by the comparison criterion (Theorem 3.25)
∑

xn is convergent.

(Or: {yn} is a Cauchy sequence since, for m ≥ n ≥ N , |ym − yn| = |xn+1 + · · · + xm| ≤
1

3n+1 + · · · + 1
3m ≤ 1

3n+1 (1 +
1
3 + 1

9 + . . . ) = 3
2

1
3n+1 ≤ 3

2
1

3N+1 , which can be made smaller than any
ǫ > 0 by taking N large enough.)

5. Find all the subsequential limits of each of the following sequences: an = n sin nπ
4 ;

an = 1− (−1)n

n
; an = 1− (−1)n. Are these sequences bounded? convergent?

a) Observe that an = 0 if n is a multiple of 4; an = ±n if n = 4k + 2 for some integer k;
an = ±n/

√
2 if n is odd. Therefore 0 is a subsequential limit (take {a4k}), and it is the only

finite subsequential limit of {an} since the non-zero terms all satisfy |an| ≥ n/
√
2; there are also

subsequences which diverge to +∞ or to −∞. The sequence is not bounded, and not convergent.

b) |an−1| = 1
n
→ 0, so an → 1. The sequence is bounded and convergent, and all its subsequences

converge to 1.
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c) an equals 0 for even n, and 2 for odd n, so the subsequential limits are 0 and 2. The sequence
is bounded but not convergent.

6. Let {an} and {bn} be bounded sequences in R. Prove that lim sup(an + bn) ≤
lim sup an + lim sup bn. Give an example to show that equality need not hold.

Let a∗ = lim sup an and b∗ = lim sup bn, and fix ǫ > 0. Then all but finitely many terms of
{an} satisfy an < a∗ + ǫ, and all but finitely many terms of {bn} satisfy bn < b∗ + ǫ (Theorem
3.17(b)). Hence, there exists N such that an + bn < a∗ + b∗ + 2ǫ for all n ≥ N . This implies that
lim sup(an+bn) ≤ a∗+b∗+2ǫ. Since this holds for all ǫ > 0, we must have lim sup(an+bn) ≤ a∗+b∗.

Equality need not hold: let an = (−1)n, bn = −(−1)n, then lim sup an = lim sup bn = 1, but
an + bn = 0 so lim sup(an + bn) = 0 < 1 + 1.

7. Find a countable subset of R with (a) exactly two limit points; (b) countably
many limit points; (c) uncountably many limit points.

a) A = { 1
n
, n = 1, 2, . . . } ∪ {1 + 1

n
, n = 1, 2, . . . } (the limit points are 0 and 1).

b) A = { 1
m

+ 1
n
, m, n = 1, 2, . . . } (the limit points are 0 and all the 1

n
).

c) A = Q (all real numbers are limit points).

8. Let A, B be subsets of a metric space, and denote by A◦, B◦ the sets of interior
points of A, B. Prove that (A ∩B)◦ = A◦ ∩B◦.

If x ∈ (A ∩ B)◦ then x is an interior point of A ∩ B, i.e. ∃ r > 0 such that Nr(x) ⊂ A ∩ B.
Then Nr(x) ⊂ A, so x ∈ A◦, and Nr(x) ⊂ B, so x ∈ B◦. Therefore x ∈ A◦ ∩ B◦. This proves
(A ∩ B)◦ ⊂ A◦ ∩ B◦. Conversely, let x ∈ A◦ ∩ B◦. Since x is an interior point of A, ∃ r1 > 0
such that Nr1(x) ⊂ A; similarly x is an interior point of B so ∃ r2 > 0 such that Nr2(x) ⊂ B. Let
r = min{r1, r2}. Then Nr(x) ⊂ A ∩B. So x ∈ (A ∩B)◦, so A◦ ∩B◦ ⊂ (A ∩B)◦.

(Or, using results seen in lecture: A◦ ⊂ A, B◦ ⊂ B are open, so A◦ ∩ B◦ is open and contained
in A ∩ B, which implies that A◦ ∩ B◦ ⊂ (A ∩ B)◦. Conversely, (A ∩ B)◦ is open and contained
in A, so it is contained in A◦; similarly it is open and contained in B, so contained in B◦; so
(A ∩B)◦ ⊂ A◦ ∩B◦).

9. Assume that
∑

an is a convergent series and that an ≥ 0 ∀n ≥ N . Prove that
∑ 1

n

√
an converges. (Hint: consider the quantity (

√
an − 1

n
)2, and use the comparison

criterion).

(Assigned on homework).

10. Give an example of a countable compact subset of (R, d).

{ 1
n
, n = 1, 2, . . . } ∪ {0} (closed and bounded, hence compact; see also Problem set 3).

11. True or false?

– if a subset A ⊂ R has a least upper bound in R then it also has a greatest lower
bound in R;

False. Consider e.g. (−∞, 0).

– if E is a finite subset of a metric space (X, d) then E is closed in X;

True. E has no limit points, so all limit points of E belong to E.

– if K is a compact subset of a metric space (X, d) and F ⊂ X is closed in X, then
K ∩ F is closed in X.

True. K is closed in X (Theorem 2.34), so K ∩ F is closed. (In fact K ∩ F is even compact, by
Theorem 2.35).
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12. Let E be an open subset of R2. Is every point of E a limit point of E? Same
question if E is closed.

Let x ∈ E, then x is an interior point of E, hence there is r0 > 0 such that Nr0(x) ⊂ E. Hence,
for all r > 0, Nr(x)∩E ⊃ Nr(x)∩Nr0(x) = Nmin(r,r0)(x) contains points other than x. (Note: this
need not be true in a general metric space (X, d), it could be that this neighborhood contains no
other point, if x is an isolated point of X! However, in Rk neighborhoods are uncountable). Hence
x is a limit point of E.

This property does not hold for closed E: for example E = {0} is closed, but 0 is not a limit
point of E.

13. If s1 =
√
2, and sn+1 =

√
2 + sn (n = 1, 2, 3, . . . ), prove that {sn} converges, and

that sn < 2 for all n. (Hint: show that {sn} is a monotonic sequence).

First, s1 =
√
2 < s2 =

√

2 +
√
2 < 2. By induction we prove that sn < sn+1 < 2 for all n:

assume that sn−1 < sn < 2, then 2 + sn−1 < 2 + sn < 4, so
√
2 + sn−1 <

√
2 + sn < 2, i.e.

sn < sn+1 < 2. This proves that sn < 2 for all n, and that {sn} is monotonically increasing. Since
{sn} is monotonic and bounded, it converges.

14. Find lim sup sn and lim inf sn, where {sn} is the sequence defined by s1 = 0, s2m =
s2m−1

2 , s2m+1 =
1
2 + s2m.

The first few terms are: 0, 0, 1
2 ,

1
4 ,

3
4 ,

3
8 ,

7
8 , . . . . Consider the odd terms: s2m+1 = 1

2 + s2m =
1
2 + 1

2s2m−1 = 1
2(1 + s2m−1). By induction, s2m+1 = 1 − 1

2m , and s2m+1 → 1. Moreover, s2m =
1
2s2m−1 =

1
2(1− 1

2m−1 ) =
1
2 − 1

2m , and s2m → 1
2 . So lim inf sn = 1

2 and lim sup sn = 1.

15. Suppose {pn} is a Cauchy sequence in a metric space X, and some subsequence
{pnk

} converges to a point p ∈ X. Prove that the full sequence {pn} converges to p.

Let ǫ > 0. There exists N such that, for n,m ≥ N , d(pn, pm) < ǫ. Then, consider any n ≥ N :
for k sufficiently large (so that nk ≥ N), d(pn, pnk

) < ǫ. Taking the limit as k → ∞, it follows
that d(pn, p) ≤ ǫ. Or: if k is sufficiently large then d(pnk

, p) < ǫ (by the assumption pnk
→ p), so

d(pn, p) ≤ d(pn, pnk
) + d(pnk

, p) < 2ǫ. In any case, we conclude that d(pn, p) becomes arbitrarily
small for n large, i.e. pn → p.


