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Abstract

The following are some solutions for old geometry/topology qualifying exams in the University of
Arizona math department. It is a companion to my paper Chains, forms, and duality, which you should
find near this file as prolrev.pdf.
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1 Disclaimer

It might be argued that you should not read such a paper as this one — that it is better for your character to
go through the qual packet and write up your own solutions. But you can do both. Following the wise advice
of the current graduate director, working the packet problems is only the start of your qualifier preparation.
Once you’ve done that, you should spend the bulk of the summer doing all conceivable variations of all

problems in the packet. Thus, this paper merely sheds some light on the start of your preparation process.

2 Acknowledgements

Several solutions are due to folks in the summer 2007 prep sessions, including Dan Champion, David Herzog,
Chol Park, Victor Piercey, Jordan Schettler, and Ryan Smith. Solutions are my own unless otherwise
indicated.

3 Topics and theorems

The following is a list of topics compiled by the folks in the summer 2007 qual-prep sessions. I hope that it
is exhaustive; it is certainly more accurate than the cover page of the qual packet.

Differential geometry topics:

• Tensors, forms, vector fields

• Flows of vector fields, flow coordinates

• Derivatives, Lie derivatives, Jacobian

• Lie bracket

• Tangent vectors and the tangent bundle

• Vector calculus (all classical theorems)

• Coordinate charts, parameterizations, atlas

• Embedded submanifolds

• Regular and critical values of a function

• Lagrange multipliers

• Volume/area forms

• Pullback, pushforward

• Stereographic projection (circle, sphere, hypersphere)

• Contraction of forms with vector fields

• Closed forms

• Exact forms

4



• Cartan’s magic formula

• Change of coordinates

• One-parameter groups of diffeomorphisms

• Partitions of unity

Differential geometry theorems:

• Regular value theorem

• Rank theorem

• Implicit function theorem

• Inverse function theorem

• Stokes’ theorem (classical and general)

• Green’s theorem

• Divergence theorem

Algebraic topology topics:

• Classification of compact surfaces

• Euler characteristic

• Connect sum

• Homology and cohomology groups

• Fundamental group

• Singular/cellular/simplicial homology

• Mayer-Vietoris long exact sequences for homology and cohomology

• Diagram chasing

• Degree of maps from S
n to S

n

• Orientability, compactness

• Top-level homology and cohomology

• Reduced homology and cohomology

• Relative homology

• Homotopy and homotopy invariance

• Deformation retract

• Retract

• Excision
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• Künneth formula

• Factoring maps

• Fundamental theorem of algebra

Algebraic topology theorems:

• Brouwer fixed point theorem

• Poincaré lemma

• Poincaré duality

• de Rham theorem

• Seifer-van Kampen theorem

Covering space theory topics:

• Covering maps

• Free actions

• Properly discontinuous action

• Universal cover

• Correspondence between covering spaces and subgroups of the fundamental group of the base.

• Lifting paths

• Homotopy lifting property

• Deck transformations

• The action of the fundamental group

• Normal/regular cover

Complex analysis topics:

• Contour integration

• Conformal maps

• Conformal equivalence

• Meromorphic, holomorphic, analytic functions

• Linear fractional transformations

• Radii of convergence of power series

• Poles

• Singularities and removable singularities
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• Residues

• Cauchy-Riemann equations

• Laurent series

• Trig functions

• Complex numbers (arithmetic, computation, polar, . . . )

Complex analysis theorems:

• Liouville’s theorem

• Cauchy’s residue theorem

• Jordan’s lemma

• ML estimate

• Maximum modulus principle

4 January 2007

4.1 January 2007 #2.

The exponential map, exp : C → C
∗, is a covering space map. Suppose that X is a path-connected smooth

manifold and that φ : X → C∗ is a smooth map. Let z = x+ iy be the usual complex coordinate on C.

(a) Show that the one-form

η = Re

(
dz

2πiz

)

is a generator for the de Rham cohomology H1(C∗).

(b) Show that if φ∗(η) = 0 in H1(X) then there exists a smooth lift φ̃ : X → C such that

φ = exp φ̃.

Solution. For part (a): the punctured complex plane deformation-retracts to the unit circle, we know the
cohomology of S1, and cohomology is homotopy invariant. Thus H1(C∗) is one-dimensional. I need to show
that η is closed and non-exact. For closedness, note that η is a 1-form on a 2-dimensional real manifold so
we do have something to compute. First observe that

η = Re

(
dz

2πiz

)
= Re

(
dx+ i dy

2πi(x+ iy)

)

= Re

(
(dx+ i dy)(x− iy)

2πi(x2 + y2)

)

= Re

(
x dx+ y dy − iy dx+ ix dy

2πi(x2 + y2)

)

= Re

(−ix dx− iy dy − y dx+ x dy

2π(x2 + y2)

)

=
x dy − y dx

2π(x2 + y2)
.
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This is of course dθ/2π; I could leave it at that. Or, I can work it out:

d

(
x dy − y dx

2π(x2 + y2)

)
=

1

2π

[
d

(
x

x2 + y2

)
∧ dy − d

(
y

x2 + y2

)
∧ dx

]
.

Now

d

(
x

x2 + y2

)
=

(x2 + y2) dx− x(2x dx+ 2y dy)

(x2 + y2)2
=

(−x2 + y2) dx− 2xy dy

(x2 + y2)2

d

(
x

x2 + y2

)
∧ dy =

(−x2 + y2) dx ∧ dy
(x2 + y2)2

and likewise

d

(
y

x2 + y2

)
=

(x2 + y2) dy − y(2x dx+ 2y dy)

(x2 + y2)2
=

(x2 − y2) dy − 2xy dx

(x2 + y2)2

d

(
y

x2 + y2

)
∧ dx =

(x2 − y2) dy ∧ dx
(x2 + y2)2

=
(−x2 + y2) dx ∧ dy

(x2 + y2)2
.

Thus

dη =
1

2π

[
(−x2 + y2) dx ∧ dy

(x2 + y2)2
− (−x2 + y2) dx ∧ dy

(x2 + y2)2

]
= 0.

For non-exactness, there are a couple approaches. The quickest is to cite the Cauchy integral formula and
recall that taking the real part commutes with taking the integral. Thus,

∮
η = 1 where the path is, say,

the unit circle counterclockwise. The other is to explicitly compute
∮
dz/2πiz using z = eit for 0 ≤ t ≤ 1.

Equivalently, use η = (−y dx + x dy)/2π on the unit circle and write out a path integral. In all cases the
result is the same. We then use the usual argument that if η were closed then by Stokes’ theorem its integral
around a cycle would be zero; contrapositively, since we found the integral around a cycle to be non-zero, η
is non-exact.

Part (b) looks like the usual factoring problem but turns out to be a bit different. We have the following
diagram:

C

exp

��
X

φ //

φ̃?
=={

{
{

{

C∗.

The lift criterion is that we need φ∗(π1(X)) ≤ exp∗(π1(C)). The latter is zero: the complex plane is simply
connected; it is the universal cover of C∗. What about the former, though? We are given only that φ∗[η] = 0
in H1(X). We need only to show that φ∗(π1(X)) = 0.

Since [η] is a generator of H1(X), φ∗[η] = 0 means that φ∗ is the zero map. We can use this information
about cohomology to extract information about homology, using the duality induced by integration. We
need to show that φ∗(π1(X)) = 0. Suppose to the contrary. Then there is a loop c in X whose image under
φ∗ is homotopic to the around-the-origin loop, α, in C∗. That is, φ∗[c] = [α] in homotopy. Also recall that
pairing of cycles and forms is well-defined on homology and cohomology classes respectively, i.e. if [ω1] = [ω2]
and [c1] = [c2] then ∫

c1

ω1 =

∫

c1

ω2 =

∫

c2

ω1 =

∫

c2

ω2.
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Then φ∗ pushes [c] forward from X to C∗; φ∗ pulls back [η] from C∗ to X:

X
φ // C∗

H1(X) [c] � φ∗ // [α] H1(C
∗)

H1(X) 0 oo φ∗

� [η] H1(C∗)

∫
c
φ∗(η) =

∫
c
0 = 0

∫
φ∗(c)

η =
∫

α
η = 1.

Since φ∗(c) and α are cohomotopic, they are cohomologous. By naturality of pullback, we expect
∫

c
φ∗(η) =∫

φ∗(c)
η. We already know that on the right-hande side, the form η integrated around α in C∗ is 1. Yet also

we know that φ∗[η] = [0] so the integral on the left-hand side is 0. This is the desired contradiction.

4.2 January 2007 #5.

Let dθ denote the one-form on S1 that is the derivative of some local choice of angle (x, y) = (cos θ, sin θ) ∈ S1.
Let S

1 ∋ (x, y) 7→ p = x
1−y denote stereographic projection from the north pole. This is a coordinate defined

for y 6= 1. Find a function f(p) so that
dθ = f(p)dp.

Solution. First we have

dθ =
dθ

dp
dp.

However, dp/dθ looks easy to compute so I’ll find that first. Since (x, y) = (cos θ, sin θ) we have (using the
quotient rule)

dp

dθ
=

d

dθ

(
x

1 − y

)

=
d

dθ

(
cos θ

1 − sin θ

)

=
(1 − sin θ)(− sin θ) − cos θ(− cos θ)

(1 − sin θ)2

=
− sin θ + sin2 θ + cos2 θ

(1 − sin θ)2

=
1 − sin θ

(1 − sin θ)2
=

1

1 − sin θ

=
1

1 − y
.

This has the problem half-done: we now know dp/dθ but we still need it in terms of p. We know that
p = x/(1 − y). We need to eliminate x in order to be able to solve for 1 − y. Our only relation between x
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and y is x2 + y2 = 1 so we will need to square things. We have

p2 =
x2

(1 − y)2

=
1 − y2

(1 − y)2

=
(1 − y)(1 + y)

(1 − y)(1 − y)

=
1 + y

1 − y
.

Inverting this rational function we have

p2 − p2y = 1 + y

(p2 + 1)y = (p2 − 1)

y =
p2 − 1

p2 + 1
.

Then

1

1 − y
=

1

1 − p2−1
p2+1

=
p2 + 1

(p2 + 1) − (p2 − 1)

=
p2 + 1

2
.

So,

f(p) =
2

p2 + 1
.

4.3 January 2007 #6.

(a) Show that the subset M of R3 defined by the equation

(1 − z2)(x2 + y2) = 1

is a smooth submanifold of R3.

(b) Define a vector field on R3 by

V = z2x
∂

∂x
+ z2y

∂

∂y
+ z(1 − z2)

∂

∂z
.

Show that the restriction of V to M is a tangent vector field to M .

(c) The family of maps φt(x, y, z) = (cx− sy, sx+ cy, z) with c = cos t and s = sin t obviously restricts to a
one-parameter family of diffeomorphisms of M . For each t, determine the vector field (φt)∗V on M .

Solution. Using the regular value theorem, it suffices to show that the Jacobian of the left-hand side
represents a surjective linear transformation for all points of M . This Jacobian is

(
2x(1 − z2) 2y(1 − z2) −2z(x2 + y2)

)
.
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Full rank would be 1; anything less is 0. So, I need to find (x, y, z) such that this matrix is (0, 0, 0). This
requires:

x = 0 or z = ±1

y = 0 or z = ±1

z = 0 or x = y = 0.

If z = ±1 then we have 0 = 1 on M , which is absurd. Thus for the Jacobian to be zero we need x = y = z = 0
or x = y = 0. Either case also yields 0 = 1 on M , so the Jacobian never vanishes on M . Therefore the
inverse image of 1 is either the empty set or an embedded submanifold of R3; the latter holds since visibly
(1, 0, 0) ∈M .

For part (b), it suffices to show that V is perpendicular to a normal field to M . The latter is given by the
gradient of the function defining M , and the gradient in turn is (conveniently) the transpose of the Jacobian.
This is

n =




2x(1 − z2)
2y(1 − z2)

−2z(x2 + y2)



∣∣∣∣„ x

y

z

« = 2x(1 − z2)
∂

∂x
+ 2y(1 − z2)

∂

∂y
− 2z(x2 + y2)

∂

∂z
.

Then at each point (x, y, z) of M ,

n · V = 2x2z2(1 − z2) + 2y2z2(1 − z2) + −2z2(x2 + y2)(1 − z2) = 0.

For part (c), recall the following for maps of manifolds: If F : M → N then in coordinates DF : TqM →
TF (q)N , where DF is the coordinate representation of F∗. In particular, (φt)∗ carries V footed at q to DφtV
footed at φtq. Let

q =




x
y
z


 .

Then already we are given

φt(q) =




cos(t) − sin(t) 0
sin(t) cos(t) 0

0 1






x
y
z


 .

Next, φt is already linear (for each fixed t) so it is its own derivative. Thus

(φt)∗V =




cos(t) − sin(t) 0
sin(t) cos(t) 0

0 1






z2x
z2y

z(1 − z2)



∣∣∣∣„ cos(t) − sin(t) 0

sin(t) cos(t) 0
0 1

«„

x

y

z

«.

* * *

However, this is less than satisfying. To see why, let

Y = −y ∂

∂x
+ x

∂

∂y

be the vector field corresponding to the flow of φt. (To derive this, compute

Y =
dφt

dt

∣∣∣∣
t=0




x
y
z
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as usual.) Then, on all of R3, omitting second-order derivatives which always cancel in the Lie bracket, and
grouping things vertically for visual convenience,

LY V = [Y, V ] = Y V − V Y

=

(
− y ∂/∂x
+ x ∂/∂y

)


z2x ∂/∂x
+ z2y ∂/∂y
+ z(1 − z2) ∂/∂z


 −




z2x ∂/∂x
+ z2y ∂/∂y
+ z(1 − z2) ∂/∂z



(

− y ∂/∂x
+ x ∂/∂y

)

=

(
− yz2 ∂/∂x
+ xz2 ∂/∂y

)
−
(

z2x ∂/∂y
− z2y ∂/∂x

)

= 0.

Since this is true on all of R3, it is certainly true on restriction to M . Since the rotational flow preserves V ,
we should be able to write (φt)∗V as V somehow.

I can (and have) done this for R
3, restricting to M later, and restricting to M first. In this problem, both

ways work out without too much mess (although see section 5.5 where restricting first makes an enormous
simplification). I will show the latter approach.

In order to choose appropriate coordinates for a manifold, one must first know the homotopy class of the
manifold. (I learned this the hard way on the first geometry mid-term my first year.) The equation defining
M is (x2+y2)(1−z2) = 1. Now, x2+y2 is non-negative; (1−z2) will be positive (and thus the two terms can
multiply to 1) only for −1 < z < 1 and x, y 6= 0. Letting r2 = x2 +y2 we have r = 1/

√
1 − z2. Plotting some

points and forming a surface of revolution shows [xxx insert figure here] and so M visibly has the homotopy
class of a cylinder. So, cylindrical coordinates θ, z are a natural choice. Let q ∈ M . Parameterizing by θ, z
and taking directional derivatives as usual, we have

q =




x
y
z


 =




cos θ/
√

1 − z2

sin θ/
√

1 − z2

z


 ,

∂

∂θ
=




− sin θ/
√

1 − z2

cos θ/
√

1 − z2

0


 ,

∂

∂z
=




z cos θ/(1 − z2)3/2

z sin θ/(1 − z2)3/2

1


 .

In terms of these coordinates, the vector field is

V =




z2x
z2y

z(1 − z2)


 =




z2 cos θ/
√

1 − z2

z2 sin θ/
√

1 − z2

z(1 − z2)


 = z(1 − z2)




z cos θ/(1 − z2)3/2

z sin θ/(1 − z2)3/2

1


 = z(1 − z2)

∂

∂z
.

Now replace (x, y, z) with (cx− sy, sx+ cy, z) where c = cos t and s = sin t. We have

q =




cos tx− sin ty
sin tx+ cos ty

z


 =




cos t cos θ−sin t sin θ√
1−z2

sin t cos θ+cos t sin θ√
1−z2

z




which we recognize from trigonometry as

q =




cos(t+ θ)/
√

1 − z2

sin(t+ θ)/
√

1 − z2

z


 .

Then

∂

∂θ
=




− sin(t+ θ)/
√

1 − z2

cos(t+ θ)/
√

1 − z2

0


 and

∂

∂z
=




z cos(t+ θ)/(1 − z2)3/2

z sin(t+ θ)/(1 − z2)3/2

1


 .
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In terms of these coordinates, the vector field is

V =




z2(cos tx− sin ty)
z2(sin tx+ cos ty)

z(1 − z2)


 =




z2 cos(t+ θ)/
√

1 − z2

z2 sin(t+ θ)/
√

1 − z2

z(1 − z2)




= z(1 − z2)




z cos(t+ θ)/(1 − z2)3/2

z sin(t+ θ)/(1 − z2)3/2

1


 = z(1 − z2)

∂

∂z

which is what I wanted.

4.4 January 2007 #7.

Find the critical points and critical values for the function f(x, y, z) = x2+y2−z restricted to the two-sphere
x2 + y2 + z2 = 1.

Solution. Critical points occur where the Jacobian of f has less than full rank, i.e. rank 1. This means
that the Jacobian of f must have rank 0, i.e. vanish. Since the Jacobian of f is the transpose of f , it suffices
to find where ∇f restricted to S2 vanishes. Lagrange multipliers were developed for precisely this purpose.

Let g(x, y, z) = x2 + y2 + z2 − 1. We can use Lagrange multipliers as long as f and g have continuous
first partials and as long as ∇g vanishes nowhere. The first is true because f and g are polynomials, hence
smooth; the latter is true because ∇g = (2x, 2y, 2z)t which vanishes only at the origin, which is not in S2.

We now compute ∇f = λ∇g:

2x = λ2x

2y = λ2y

−1 = λ2z.

Then:

• If x = y = 0 then λ can be anything, but this forces (on S
2) z = ±1.

– In the first case (z = 1 and the critical point is the north pole), the critical value is f(0, 0, 1) =
−1.

– In the second case (z = −1 and the critical point is the south pole), the critical value is f(0, 0, 1)
= 1.

• Otherwise, either x or y is non-zero and we have λ = 1. Then z = −1/2, and x and y are free
to vary at that latitude, i.e. the circle x2 + y2 = 3/4 at z = −1/2. Here, the critical value is
f(x, y, z) = 3/4 + 1/2 = 5/4.

13



5 August 2006

Failure is instructive. The person who really thinks learns quite as much from his failures as from his

successes. — John Dewey.

5.1 August 2006 #1.

Solve only one of the following two problems.

1A. Compute the following integral: ∫ ∞

0

cos(x)

1 + x4
dx.

1B. Find a conformal mapping of the vertical semi-infinite strip {0 < Re(z) < 1, 0 < Im(z)} onto the unit
disk |w| < 1.

Solution for question 1A. Overview: As usual, we will include the desired real integral as one leg of a
closed loop in the complex plane, then use Cauchy’s residue theorem to evaluate the integral around that
loop.

Let

I =

∫ ∞

0

cos(x)

1 + x4
dx =

1

2

∫ ∞

−∞

cos(x)

1 + x4
dx =

1

2

∫ ∞

−∞

eix

1 + x4
dx

where the first equality is due to the evenness of the integrand and the second is due to the oddness of
sin(x)/(x4 + 1).

Let C1 be the path along the real axis from −R to 0; let C2 be the path along the real axis from 0 to R; let
C3 be the semicircular arc of radius R in the upper half-plane, centered about the origin. [xxx include figure
here.] Note that C = C1 +C2 +C3 is a simple loop enclosing the two poles z = ζ8, ζ

3
8 of the integrand, where

ζ8 =
1 + i√

2

is the principal eighth root of unity. Let

f(z) =
eiz

z4 + 1
.

Note that

lim
R→∞

∫

C1

f(z) dz = lim
R→∞

∫

C2

f(z) dz = I,

whereas I claim that

lim
R→∞

∫

C3

= 0.

To see this, note that in the upper half-plane, i.e. for y ≥ 0, we have

|eiz| = |ei(x+iy)| = |e−yeix| = |e−y| |eix| = |e−y| ≤ 1.

Meanwhile, for large R = |z| the modulus of the denominator is well estimated by R4. Note that the length
of the path C3 is πR. Using the ML estimate, we have

∫

C3

f ≤ML =
πR

R4
=

π

R3
→ 0

14



as R→ ∞.

Using Cauchy’s residue theorem, we have

∮

C1+C2+C3

= I + I + 0 = 2I = 2πi
∑

Res f

i.e.
I = πi

∑
Res f

where the sum is over z = ζ8, ζ
3
8 .

Note that both ζ8 and ζ3
8 are simple poles of f . Thus we may apply the usual formula, differentiating the

denominator, to obtain

Res
z=ζ8

f =
eiz

4z3

∣∣∣∣
z=ζ8

and likewise for the other pole. Doing the first pole, we have

Res
z=ζ8

f =
eiζ8

4ζ3
8

.

Recall that

ζ3
8 =

−1 + i√
2

and iζ8 =
−1 + i√

2
.

Also,

exp(iζ8) = exp

(−1 + i√
2

)
= exp

(−1√
2

)
exp

(
i√
2

)
= exp

(−1√
2

)(
cos(1/

√
2) + i sin(1/

√
2)
)
.

For brevity, let
c = cos(1/

√
2) and s = sin(1/

√
2).

Then

Res
z=ζ8

f =
e−1/

√
2(c+ is)

2
√

2(−1 + i)
.

For the other pole, we have

Res
z=ζ3

8

f =
eiζ3

8

4ζ9
8

.

Notice that

ζ9
8 = ζ8 =

1 + i√
2

and iζ3
8 =

−1 − i√
2

.

Then

exp(iζ3
8 ) = exp

(−1 − i√
2

)
= exp

(−1√
2

)
exp

(−i√
2

)
= exp

(−1√
2

)(
cos(−1/

√
2) + i sin(−1/

√
2)
)

= exp

(−1√
2

)(
cos(1/

√
2) − i sin(1/

√
2)
)

= exp

(−1√
2

)
(c− is).

Then

Res
z=ζ3

8

f =
e−1/

√
2(c− is)

2
√

2(1 + i)
.
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The sum of residues is

e−1/
√

2(c+ is)

2
√

2(−1 + i)
+
e−1/

√
2(c− is)

2
√

2(1 + i)
=

e−1/
√

2

2
√

2

(
c+ is

−1 + i
+
c− is

1 + i

)

=
e−1/

√
2

2
√

2

(
(c+ is)(1 + i) + (c− is)(−1 + i)

(−1 + i)(1 + i)

)

=
−e−1/

√
2

4
√

2
(c+ ic+ is− s − c+ ic+ is+ s)

=
−ie−1/

√
2

2
√

2
(c+ s).

Then finally

I = πi
∑

Res f

= πi · −ie−1/
√

2

2
√

2
(c+ s)

=
πe−1/

√
2

2
√

2
(cos(1/

√
2) + sin(1/

√
2))

≈ 0.772

which checks out numerically on my TI-83.

Solution for question 1B.

. . .

5.2 August 2006 #2.

Compute the singular homology groups H∗(X,Z) of the space X = R3 \ A, where A is a subset of R3

homeomorphic to the disjoint union of two unlinked circles.

5.3 August 2006 #3.

Consider the following map f : R3 → R2:




x
y
z


 7→

(
xz − y2

yz − x2

)
.

For which values (a, b) ∈ R2 of f is the level set f−1(a, b) a smooth submanifold of R3?

5.4 August 2006 #4.

Consider the surface Σ obtained by identifying the edges of a square in the following way:

[xxx figure here]
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(a) Construct a model of the universal covering space of this surface, indicating especially how π1(Σ, v)
acts.

(b) Identify the covering space X of Σ, which corresponds to the subgroup of π1(Σ, v) generated by a and
describe the group of covering automorphisms of X.

5.5 August 2006 #5.

Consider the submanifold ι : M →֒ R3 given by x2 + y2 − z2 = 1.

(a) Show that the vector field X = xz
1+z2

∂
∂x + yz

1+z2
∂
∂y + ∂

∂z is tangent to M , i.e. that there exists a vector

field Y on M such that for any m ∈M we have ι∗(Y (m)) = X(m).

(b) Show that the two-form ω = x dy ∧ dz + y dz ∧ dx + z dx ∧ dy restricts to an area form on M , i.e. a
two-form which never vanishes. (Hint: use cylindrical coordinates.)

(c) Does the flow of Y on M preserve ι∗(ω)?

Solution. For part (a), it suffices to show that X is perpendicular to a normal to M . A normal to M is
given by the gradient of the function (x, y, z) 7→ x2 + y2 − z2, namely, (2x, 2y,−2z)t. To avoid factors of two
I may as well consider the normal field

n =




x
y

−z



∣∣∣∣„ x

y

z

«.

Then at each point of M ,

n ·X =




x
y

−z


 ·




xz
1+z2

yz
1+z2

1




=
x2z

1 + z2
+

y2z

1 + z2
− z

=
x2z

1 + z2
+

y2z

1 + z2
− z(1 + z2)

1 + z2

=
z(x2 + y2 − z2 − 1)

1 + z2

which vanishes on M .

For part (b), note that M is a hyperboloid of one sheet, which is homotopy equivalent to a cylinder. Thus,
θ, z coordinates are a good choice. Use




x
y
z


 =




r cos θ
r sin θ
z


 =




√
1 + z2 cos θ√
1 + z2 sin θ

z




since r2 = x2 + y2 = 1 + z2 on M . Then

i∗(dx) = −
√

1 + z2 sin θ dθ +
z√

1 + z2
cos θ dz

i∗(dy) =
√

1 + z2 cos θ dθ +
z√

1 + z2
sin θ dz

i∗(dz) = dz

17



i∗(dy ∧ dz) =
√

1 + z2 cos θ dθ ∧ dz
i∗(x dy ∧ dz) = (1 + z2) cos2 θ dθ ∧ dz

i∗(dz ∧ dx) =
√

1 + z2 sin θ dθ ∧ dz
i∗(y dz ∧ dx) = (1 + z2) sin2 θ dθ ∧ dz

i∗(dx ∧ dy) = −z sin2 θ dθ ∧ dz − z cos2 θ dθ ∧ dz
= −z dθ ∧ dz

i∗(z dx ∧ dy) = −z2 dθ ∧ dz

i∗(ω) =
(
(1 + z2) − z2

)
dθ ∧ dz

= dθ ∧ dz

which is non-vanishing since its coefficient is constant 1.

For part (c), I experimented a few different ways. I computed LX(ω), then tried to pull that back to M .
However, with or without Cartan’s magic formula, the algebra is a horrid mess. This is the kind of thing one
learns only after wasting an hour or two on it, and during an exam we don’t have that much time to spare.
The clue is that X and ω each have three terms in them, and ω isn’t top-level so one needs to compute dω
in the magic formula: both these facts contribute to the mess. On the other hand, we’ve seen that i∗(ω) has
only one term, and is already top-level for M . The lesson learned is that it works out much nicer to first

pull back, then compute the Lie derivative LY (i∗ω).

To do this, though, we need to find out what Y is in terms of ∂/∂z and ∂/∂θ. Recall that X is

(
x
∂

∂x
+ y

∂

∂y

)
z

1 + z2
+

∂

∂z
.

The sum of the first two terms points straight out radially from the z axis (with magnitude dependent on
z), and the last term points up. Thus X has no rotational component. Since the tangent bundle to M is
spanned by ∂/∂z and ∂/∂θ, and since we’ve just seen that the coefficient on the latter must be zero, Y must
be a multiple of ∂/∂z alone.

To find out what ∂/∂z is, proceed as usual: parameterize M by θ and z, then apply the directional derivative.
We have

∂/∂z =




∂
∂z

(√
1 + z2 cos θ

)
∂
∂z

(√
1 + z2 sin θ

)
∂
∂z (z)




=




z√
1+z2 cos θ
z√

1+z2
sin θ

1


 .

Now, X is 


xz
1+z2

yz
1+z2

1


 .
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The z-coordinate of ∂/∂z is the same as the z-coordinate of X, suggesting that Y = ∂/∂z, but let’s nail this
to the floor by writing out X in cylindrical coordinates and restricting to M :

Y =




xz
1+z2

yz
1+z2

1



∣∣∣∣
M

=




z
√

1+z2 cos θ
1+z2

z
√

1+z2 sin θ
1+z2

1


 =




z cos θ√
1+z2

z sin θ√
1+z2

1


 = ∂/∂z.

Given that we know what Y and i∗(ω) are, showing that the flow of Y preserves i∗(ω) is quick and easy:

LY (i∗(ω)) =
∂

∂z
y (d(dθ ∧ dz)) + d

(
∂

∂z
y (dθ ∧ dz)

)

= d

(
∂

∂z
y (dθ ∧ dz)

)

= d (−dθ))
= 0.

5.6 August 2006 #6.

Prove the Poincaré lemma in the plane: a closed 1-form or 2-form on R2 is exact.

5.7 August 2006 #7.

Let T2 be the two-dimensional torus and let φ : S2 → T2 be smooth map. Show that for any top de Rham
cohomology class [ν] ∈ H2(T2), we have φ∗[ν] = 0.

Solution (Smith/Piercey). Problems like this typically involve factoring through some third thing. (See
section 8.1 for more examples.) The question is: factor what through what? We have the following clues:

• S
2 has trivial fundamental group; T

2 has fundamental group isomorphic to Z ⊕ Z.

• It is disconcerting that the question asks about second-level cohomology, which at first glance appears
unusably distinct from considerations of fundamental groups. (After all, S2 and T2, both being com-
pact orientable manifolds, have isomorphic second-level cohomology!) However, recall that the lifting
theorems involve fundamental groups, and also maps of manifolds (including the lifted maps!) induce
maps on homology and cohomology.

• A lifting result can be used to pass to the universal cover of T2, thereby providing a third thing to
experiment with.

S2 has trivial fundamental group, which maps by φ∗ into T2’s fundamental group Z ⊕ Z, i.e.

0 = φ∗(π1(S
2)) ≤ π1(T

2).

Since S
2 is simply connected, it is its own universal cover; on the other hand, R

2 is the universal cover for
T2, with covering map p, and

0 = p∗(π1(R
2)) ≤ π1(T

2).

(Recall that R2 in particular, and universal covers in general, have trivial fundamental group.) Since

φ∗(π1(S
2)) ≤ p∗(π1(R

2)),
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there exists a unique lift φ̃ of φ from S2 to R2 such that the following diagram commutes, i.e. φ = p ◦ φ̃:

R2

p

��
S2

φ //

φ̃
>>|

|
|

|

T2.

Then the induced maps on cohomology give the diagram

H2(R2)

φ̃∗

yyt
t

t
t

t

H2(S2) H2(T2).
φ∗

oo

p∗

OO

This diagram commutes because
φ∗ = (p ◦ φ̃)∗ = φ̃∗ ◦ p∗.

But R2 has trivial second cohomology, so p∗[ν] = 0 for any second cohomology class [ν] of T2, and so

φ∗[ν] = φ̃∗(p∗[0]) = φ̃∗(0) = 0.
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6 Winter 2005

6.1 Winter 2005 #2.

Let S1 denote the unit circle in R2 and write

S
1 ∋

(
x
y

)
7→ p =

x

1 − y
,

for the coordinate on S1 given by stereographic projection from the north pole, N . Let Vp = v(p) ∂/∂p
denote a vector field on the complement of the north pole, S

1 \ {N}. Here v(p) is a smooth function on R.
Find a condition on v(p) that guarantees the vector field V extends to a smooth vector field on S1. Does
p3 ∂/∂p extend to a smooth vector field on S1?

Solution. Since v(p) is already smooth everywhere except perhaps at N , it suffices to give a condition for
smoothness at N . Recall that stereographic projection from the south pole, S, is given by

S
1 ∋

(
x
y

)
7→ q =

x

1 + y
.

Also recall that p = 1/q. Since vector fields are contravariant, ∂/∂p transforms by

∂

∂p
=
dq

dp

∂

∂q
,

where
dq

dp
= − 1

p2
= −q2.

Changing variable from p to q, we have

V1/q = −v
(

1

q

)
1

p2

∂

∂q
= −q2 v

(
1

q

)
∂

∂q
.

Thus, a necessary condition for smoothness of V at N is that −q2v(1/q) be smooth for q = 0.

For example, p ∂/∂p can extend smoothly to N : we have

V1/q = −q
2

q
∂/∂q = −q ∂/∂q.

On the other hand, p3 ∂/∂p does not extend smoothly to N : we have

V1/q = −q
2

q3
∂/∂q = −1

q
∂/∂q

which is singular at q = 0.

6.2 Winter 2005 #5.

Suppose that φ : S
1 → S

1 and ψ : S
1 → S

1 are continuous maps. Show that the compositions φ ◦ψ and ψ ◦φ
are homotopic. (Hint: is this true for f(z) = zn where n ∈ Z?)
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Sketch of proof. View φ and ψ as representatives of homotopy classes in the fundamental group of S1.
(Technically, think of S

1 as the unit circle in the complex plane,

{eiθ : θ ∈ R}.

Identify S1 with R/Z: send [0, 1] ∋ t to e2πit. Then φ̃ : [0, 1] → S1 is well-defined.) Shift ψ by a constant if
necessary so that φ(0) = ψ(0) is a common basepoint. Then φ and ψ, respectively, are necessarily homotopic
to z 7→ zm and z 7→ zn for integer m and n (the winding numbers of the maps). Representatives for the
compositions are

z 7→ (zm)n = zmn = (zn)m

which are identical so φ is homotopic to ψ.

[xxx to do: find the right level of detail to include.]
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7 Fall 2005

7.1 Fall 2005 #2.

Let ∂/∂θ denote the vector field on S1 which has tangent vector at (x, y) = (cos θ, sin θ) ∈ S1 determined by
the infinitesimal curve

t 7→ (cos(θ + t), sin(θ + t))

at t = 0. Let S1 ∋ (x, y) 7→ p = x/(1 − y) denote stereographic projection from the north pole. Find the
function v(p) so that

∂

∂θ
= v(p)

∂

∂p
.

Solution. Since vector fields are first-order contravariant tensor fields,

∂

∂θ
=
dp

dθ

∂

∂p
.

Thus the desired v(p) will be dp/dθ, written in terms of p. Since x = cos θ, y = sin θ, and p = x/(1− y), we
have

dp

dθ
=

d

dθ

(
cos θ

1 − sin θ

)

=
(1 − sin θ)(− sin θ) + cos2 θ

(1 − sin θ)2

=
− sin θ + sin2 θ + cos2 θ

(1 − sin θ)2

=
1 − sin θ

(1 − sin θ)2

=
1

1 − sin θ
.

It remains to write this in terms of p. Going back to x and y for the moment, I have

1

1 − sin θ
=

cos θ

cos θ(1 − sin θ)
=

x

x(1 − y)
=
p

x
.

See the discussion in section 4.2 for why it is that

y =
p2 − 1

p2 + 1
.

Then, to find an expression for x in terms of p, use p = x/(1 − y) and solve for p:

x = p(1 − y) = p

(
1 − p2 − 1

p2 + 1

)
= p

(
2

p2 + 1

)
=

2p

p2 + 1
.

Finally, we have

v(p) =
dp

dθ
=
p

x
= p

(
p2 + 1

2p

)
=
p2 + 1

2
.

* * *
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Alternative solution. We can compute dθ/dp, then reciprocate. We have

θ = tan−1(y/x) + kπ

with the usual due diligence in choice of k. Since

x =
2p

p2 + 1
and y =

p2 − 1

p2 + 1
,

we have

θ = tan−1

(
(p2 − 1)/(p2 + 1)

2p/(p2 + 1)

)
+ kπ

= tan−1

(
p2 − 1

2p

)
+ kπ

dθ

dp
=

1

1 + (p2−1)2

4p2

4p2 − (2p2 − 2)

4p2

=
2(p2 + 1)

4p2 + (p2 − 1)2

=
2(p2 + 1)

4p2 + p4 − 2p2 + 1

=
2(p2 + 1)

p4 + 2p2 + 1

=
2(p2 + 1)

(p2 + 1)2

=
2

p2 + 1

so
dp

dθ
=
p2 + 1

2

as before.

7.2 Fall 2005 #3.

Let f : D2 → D2 be a homeomorphism (where D2 is the closed unit disk in R
2). Show that f must map

boundary points x ∈ ∂D2 to points f(x) ∈ ∂D2 on the boundary.

Solution (Jordan Schettler). Suppose that f(q) /∈ ∂D2 for some q ∈ ∂D2. Then f restricted to D2 \ {q}
is a homeomorphism; its image is D2 \ {f(q)} since a homeomorphism is bijective. Notice that D2 \ {q}
has trivial fundamental group while D2 \ {f(q)} has cyclic fundamental group. This is a contradiction since
homeomorphisms preserve fundamental groups.
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8 Spring 2005

8.1 Spring 2005 #2.

Let f : S2 → S1 be a continuous map. Show that there is no continuous map g : S1 → S2 such that f ◦ g is
the identity map on S

1.

Solution. This is a factor-through problem. As will seen below, we can use fundamental groups, homology,
or cohomology. The first is the most likely guess and (happily) it works out here. Suppose there were such
a g. Then

S
1 g→ S

2 f→ S
1

is the same as
S

1 id→ S
1.

The induced map on fundamental groups is (f ◦ g)∗ = f∗ ◦ g∗ so we have

π1(S
1, x)

g∗→ π1(S
2, y)

f∗→ π1(S
1, z)

Regardless of the choice of base points, we would have (in terms of isomorphism classes)

Z → 0 → Z

being the same as the identity map. But this is absurd; any map through zero is the zero map.

* * *

Variation (Dan Champion). Let f : S3 → T2 be a continuous map. Show that there is no continuous
map g : T2 → S3 such that f ◦ g is the identity map on T2.

Solution. The argument is the same. The point is that Sn has trivial fundamental group for n ≥ 2, while
T

2 has fundamental group of isomorphism class Z
2: we have

T
2 g→ S

3 f→ T
2

being the same as

T
2 id→ T

2

which would induce the absurd isomorphism

Z
2 → 0 → Z

2.

* * *

Variation (Dan Champion). Let f : S1∨S1 → T2 be a continuous map. Show that there is no continuous
map g : T

2 → S
1 ∨ S

1 such that f ◦ g is the identity map on T
2.

Solution. We have

T
2 g→ S

1 ∨ S
1 f→ T

2

being the same as

T
2 id→ T

2.
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The induced map on fundamental groups is (f ◦ g)∗ = f∗ ◦ g∗ so we have

π1(T
2, x)

g∗→ π1(S
1 ∨ S

1, y)
f∗→ π1(T

2, z)

which in terms of isomorphism classes is

Z
2 → Z ∗ Z → Z

2.

The existence of such a map is, to me at least, an algebraic puzzler. But we don’t need to look at fundamental
groups. What S1 ∨ S1 does certainly have (being one-dimensional) is trivial second homology. The induced
map is

H2(T
2)

g∗→ H2(S
1 ∨ S

1)
f∗→ H2(T

2)

which in terms of isomorphism classes is the desired absurdity

Z → 0 → Z.

* * *

Remark. Questions about the existence of maps may often be attacked by (1) factor-through arguments,
or (2) lift arguments. [xxx xref to an example of the latter.]

8.2 Spring 2005 #6.

Consider R3 with coordinates (x, y, z). Write down explicit formulas for the vector fields X and Y which
represent the infinitesimal generators of rotations about the x− and y−axes respectively and compute their
Lie bracket.

Solution. We should all know about rotation matrices on R2:
(
x
y

)
7→
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
x
y

)
.

With θ = π/2 we have (
x
y

)
7→
(

−y
x

)
.

So, a vector footed at (x, y) but perpendicular to the ray from the origin to (x, y) is (−y, x)|(x,y) = −y∂/∂x+
x∂/∂y. [xxx include figure.] Embedding into R3 we have

X = −z ∂
∂y

+ y
∂

∂z
and Y = −z ∂

∂x
+ x

∂

∂z
.

The Lie bracket is [X,Y ] = XY − Y X. We do this using partial differentiation and the chain rule, guided

26



by the fact that second-order partials will cancel and thus needn’t be computed. We have

XY − Y X =

(
−z ∂

∂y
+ y

∂

∂z

)(
−z ∂

∂x
+ x

∂

∂z

)
−
(
−z ∂

∂x
+ x

∂

∂z

)(
−z ∂

∂y
+ y

∂

∂z

)

= −z ∂
∂y

(
−z ∂

∂x

)
− z

∂

∂y

(
x
∂

∂z

)
+ y

∂

∂z

(
−z ∂

∂x

)
+ y

∂

∂z

(
x
∂

∂z

)

+ z
∂

∂x

(
−z ∂

∂y

)
+ z

∂

∂x

(
+y

∂

∂z

)
− x

∂

∂z

(
−z ∂

∂y

)
− x

∂

∂z

(
+y

∂

∂z

)

= 0 − 0 − y
∂

∂x
+ 0

+ 0 + 0 + x
∂

∂y
− 0

= −y ∂
∂x

+ x
∂

∂y

which is rotation about the z-axis.

27



9 Fall 2004

9.1 Fall 2004 #2.

Find the image of the vertical strip |Re(z)| < π/2 under the conformal map z 7→ sin(z).

Solution. Since I am not already familiar with this map, I will do some algebra and look for patterns. I
know that

sin(z) =
eiz − e−iz

2i
.

Putting z = x+ iy, I have (attempting to simplify in terms of elementary functions in x and y separately)

sin(x+ iy) = sin(x) cos(iy) + cos(x) sin(iy) = sin x cosh y + i cosx sinh y.

(See also the trig-function section of my complex-analysis notes, which you should find nearby as caqp.pdf.)

Now, examine the images of horizontal line segments and vertical lines. Let u+iv = w = sin(z) = sin(x+iy).
If x = 0, then we have

u+ iv = 0 + i sinh y.

Thus the imaginary axis is sent to itself. If x = π/2 then

u+ iv = cosh(y) + 0i

Likewise if x = −π/2 then
u+ iv = − cosh(y) + 0i

[xxx see figure.]

For y = 0 we have
u+ iv = sin(x)

which sends that horizontal line segment to itself. As y increases, sinh(y) and cosh(y) both increase. Fixing
y, when x = ±π/2 we have

u+ iv = ± cosh y + 0i;

when x = 0 we have
u+ iv = 0 + i sinh y.

[xxx figure.]

I now boldly claim (based on plotting which I admit I couldn’t do during the qual — but, here were are
building intuition which we can recall later) that the image of horizontal line segments are the upper halves
of ellipses with horizontal radius cosh y and vertical radius sinh y. Recall that the point (u, v) lies on an
ellipse with horizontal radius a and vertical radius b if

u2

a2
+
v2

b2
= 1.

For the image of a horizontal line segment with y fixed, this is

u2

a2
+
v2

b2
=

sin2 x cosh2 y

cosh2 y
+

cos2 x sinh2 y

sinh2 y
= 1

as desired.
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As y increases above zero, cosh y and sinh y both increase; as y decreases below zero, cosh y increases while
sinh y decreases. Thus, the image of the family of horizontal line segments is a family of concentric ellipses.
Remember though that since ±π/2 is not included in the domain, the parts of the real line with u ≤ −1 and
u ≥ +1 are not in the image of the map.

What about the images of vertical lines? Since sin(z) is conformal, it is angle-preserving. So, we can sketch
it as follows: [xxx figure.]

I now claim that the images of vertical lines are sheets of hyperbolae. To show this, I need to do some
algebra as above for the ellipses. [xxx do that.]

9.2 Fall 2004 #5.

Let M denote the submanifold of R3 defined by z2 − x2 − y2 = 1, with z > 0. Define φt(x, y, z) =
(sz + cx, y, cz + sx) where c = cosh t and s = sinh t.

(a) Show that t 7→ φt determines a one-parameter family of diffeomorphisms of M and find the vector field
associated with t 7→ φt in the coordinates for M obtained by the projection (x, y, z) 7→ (x, y).

(b) Determine φ∗t (
dx∧dy

z ).

Solution. Showing that t 7→ φt determines a one-parameter family of diffeomorphisms of M is all but
identical to section 14.2. Note that M is the top sheet of a hyperboloid of two sheets.

Let Y be the vector field associated with t 7→ φt on R3, and let X be the vector field on M . That is, X is
the restriction of Y to M . The question did not ask to find Y , but we can. As usual,

Y =
dφt

dt

∣∣∣∣
t=0




cosh t 0 sinh t
0 1 0

sinh t 0 cosh t






x
y
z




=




sinh t 0 cosh t
0 0 0

cosh t 0 sinh t






x
y
z



∣∣∣∣
t=0

=




z
0
x



∣∣∣∣„ x

y

z

« = z
∂

∂x
+ x

∂

∂z
.

ForX, we proceed similarly. We are asked to use graph coordinates, so we do so. Note that z =
√
x2 + y2 + 1.

Then

φt

(
x
y

)
=

(
cx+ sz

y

)
=

(
cosh(t)x+ sinh(t)

√
x2 + y2 + 1

y

)

and

X =
dφt

dt

∣∣∣∣
t=0

(
cosh(t)x+ sinh(t)

√
x2 + y2 + 1

y

)

=

(
sinh(t)x+ cosh(t)

√
x2 + y2 + 1

0

) ∣∣∣∣
t=0

=

( √
x2 + y2 + 1

0

)
=
(√

x2 + y2 + 1
) ∂

∂x
.
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For part (b), it’s not clear whether the question is asking for a pullback on R3 or on M . In the interest
of exam preparation, we can do both. Below I’ll show how this problem can also be attacked using Lie
derivatives. The pullback on R3 (well, R3 \ {(0, 0, 0)} since the form goes undefined when z = 0) is

φ∗t

(
dx ∧ dy

z

)
=
d(cx+ sz) ∧ dy

sx+ cz
=
c dx ∧ dy − s dy ∧ dz

sx+ cz

and I don’t see anything more that can be done with it. On M , though, we can get more mileage:

φ∗t

(
dx ∧ dy

z

)
= φ∗t

(
dx ∧ dy√
x2 + y2 + 1

)

=
d
(
cx+ s

√
x2 + y2 + 1

)
∧ dy

sx+ c
√
x2 + y2 + 1

=
c dx ∧ dy − s dy ∧ d

(√
x2 + y2 + 1

)

sx+ c
√
x2 + y2 + 1

=

c dx ∧ dy − s dy ∧
(

x dx√
x2+y2+1

+ y dy√
x2+y2+1

)

sx+ c
√
x2 + y2 + 1

=

c dx ∧ dy +

(
sx dx∧ dy√
x2+y2+1

)

sx+ c
√
x2 + y2 + 1

=
c(
√
x2 + y2 + 1) dx ∧ dy + sx dx ∧ dy

sx
√
x2 + y2 + 1 + c(x2 + y2 + 1)

=
cz dx ∧ dy + sx dx ∧ dy

szx+ cz2

=
(cz + sx) dx ∧ dy

z(sx+ cz)

=
dx ∧ dy

z
.

This is all well and good, and as algebraic manipulation goes, it’s not too messy. But it so often happens
on quals that a given form is invariant under the flow of a given vector field (as happened here) that it’s
worth checking first, using the Lie derivative. See section 5.5 for caveats about using the Lie derivative and
Cartan’ magic formula. Summary: pull back to the manifold before using this formula — you will likely
have far fewer terms, making your life (or a few minutes of it) much easier.

The vector field on M was found above (in graph coordinates) to be

X =
(√

x2 + y2 + 1
) ∂

∂x

and the form (also in graph coordinates) was

ω =
dx ∧ dy√
x2 + y2 + 1

.

Cartan’s magic formula is
LXω = X y dω + d(X yω).
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Since ω is top-level for M , dω is immediately found to be zero. For the other term,

X yω =
(√

x2 + y2 + 1
) ∂

∂x
y

dx ∧ dy√
x2 + y2 + 1

= dy.

Then d2y = 0 so LXω = 0, so ω is invariant under the flow of X — as the above algebra found a different
way, but with less effort here.
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10 January 2004

10.1 January 2004 #1.
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11 August 2003

11.1 August 2003 #2.

Let dA denote the standard area form for S2 (with the orientation determined by the outward-pointing
normal vector), and let x, y, z denote the standard rectangular coordinates for R

3. Determine the values of
n = 0, 1, . . . for which ω = zn dA is exact.

Solution. Recall that if a form ω is exact (with, say, ω = dη) on a compact orientable manifold M without
boundary, then by Stokes theorem ∫

M

ω =

∫

M

dη =

∫

∂M

η = 0.

I will first use the contrapositive of this statement to look for values of n such that
∫

S2 z
n dA is non-zero.

This will tell me those values of n for which zn dA is non-exact.

Recall that spherical coordinates on S
2 (which miss only the north and south poles, which form a set of zero

measure in S2) are 


x
y
z


 =




sinφ cos θ
sinφ sin θ

cosφ


 .

Also recall that
dA = sinφ dφ ∧ dθ

(which is easily recovered, if desired, using the technique in the next problem). Then

∫

S2

zn dA =

∫ θ=2π

θ=0

[∫ φ=π

φ=0

cosn φ sinφ dφ

]
dθ

=

∫ φ=π

φ=0

cosn φ sinφ

[∫ θ=2π

θ=0

dθ

]
dφ

= 2π

∫ φ=π

φ=0

cosn φ sinφ dφ.

(This is justifiable by Fubini’s theorem: The integrand is continuous on a compact domain, hence absolutely
integrable.) I can do some work with trigonometric identities, or I can proceed by symmetry.

• If n = 0, then I have the surface area of the sphere, namely, 4π 6= 0. So, for n = 0, zn dA is non-exact.

• More generally, if n is even, then the integrand is non-negative, with positive area. So, for n even,
zn dA is non-exact.

• If n = 1, then by examining the graphs of sine and cosine from 0 to π (or by using the identity
cosφ sinφ = 1

2 sin(2φ)), I see that positive and negative areas will cancel and the value of the integral
will be zero. So, for n = 1, z dA may be exact. Below, I’ll look for an η such that z dA = dη.

• More generally, if n is odd, then the portion of the graph of cosn(φ) from 0 to π/2 is non-negative and
is the opposite of the portion of the graph from π/2 to π. Meanwhile the graph of sine is symmetric
about π/2. So, for n odd, zn dA may be exact.

Now for odd n. I recognize from the chain rule that

d(cosm(φ)) = −m cosm−1(φ) sinφ dφ.
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So, I can guess that

d

(( −1

n+ 1

)
cosn+1 φ dθ

)
= cosn φ sinφ dφ ∧ dθ.

Thus I want to write

η =

( −1

n+ 1

)
cosn+1 φ dθ

but I need to find out why this doesn’t work for even n.

Using spherical coordinates, ∂S
2 is really S−N (singular one-chains on each pole, parameterized by θ, each

being points) rather than ∅, and thus
∫

S2

dη =

∫

∂S2

η

=

( −1

n+ 1

)∫

N−S

cosn+1 φ dθ

=
−2π

n+ 1

(
(−1)n+1 − (1)n+1

)

which is non-zero when n is even, allaying my concern.

Thus, I’ve shown that ω is non-exact when n is even, and is exact when n is odd.

* * *

Solution (Dan Champion). This approach uses almost no computation. Note what while in general ω
exact implies

∮
M
ω = 0, we also have the other implication (it is an if and only if) for top-level forms. (This

fact alone would simplify the above proof.)

Use graph coordinates on the north and south poles. Let U be the (open) upper hemisphere and L be the
(open) lower hemisphere. For even n,

∫
S2 z

n dA = 2
∫

U
zn dA 6= 0 (since z is positive, integrated over a

positive area form); for odd n,
∫

S2 z
n dA = 0.

11.2 August 2003 #3.

Consider hyperspherical coordinates for S
3. The corresponding parameterization, for θ ∈ (0, 2π) and φ, ψ ∈

(0, π), is given by



θ
φ
ψ


 7−→




sinψ sinφ cos θ
sinψ sinφ sin θ
sinψ cosφ
cosψ


 .

Calculate the standard volume form in these coordinates, with respect to the orientation given by the
outward-pointing normal vector.

Solution. Let 


w
x
y
z




be rectangular coordinates for R4. Since S3 is defined by

w2 + x2 + y2 + z2 = 1,
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the unit normal is given by the normalized gradient of the left-hand side, namely,

n̂ = w
∂

∂w
+ x

∂

∂x
+ y

∂

∂y
+ z

∂

∂z
.

Meanwhile the volume form on R4 is
dw ∧ dx ∧ dy ∧ dz.

Then the volume form on S3 is (using dxi(∂/∂xj) = δij to compute the contractions)

(∗) n̂ y (dw ∧ dx ∧ dy ∧ dz) =

w ∂/∂w y (dw ∧ dx ∧ dy ∧ dz)
+ x ∂/∂x y (dw ∧ dx ∧ dy ∧ dz)
+ y ∂/∂y y (dw ∧ dx ∧ dy ∧ dz)
+ z ∂/∂z y (dw ∧ dx ∧ dy ∧ dz)

=

w dx ∧ dy ∧ dz
− x dw ∧ dy ∧ dz
+ y dw ∧ dx ∧ dz
− z dw ∧ dx ∧ dy

=

w dx ∧ dy ∧ dz
− x dy ∧ dz ∧ dw
+ y dz ∧ dw ∧ dx
− z dw ∧ dx ∧ dy

=

w (dx ∧ dy) ∧ dz
− x (dz ∧ dw) ∧ dy
+ y (dz ∧ dw) ∧ dx
− z (dx ∧ dy) ∧ dw.

.

I will compute the wedges one level at a time, then put the pieces together. Note (for wedge sign convention)
that I will order the variables ψ, φ, θ.

First, the 1-forms. These are

dw =




cosψ sinφ cos θ dψ
+ sinψ cosφ cos θ dφ
− sinψ sinφ sin θ dθ


 , dx =




cosψ sinφ sin θ dψ
+ sinψ cosφ sin θ dφ
+ sinψ sinφ cos θ dθ


 ,

dy =

(
cosψ cosφ dψ

− sinψ sinφ dφ

)
, dz =

(
− sinψ dψ

)
.

(Important note: This is a tedious and error-prone problem from here on out. If time were short on an
exam, I would put equation (*), along with w through z and dw through dz in terms of ψ, φ, and θ as shown
just above. Then I would state that the conceptual work is done; the rest is repetitive, time-consuming
simplification using exterior algebra. If anyone has a shorter solution, I’d love to see it.)

(Another note: I am going to write forms vertically in parentheses. This has nothing to do with vector
notation and everything to do with error avoidance. If we are going to be doing pages of algebra on an exam,
we might as well do it correctly and quickly.)
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Second, the two-forms. These are

dx ∧ dy =




cosψ sinφ sin θ dψ
+ sinψ cosφ sin θ dφ
+ sinψ sinφ cos θ dθ


 ∧

(
cosψ cosφ dψ

− sinψ sinφ dφ

)

=




− sinψ cosψ sin2 φ sin θ dψ ∧ dφ
− sinψ cosψ cos2 φ sin θ dψ ∧ dφ
− sinψ cosψ sinφ cosφ cos θ dψ ∧ dθ
+ sin2 ψ sin2 φ cos θ dφ ∧ dθ




=




− sinψ cosψ sin θ dψ ∧ dφ
− sinψ cosψ sinφ cosφ cos θ dψ ∧ dθ
+ sin2 ψ sin2 φ cos θ dφ ∧ dθ




and

dz ∧ dw =
(
− sinψ dψ

)
∧




cosψ sinφ cos θ dψ
+ sinψ cosφ cos θ dφ
− sinψ sinφ sin θ dθ




=

(
− sin2 ψ cosφ cos θ dψ ∧ dφ
+ sin2 ψ sinφ sin θ dψ ∧ dθ

)
.

Next,

w dx ∧ dy =
(

sinψ sinφ cos θ
)



− sinψ cosψ sin θ dψ ∧ dφ
− sinψ cosψ sinφ cosφ cos θ dψ ∧ dθ
+ sin2 ψ sin2 φ cos θ dφ ∧ dθ




=




− sin2 ψ cosψ sinφ sin θ cos θ dψ ∧ dφ
− sin2 ψ cosψ sin2 φ cosφ cos2 θ dψ ∧ dθ
+ sin3 ψ sin3 φ cos2 θ dφ ∧ dθ


 ,

z dx ∧ dy =
(

cosψ
)



− sinψ cosψ sin θ dψ ∧ dφ
− sinψ cosψ sinφ cosφ cos θ dψ ∧ dθ
+ sin2 ψ sin2 φ cos θ dφ ∧ dθ




=




− sinψ cos2 ψ sin θ dψ ∧ dφ
− sinψ cos2 ψ sinφ cosφ cos θ dψ ∧ dθ
+ sin2 ψ cosψ sin2 φ cos θ dφ ∧ dθ


 ,

x dz ∧ dw =
(

sinψ sinφ sin θ
)( − sin2 ψ cosφ cos θ dψ ∧ dφ

+ sin2 ψ sinφ sin θ dψ ∧ dθ

)

=

(
− sin3 ψ sinφ cosφ sin θ cos θ dψ ∧ dφ
+ sin3 ψ sin2 φ sin2 θ dψ ∧ dθ

)
,

and

y dz ∧ dw =
(

sinψ cosφ
)( − sin2 ψ cosφ cos θ dψ ∧ dφ

+ sin2 ψ sinφ sin θ dψ ∧ dθ

)

=

(
− sin3 ψ cos2 φ cos θ dψ ∧ dφ
+ sin3 ψ sinφ cosφ sin θ dψ ∧ dθ

)
.
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Now the 3-forms:

(w dx ∧ dy) ∧ dz =




− sin2 ψ cosψ sinφ sin θ cos θ dψ ∧ dφ
− sin2 ψ cosψ sin2 φ cosφ cos2 θ dψ ∧ dθ
+ sin3 ψ sin3 φ cos2 θ dφ ∧ dθ


 ∧

(
− sinψ dψ

)

=
(
− sin4 ψ sin3 φ cos2 θ dψ ∧ dφ ∧ dθ

)
;

(x ∧ dz ∧ dw) ∧ dy =

(
− sin3 ψ sinφ cosφ sin θ cos θ dψ ∧ dφ
+ sin3 ψ sin2 φ sin2 θ dψ ∧ dθ

)
∧
(

− cosψ cosφ dψ
+ sinψ sinφ dφ

)

=
(

sin4 ψ sin3 φ sin2 θ dψ ∧ dφ ∧ dθ
)
;

(y dz ∧ dw) ∧ dx =

(
− sin3 ψ cos2 φ cos θ dψ ∧ dφ
+ sin3 ψ sinφ cosφ sin θ dψ ∧ dθ

)
∧




cosψ sinφ sin θ dψ
+ sinψ cosφ sin θ dφ
+ sinψ sinφ cos θ dθ




=

(
− sin4 ψ sinφ cos2 φ cos2 θ dψ ∧ dφ ∧ dθ
− sin4 ψ sinφ cos2 φ sin2 θ dψ ∧ dφ ∧ dθ

)

=
(
− sin4 ψ sinφ cos2 φ dψ ∧ dφ ∧ dθ

)
;

(z ∧ dx ∧ dy) ∧ dw =




− sinψ cos2 ψ sin θ dψ ∧ dφ
− sinψ cos2 ψ sinφ cosφ cos θ dψ ∧ dθ
+ sin2 ψ cosψ sin2 φ cos θ dφ ∧ dθ


 ∧




cosψ sinφ cos θ dψ
+ sinψ cosφ cos θ dφ
− sinψ sinφ sin θ dθ




=




sin2 ψ cos2 ψ sinφ sin2 θ
+ sin2 ψ cos2 ψ sinφ cos2 φ cos2 θ
+ sin2 ψ cos2 ψ sin3 φ cos2 θ


 dψ ∧ dφ ∧ dθ

=




sin2 ψ cos2 ψ sinφ sin2 θ
+ sin2 ψ cos2 ψ sinφ cos2 φ cos2 θ
+ sin2 ψ cos2 ψ sinφ sin2 φ cos2 θ


 dψ ∧ dφ ∧ dθ

=

(
sin2 ψ cos2 ψ sinφ sin2 θ

+ sin2 ψ cos2 ψ sinφ cos2 θ

)
dψ ∧ dφ ∧ dθ

=
(

sin2 ψ cos2 ψ sinφ dψ ∧ dφ ∧ dθ
)
.

Last,

n̂ y (dw ∧ dx ∧ dy ∧ dz) =

w (dx ∧ dy) ∧ dz
− x (dz ∧ dw) ∧ dy
+ y (dz ∧ dw) ∧ dx
− z (dx ∧ dy) ∧ dw.

= −




sin4 ψ sin3 φ cos2 θ
+ sin4 ψ sin3 φ sin2 θ
+ sin4 ψ sinφ cos2 φ
+ sin2 ψ cos2 ψ sinφ


 dψ ∧ dφ ∧ dθ

= −




sin4 ψ sinφ sin2 φ
+ sin4 ψ sinφ cos2 φ
+ sin2 ψ cos2 ψ sinφ


 dψ ∧ dφ ∧ dθ

= −
(

sin2 ψ sin2 ψ sinφ
+ sin2 ψ cos2 ψ sinφ

)
dψ ∧ dφ ∧ dθ

= − sin2 ψ sinφ dψ ∧ dφ ∧ dθ.
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11.3 August 2003 #4.

Let X = {z2 − x2 − y2 = −1} in R
3.

(a) Show that X is an embedded submanifold.

(b) Compute the homology of X.

(c) Find an explicit one-form on X which is closed and not exact.

Solution. First re-write X as {x2 + y2 − z2 = 1} in R
3.

For part (a) I can use the regular value theorem. Let G : R3 → R : (x, y, z) 7→ x2 + y2 − z2. Then X is the
level set of G and 1. If 1 is a regular value of G then G−1(1) is empty or an embedded submanifold of R3. I
compute

DG = (2x 2y − 2z)

which fails to be surjective when x = y = z = 0 which is not in X. Note that G−1(1) is non-empty since it
contains (at least) the point (1, 0, 0).

For part (b), first note that in cylindrical coordinates we have r2 − z2 = 1 so this is a hyperboloid of one
sheet. This deformation-retracts to S1 and homology is homotopy invariant, so X has the homology of the
circle. Namely, H0(X) has rank 1 (X has one connected component), H1(X) has rank one (for the equatorial
loop), and the higher-order groups are zero.

For part (c), use θ and z coordinates. The one-form is dθ. It is closed because it is (locally) the exterior
derivative of θ, and d2 = 0. It is non-exact because

∫
c
dθ = 2π 6= 0 where c is the counterclockwise path

around the circle formed by the intersection of X and the xy-plane.

11.4 August 2003 #5.

Consider the vector field V on S2 which is given by

V0

B

B

@

x
y
z

1

C

C

A

=




−zy
zx
0


 , (11.4.1)

where we have identitifed TS
2|q with q⊥, the orthogonal complement. Find an explicit expression for the

flow of this vector field, and graph the trajectories.

Solution. We need to solve the system of ODEs




ẋ
ẏ
ż


 =




−zy
zx
0


 .

Immediately we have z = z0, i.e. the flow will preserve latitudes. Taking second derivatives to obtain
univariate ODEs we get 


ẍ
ÿ
z̈


 =




−ży − zẏ
żx+ zẋ

0


 =




−z2x
−z2y

0


 .
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The univariate ODEs are
ẍ+ z2x = 0 and ÿ + z2y = 0

from which
x = a cos(zt) + b sin(zt) and y = c cos(zt) + d sin(zt). (11.4.2)

Applying initial conditions for x and y gives

x(0) = x0 = a and y(0) = y0 = c.

We can look at ẋ and ẏ in terms of equations 11.4.2 as well as in terms of the original equations 11.4.1:

ẋ = −az sin(zt) + bz cos(zt) = −zy = −cz cos(zt) − dz sin(zt))
ẏ = −cz sin(zt) + dz cos(zt) = zx = az cos(zt) + bz sin(zt))

so at t = 0
ẋ(0) = bz = −cz and ẏ(0) = dz = az.

When z = 0 the flow is stationary from equation 11.4.1; for z 6= 0 we can divide to obtain b = −c and d = a.
Then we have

x = x0 cos(zt) − y0 sin(zt)

y = y0 cos(zt) + x0 sin(zt)

z = z0.

This is stationary at the poles (x0 = y0 = 0) as well as at the equator. For z > 0, the flow is counterclockwise;
for z < 0, the flow is clockwise. To graph the flow, note that the rotation speed depends only on z and so it
suffices to see how the Greenwich meridian (y = 0 and x > 0) flows. What is the magnitude of the velocity
vector? From 11.4.1 we have

‖(ẋ, ẏ, ż)‖ =
√
z2(x2 + y2) =

√
z2(1 − z2) = |z(1 − z)|.

This takes its maximum at latitude ±30◦. [xxx to do: insert a nice Matlab plot here.]
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12 Fall 2002

12.1 Fall 2002 #5.

Let α be a closed two-form on S4. Prove that α ∧ α vanishes at some point.

Solution (David Herzog). Since S
4 has trivial k-th level cohomology except for k = 0 and k = 4, α is

exact: say, α = dβ. Then α ∧ α is also exact:

d(β ∧ dβ) = dβ ∧ dβ = α ∧ α.

Suppose to the contrary that α ∧ α vanishes nowhere. Since it is a top-level form on a compact orientable
manifold, it is an orientation form. Then

∫

S4

α ∧ α 6= 0

while on the other hand
∫

S4

α ∧ α =

∫

S4

d(β ∧ dβ) =

∫

∂S4

β ∧ dβ = 0

by Stokes’ theorem. This is the desired contradiction.

12.2 Fall 2002 #6.

Let f : C → C be given by f(z) = ez. Does there exist a two-form η on C such that f∗η = dx ∧ dy, where
z = x+ iy?

Solution (Chol Park). There does not.

First note that in terms of x and y we have

f(z) = ex+iy = ex cos y + iex sin y.

Let
η = g(x, y)dx ∧ dy

be such a two-form. Then

f∗η = g(ex cos y, ex sin y) d(ex cos y) ∧ d(ex sin y)

Now

d(ex cos y) = ex cos y dx− ex sin y dy

and

d(ex sin y) = ex sin y dx+ ex cos y dy

so

d(ex cos y) ∧ d(ex sin y) = (ex cos y dx− ex sin y dy) ∧ (ex sin y dx+ ex cos y dy)

= e2x dx ∧ dy.
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Then

f∗η = g(ex cos y, ex sin y)e2x dx ∧ dy = dx ∧ dy

forces
g(ex cos y, ex sin y) = e−2x

Now observe that

|ez|2 = |ex cos y + iex sin y|
= (ex cos y + iex sin y)(ex cos y − iex sin y)

= e2x

so

g(ex cos y, ex sin y) =
1

|ez|2

from which

g(x, y) =
1

|z|2

which is not defined at z = 0.

12.3 Fall 2002 #7.

Let T2 be the standard two-dimensional torus with Z-periodic coordinates (x, y). Consider the vector field

V = sin(2πy)
∂

∂x
.

Prove that any vector field Y which commutes with V , i.e. [Y, V ] = 0, is collinear with V , i.e. has zero
coefficient in front of ∂/∂y.

Solution (David Herzog and Jordan Schettler). Let Y be a general vector field, i.e.

Y = f(x, y)
∂

∂x
+ g(x, y)

∂

∂y
.

The commutativity condition is then

0 = [Y, V ] = Y V − V Y

=

(
f(x, y)

∂

∂x
+ g(x, y)

∂

∂y

)
sin(2πy)

∂

∂x
− sin(2πy)

∂

∂x

(
f(x, y)

∂

∂x
+ g(x, y)

∂

∂y

)

= 2πg(x, y) cos(2πy)
∂

∂x
− sin(2πy)

∂f

∂x

∂

∂x
− sin(2πy)

∂g

∂x

∂

∂y
.

Equating coefficients on ∂/∂x and ∂/∂y gives

2πg(x, y) cos(2πy) = sin(2πy)
∂f

∂x

sin(2πy)
∂g

∂x
= 0.
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The second equation forces g to be constant in x, i.e. g = g(y). (When sin(2πy) 6= 0, ∂g/∂x = 0; the case
sin(2πy) = 0 forces ∂g/∂x = 0 by continuity.) The first equation gives

2π cot(2πy)g(y) =
∂f

∂x

i.e. ∂f/∂x is some function of y. We are asked to show that g = 0, and it suffices to show that ∂f/∂x = 0.
Taking an antiderivative gives

f(x, y) = xF (y) +G(y)

for some F and G. But due to periodicity of f , this is also

f(x, y) = xF (y) +G(y) = (x+ 1)F (y) +G(y)

so, subtracting the two,

xF (y) = (x+ 1)F (y)

F (y) = 0.

Then f(x, y) = G(y) which implies ∂f/∂x = 0, so g = 0 as desired.

* * *

Variations. Note that the particular form of sin(2πy) was not important: all that mattered was that it was
not dependent on y, and was zero only on a measure-zero subset of the torus.
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13 Spring 2002

13.1 Spring 2002 #6.

Does there exist a differentiable map F : T4 → T4 of the four-dimensional torus T4 = R4/Z4 such that

F ∗[dx1 ∧ dx2] = [dx2 ∧ dx3] and

F ∗[dx1 ∧ dx3] = [dx1 ∧ dx4],

where [·] stands for the de Rham cohomology class and F ∗ is the map induced by F in cohomology?

Solution (Victor Piercey). This is a simple trick and computation, but it first requires a lemma, namely,
showing that the wedge product on forms is well-defined with respect to cohomology classes, i.e. [ω] ∧ [η] =
[ω ∧ η]. I will prove the lemma below. (Note: The wedge on the left-hand side is sometimes called the cup

product, written [ω] ` [η], using \cupprod in LATEX.)

The insight behind the trick is that the expressions [dx1 ∧ dx2] and [dx2 ∧ dx3] repeat dx2, while [dx2 ∧ dx3]
and [dx1 ∧ dx4] do not. Suppose there exists such an F . Let

ω = [dx1 ∧ dx2] and η = [dx1 ∧ dx3].

Then, given the lemma,

F ∗(ω ∧ η) = F ∗(ω) ∧ F ∗(η)

F ∗([dx1 ∧ dx2] ∧ [dx1 ∧ dx3]]) = [dx2 ∧ dx3] ∧ [dx1 ∧ dx4]

F ∗([dx1 ∧ dx2 ∧ dx1 ∧ dx3]) = [dx2 ∧ dx3 ∧ dx1 ∧ dx4]

F ∗(0) = [dx1 ∧ dx2 ∧ dx3 ∧ dx4]

0 = [dx1 ∧ dx2 ∧ dx3 ∧ dx4].

Now, T
4 is a compact orientable 4-dimensional manifold; the right-hand side is a volume form and hence

non-vanishing, but here we have it vanishing which is the desired contradiction.

Lemma. Define a wedge product on cohomology classes by

[ω] ∧ [η] = [ω ∧ η].

This product is well-defined.

Proof. By symmetry, it suffices to show that the product is well-defined with respect to choice of represen-
tative for the equivalence class of ω. That is, if

[ω1] = [ω2],

then I need to show that
[ω1 ∧ η] = [ω2 ∧ η].

Let k be the order of ω, and let θ be a (k − 1)-form. (I.e. I am using ω1 = ω and ω2 = ω + dθ.) Then

[ω] = [ω + dθ]

43



by definition of cohomology classes: (ω+ dθ)− ω is exact. Then since η is closed, d(θ ∧ η) = d(θ ∧ η). Since
d(θ ∧ η) is visibly exact, we have

[d(θ ∧ η)] = [0]

[dθ ∧ η] = [0]

[ω ∧ η + dθ ∧ η] = [ω ∧ η]
[(ω + dθ) ∧ η] = [ω ∧ η]

as desired.

13.2 Spring 2002 #7.

Assume that a 6-element group Γ, isomorphic to the group of permutations on three letters S3, acts on
X = S

3 freely. Compute π1(Y ) and H1(Y,Z), where Y = X/Γ.

Solution (Jordan Schettler). Since S3 is finite, it acts properly discontinuously. We are given that S3 acts
freely, and S3 is a Hausdorff space. Thus we are justified in saying that X is a normal covering space with
the canonical projection p : X → X/Γ being the covering-space map. Also note that X is path-connected
and locally path-connected. Since X is simply connected, it is a universal cover and so

π1(Y )/p∗(π1(X)) ∼= S3,

but
p∗(π1(X)) = p∗(0) = 0.

Thus
π1(Y ) ∼= S3.

By the Hurewicz theorem, H1(Y,Z) is the abelianization of S3, namely,

S3/S ′
3 = S3/A3

∼= Z/2Z

since [S3 : A3] = 2.

Variations: Change the group.
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14 Fall 2001

14.1 Fall 2001 #3.

Consider the surface X in R3 which is defined in cylindrical coordinates by the equation

(r − 2)2 + z2 = 1.

(Recall that in cylindrical coordinates x = r cos θ, y = r sin θ, and z = z.)

(a) Find an explicit basis for the homology (in all degrees) of this surface.

(b) By introducing coordinates or parameterizing the surface, find explicit expressions for forms which
represent the corresponding dual basis in de Rham cohomology.

Solution. For part (a), we could use Mayer-Vietoris. However, it is simpler than that. This surface is the
one-holed torus. It has one connected component, so

H0(X) = Z[q]

for some choice of q ∈ X. It is compact, orientable, and two-dimensional, so

H2(X) = Z[X].

The usual Seifert-van Kampen argument shows that

π1(X, q) = Z[α] ⊕ Z[β]

where α is the small loop and β is the large loop. [xxx insert figure here.] The fundamental group is already
abelian, so its abelianization is

H1(X) = Z[α] ⊕ Z[β].

Now for part (b). By duality, since none of the homology groups have torsion, we know ahead of time that
H0(X), H1(X), and H2(X) have dimensions 1, 2, and 1, respectively. To obtain explicit generators, let φ
be the angle through the cross-sectional circle and let θ be the surface-of-revolution angle. [xxx insert figure
here.] Notice that both φ and θ run from 0 to 2π. Then

r = 2 + cosφ and z = sinφ.

The torus is parameterized by θ and φ, into ambient r, z, θ coordinates, by

r = 2 + cosφ

z = sinφ

θ = θ.

To find explicit tangent vectors for X, we apply the directional derivatives to the parameterization as usual:

∂

∂θ
=




∂/∂θ(2 + cosφ)
∂/∂θ(sinφ)
∂/∂θ(θ)


 =




0
0
1


 =

∂

∂θ

∂

∂φ
=




∂/∂φ(2 + cosφ)
∂/∂φ(sinφ)
∂/∂φ(θ)


 =




− sinφ
cosφ

0


 = − sinφ

∂

∂r
+ sinφ

∂

∂z
.

45



(In the first line, the ∂/∂θ on the left is for X and the one on the right is for R3.) Then dθ and dφ are
the duals of ∂/∂θ and ∂/∂φ, respectively. These are by construction linearly independent, given the linear
independence of ∂/∂φ and ∂/∂θ which follows from their orthogonality.

To find the area form, we contract the normal field with the Euclidean volume form on R3 as usual. Since
X is defined by (r − 2)2 + z2 = 1, a normal is found by taking the Jacobian of the left-hand side:

n =




∂/∂r((r − 2)2 + z2)
∂/∂z((r − 2)2 + z2)
∂/∂θ((r − 2)2 + z2)


 =




2(r − 2)
2z
0


 .

The factor of two is irrelevant so we may as well write

n̂ =




r − 2
z
0


 =




2 + cosφ− 2
sinφ

0


 =




cosφ
sinφ

0




where the last two steps furnish a visual sanity check. The standard volume form on R3 is, in cylindrical
coordinates,

dV = r dr dz dθ.

Contracting, we obtain

n̂ y dV =

(
(r − 2)

∂

∂r
+ z

∂

∂z

)
y (r dr dz dθ)

= r(r − 2) dz ∧ dθ − rz dr ∧ dθ.

Pulling this back to X, we obtain the area form for the torus:

dA = i∗(n̂ y dV )

= (2 + cosφ) cosφ d(sinφ) ∧ dθ − (2 + cosφ) sinφ d(2 + cosφ) ∧ dθ
= (2 + cosφ) cos2 φ dφ ∧ dθ + (2 + cosφ) sin2 φ dφ ∧ dθ
= (2 + cosφ) dφ ∧ dθ.

These are all forms of the appropriate degrees. To finish off, we need to to show that dφ, dθ, and dA generate
cohomology classes, i.e. that they are closed but not exact. The area form is closed because it is top-level;
the 1-forms are closed since they are locally d of 0 forms. For exactness, we use the usual argument: If a
k-form ω is exact, say ω = dη for a (k − 1)-form η, and if c is a k-cycle (i.e. a k-chain without boundary),
then by Stokes’ theorem ∫

c

ω =

∫

c

dη =

∫

∂c

η =

∫

0

η = 0.

The contrapositive is that if the integral of ω over cycle is non-zero, then ω is exact. For dφ, integrate over
the circle parameterized by φ = 0 to 2π with θ = 0:

∫ φ=2π

φ=0

dφ = 2π 6= 0.

Similarly, ∫ θ=2π

θ=0

dθ = 2π 6= 0.

Last, integrate the area form over the torus (missing the seams which are zero-measure):

∫ φ=2π

φ=0

∫ θ=2π

θ=0

(2 + cosφ) dθ dφ = 8π 6= 0.
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In summary,

H0
dR(X) = R[q]

H1
dR(X) = R[dφ] ⊕ R[dθ]

H2
dR(X) = R[(2 + cosφ)dφ ∧ dθ].

14.2 Fall 2001 #4.

For each t ∈ R, let φt denote the map of S2 into itself which is defined by

φt : S
2 → S

2 :




x
y
z


 7→




cos(t)x− sin(t)y
sin(t)x+ cos(t)y

z


 .

Show that φt is a one-parameter group of diffeomorphisms, and compute and graph the vector field v on S2

for which φt is the corresponding flow.

Remark: In defining the vector field v, please specify how you are viewing the tangent bundle of S2.

Solution. To show that φt is a one-parameter group of diffeomorphisms, we need to show:

• Each φt is bijective on S2.

• Each φt is smooth with smooth inverse.

• For each s and t we have φs ◦ φt = φs+t.

First note that the map φt may be written in matrix form as



x
y
z


 φt→




cos(t) − sin(t) 0
sin(t) cos(t) 0

0 0 1






x
y
z


 .

The matrix has determinant cos2(t) + sin2(t) = 1 6= 0 so it is invertible, hence bijective. In particular its
inverse is 


x
y
z


 φ−1

t→




cos(t) sin(t) 0
− sin(t) cos(t) 0

0 0 1






x
y
z


 .

This much shows that φt is bijective on R3. To show bijectivity on S2, we need to show that φt(q) ∈ S2 for
all q ∈ S2, and likewise for φ−1

t . Now, we’ve already shown that φ−1
t is rotation by −t (since cos(−t) = cos(t)

and sin(−t) = sin(t)) so it suffices to show this for φt only. Namely, the coordinates of (u, v, w) = φt(x, y, z)
should satisfy u2 + v2 + w2 = 1. Check:

u2 + v2 + w2 = (cos(t)x− sin(t)y)2 + (sin(t)x+ cos(t)y)2 + z2

= cos2(t)x− cos(t) sin(t)xy + sin2(t)y2

+ sin2(t)x2 + cos(t) sin(t)xy + cos2(t)y2

+ z2

= x2 + y2 + z2 = 1.
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The transformation is linear, hence it is its own derivative and thus eminently differentiable; likewise for
the inverse. (Remember we’re checking smoothness for fixed t. Smoothness with respect to t is a different
question.) For the composition property, we compute (using the sum formulas for sine and cosine)

φs+t




x
y
z


 =




cos(s+ t) − sin(s+ t) 0
sin(s+ t) cos(s+ t) 0

0 0 1






x
y
z




=




cos(s) cos(t) − sin(s) sin(t), − sin(s) cos(t) − cos(s) sin(t), 0
sin(s) cos(t) + cos(s) sin(t), cos(s) cos(t) − sin(s) sin(t), 0

0, 0, 1






x
y
z


 .

On the other hand,

φs ◦ φt




x
y
z


 =




cos(s) − sin(s) 0
sin(s) cos(s) 0

0 0 1






cos(t) − sin(t) 0
sin(t) cos(t) 0

0 0 1






x
y
z




=




cos(s) cos(t) − sin(s) sin(t), − cos(s) sin(t) − sin(s) cos(t), 0
sin(s) cos(t) + cos(s) sin(t), − sin(s) sin(t) + cos(s) cos(t), 0

0 0 1






x
y
z




which is the same as desired. This was the last item needed to prove that the φt’s form a one-parameter
group of diffeomorphisms.

Recalling the necessary formula for the corresponding vector field, we have

v

∣∣∣∣„ x

y

z

« =
∂φt

∂t

∣∣∣∣
t=0




x
y
z




=
∂

∂t

∣∣∣∣
t=0




cos(t)x− sin(t)y
sin(t)x+ cos(t)y

z




=




− sin(t)x− cos(t)y
cos(t)x− sin(t)y

0



∣∣∣∣
t=0

=




−y
x
0



∣∣∣∣„ x

y

z

«

= −y ∂/∂x+ x ∂/∂y.

This is of course rigid rotation about the z-axis. [xxx insert figure here.] Here, we are viewing the tangent
bundle as directional derivatives.

This is a vector field on R3. [xxx to do: convert to graph coordinates, or spherical.]

* * *

Variation: Let ω = x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy. Compute φ∗t (ω).
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Solution. Let c = cos(t) and s = sin(t). Then, replacing x with cx− sy and y with sx+ cy, we have

φ∗t (ω) = (cx− sy) d(sx+ cy) ∧ dz
+ (sx+ cy) dz ∧ d(cx− sy)

+ z d(cx− sy) ∧ d(sx+ cy)

= (cx− sy) (sdx ∧ dz + cdy ∧ dz)
+ (sx+ cy) (cdz ∧ dx− sdz ∧ dy)
+ z (cdx− sdy) ∧ (sdx+ cdy)

= (cx− sy) (−sdz ∧ dx+ cdy ∧ dz)
+ (sx+ cy) (cdz ∧ dx+ sdy ∧ dz)
+ z (c2 + s2)dx ∧ dy

= −cs x dz ∧ dx+ c2 x dy ∧ dz + s2 y dz ∧ dx− cs y dy ∧ dz
+ cs x dz ∧ dx+ s2 x dy ∧ dz + c2 y dz ∧ dx+ cs y dy ∧ dz
+ z dx ∧ dy

= x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy
= ω.

Note that this is a bit messy, only because I chose a form with three terms in it.

Variation: Show that the two-form ω = x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy is invariant under the flow of φt.

Solution. One option is to do what we just did. Another option is to see whether the Lie derivative of ω
in the direction of v is zero. Since

v = −y ∂

∂x
+ x

∂

∂y
,

we have
Lv(x) = −y, Lv(y) = x, Lv(z) = 0.

Recall that Lv is a derivation, i.e. it follows the product rule through wedges. Also, it commutes with d for
exact forms. For the first term of ω, namely x dy ∧ dz, we then have

Lv(x dy ∧ dz) = Lv(x)dy ∧ dz + x d(Lv(y)) ∧ dz + x dy ∧ d(Lv(z))

= −y dy ∧ dz + x dx ∧ dz + x dy ∧ 0

= −y dy ∧ dz − x dz ∧ dx.
For the second term:

Lv(y dz ∧ dx) = Lv(y)dz ∧ dx + y d(Lv(z)) ∧ dx + y dz ∧ d(Lv(x))

= x dz ∧ dx + y 0 ∧ dx − y dz ∧ dy
= x dz ∧ dx + y dy ∧ dz.

For the third term:

Lv(z dx ∧ dy) = Lv(z)dx ∧ dy + z d(Lv(x)) ∧ dy + z dx ∧ d(Lv(y))

= 0 dx ∧ dy − z dy ∧ dy + z dx ∧ dx
= 0.
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Combining these, we have

Lv(ω) = −y dy ∧ dz − x dz ∧ dx
+ x dz ∧ dx + y dy ∧ dz
= 0.

which shows that ω is invariant under the flow of φt.

* * *

An alternative (and sometimes quicker) solution is to use Cartan’s magic formula:

Lv(ω) = v y (dω) + d(v yω).

Since ω is an order-2 (i.e. top-level) form on a 2-dimensional manifold, dω = 0. For the other term, we have

v yω = −y ∂

∂x
y (x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy) + x

∂

∂y
y (x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy)

= −y ∂

∂x
y (y dz ∧ dx) − y

∂

∂x
y (z dx ∧ dy) + x

∂

∂y
y (x dy ∧ dz) + x

∂

∂y
y (z dx ∧ dy)

= y2 dz − yz dy + x2 dz − xz dx.

Then

d(v yω) = d(y2 dz) − d(yz dy) + d(x2 dz) − d(xz dx)

= 2y dy ∧ dz − y dz ∧ dy + 2x dx ∧ dz − x dz ∧ dx
= 2y dy ∧ dz + y dy ∧ dz − 2x dz ∧ dx − x dz ∧ dx
= 3y dy ∧ dz − 3x dz ∧ dx.

Here, it’s not quite so obvious that this is zero. This is one of the perils of working with ambient (too many)
coordinates: the relations (deriving ultimately from x2 + y2 + z2 = 1) aren’t always immediately apparent.
My resolution of this problem is to use good coordinates, namely, φ and θ. Plugging in x = sinφ cos θ,
y = sinφ sin θ, and z = cosφ, after simplification I get

y dy ∧ dz = sin3 φ sin θ cos θdφ ∧ dθ
x dz ∧ dx = sin3 φ sin θ cos θdφ ∧ dθ

so they indeed cancel out.

14.3 Fall 2001 #5.

(a) Let C
∗ denote the nonzero complex numbers. Determine all the covering spaces (up to isomorphism) of

C∗ and their automorphism groups.

(b) Let G denote a finite subgroup of H1, the group of unit quaternions (which you may identify with
SU(2,C) if you prefer). Using covering space theory, explain why G is isomorphic to the fundamental group
of the coset space H1/G.

Solution. For part (a), . . . [xxx type me up].
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For part (b), note that the unit quaternions are

{
a+ bi + cj + dk : a2 + b2 + c2 + d2 = 1

}
,

namely, the 3-sphere, which is simply connected and thus has trivial fundamental group.

The 3-sphere is a Hausdorff space since it is a metric space (inheriting the metric from R4). The action of G
is free on H1: to see this, let h ∈ H1 and g ∈ G. Then, since G is a subgroup of H1, g · h = h implies g = 1.
(This result holds whenever a group is acted on by a subgroup of itself.) Since G is finite, it automatically
acts properly discontinuously. Given these three facts, the action of G on H1 is a covering-space action.

Let p be the canonical projection from H1 to H1/G. Since p∗(0) = 0 which is normal in π1(H1/G), we
know the automorphism group of H1 over H1/G is isomorphic to π1(H1)/0 which in turn is isomorphic to
π1(H1/G). It remains to show that, in turn, G is isomorphic to Aut(H1,H1/G). But this is true because
the action of G is a covering-space action.

14.4 Fall 2001 #7.

Consider the 1-form α = x dy − y dx in R
3. Prove the following: if f(x, y, z) ∈ C∞(R3) and fα is a closed

1-form, then f is identically zero. (Hint: use cylindrical coordinates.)

Solution (Victor Piercey). First, convert α to cylindrical coordinates. Since x = r cos θ and y = r cos θ,

α = (r2 cos2 θ dθ + r2 sin2 θ dθ) = r2 dθ

dα = 2r dr ∧ dθ.

Also

df =
∂f

∂r
dr +

∂f

∂θ
dθ +

∂f

∂z
dz.

Since fα is closed, we have

0 = d(fα)

= df ∧ α+ fdα

=

(
∂f

∂r
dr +

∂f

∂θ
dθ +

∂f

∂z
dz

)
∧ r2 dθ + 2rf(r, θ, z) dr ∧ dθ

= r2
∂f

∂r
dr ∧ dθ + r2

∂f

∂z
dz ∧ dθ + 2rf(r, θ, z) dr ∧ dθ

=

(
r2
∂f

∂r
+ 2rf(r, θ, z)

)
dr ∧ dθ + r2

∂f

∂z
dz ∧ dθ.

Equating coefficients gives the two equations

r2
∂f

∂r
+ 2rf(r, θ, z) = 0

r2
∂f

∂z
= 0.

For r 6= 0 (and at r = 0 by continuity), the second equation shows that f does not depend on z, i.e.
f = f(r, θ). The first equation is

∂

∂r

(
r2f(r, θ)

)
= 0.
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This means that r2f has no r-dependence, i.e. is a function of θ alone:

r2f(r, θ) = G(θ)

f(r, θ) =
G(θ)

r2
.

For f to be well-defined at the origin, G(θ) must be constant; for f to be in C∞(R3), that constant must be
zero. This forces f = 0 as desired.
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15 January 2001

15.1 January 2001 #3.

For the function g : S2 → R given by 


x
y
z


 7→ y2 − z,

determine the critical points, the critical values, and qualitatively describe the level sets.

Solution. Let f(x, y, z) = x2 + y2 + z2; S2 is the level set of f and 1. Then

∇f =




2x
2y
2z




which is non-zero on all of S
2 (it vanishes only at the origin which, is not contained in the two-sphere.) The

method of Lagrange multipliers then applies. We solve

∇g = λ∇f


0
2y
−1


 =




2λx
2λy
2λz




which gives the system of three equations

2λx = 0

2λy = 2y

2λz = −1.

If λ = 0 then the third equation is contradicted. Thus, we may divide by λ in the first equation to conclude
x = 0. Now y = 0 or y 6= 0:

• If y = 0, then x = y = 0 forces z = ±1.

• If y 6= 0, then from the second equation λ = 1, yielding z = −1/2 from the third equation. Then
x2 + y2 + z2 = 1 forces y = ±

√
3/2.

Thus there are four critical points:



0
0
1


 ,




0
0

−1


 ,




0√
3/2

−1/2


 , and




0

−
√

3/2
−1/2


 ,

The critical values are found by y2 − z. We have

−1, 1, 5/4, and 5/4,

respectively.

Here is a pair of Matlab plots of g on the sphere. (See figures/y2z.m relative to the directory where you
found this file.) The first plot is a top view (positive z is up); the second plot is a bottom view (negative z
is up).
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For the qualifying exams, this is a tool we will not have. However, I think it’s important to be able to see,
at least once, in a vivid way, what these things really look like. Also, the picture helps us to sanity-check
our work.
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As for the level sets, at the critical values we have

z = y2 + 1

z = y2 − 1

z = y2 − 5/4.

These level sets are doubly constrained: by y2 − z = c, as well as by x2 + y2 + z2 = 1. Since there are three
variables constrained by two equations, we expect one-dimensional level sets. Also note that these will be
isotherms of the Matlab plot (i.e. curves of constant color).

For the first, when y = 0 we have z = 1; for y 6= 0 we have z > 1. Thus the first level set is just the north
pole.

For the second, consider the following table. Varying y, z = y2 − 1 gives me z; then, x2 + y2 + z2 = 1 gives
me x.

y z x

1 0 0

1/2 −3/4 ±
√

3/4
0 −1 0

−1/2 −3/4 ±
√

3/4
−1 0 0

Refining this table suggests that this second level set is a figure-eight drawn on the bottom of the sphere:
one loop ends on the equator at y = 1, another ends on the equator at y = −1, and the two loops cross at
the south pole.

For the third level set, I have (for loss of a better idea) z = y2 − 5/4 so y2 = z + 5/4, giving me

x2 + y2 + z2 = 1

x2 + z2 + z + 5/4 = 1

x2 + z2 + z + 1/4 = 0

x2 + (z + 1/2)2 = 0.

The left-hand side is non-negative, and can be zero only when x = 0 and z = −1/2. Then y = ±
√

3/2, i.e.
this level set consists of the two critical points other than the north and south poles.

It now remains only to describe the level sets for regular values. By the regular-value theorem, preimages
of regular values are either empty, or are embedded submanifolds of S

2. (From the plot I am guessing that
in the blue regions, the level sets are homotopic to circles, and at the bottom, they are homotopic to a pair
of unlinked circles inside the lobes of the figure eight.) Proceeding as before, varying c now and completing
the square, I have

y2 − z = c

y2 = z + c

x2 + y2 + z2 = 1

x2 + z2 + z + c = 1

x2 + z2 + z + 1/4 = 5/4 − c

x2 + (z + 1/2)2 = 5/4 − c

The best way I know to think of this is using x, z graph coordinates. Note that as c varies from 5/4 at the
non-pole critical points, to +1 at the south pole, to −1 at the north pole, the value 5/4−c varies from 0 up to
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1/4 up to 9/4. These are the squares of 0, 1/2, and 3/2 respectively. In x, z coordinates, x2 +(z+1/2)2 = a2

is a circle of radius a centered at x = 0, z = −1/2. (Note that these are circles only on an x, z graph; they
are oblong on the sphere.) Then:

• When a = 0, we have a single point at front and back.

• When 0 < a < 1/2, we have a circle of radius a on the front and back.

• When a = 1/2, the two circles touch at the south pole.

• When 1/2 < a < 3/2, there are really only two arcs of circles, touching one another to form a single
loop.

• When a = 3/2, there is a single point at the north pole.

15.2 January 2001 #4.

Consider the vector field v on R
2 which is given by

v

∣∣∣∣“
x

y

”

= −y ∂

∂x
+ x

∂

∂y
.

Find an explicit expression for the flow of this vector field and graph the trajectories.

Solution. See section 11.4, which is similar although this problem is easier. (One finds rigid rotation rather
than z-dependent rotation.)

15.3 January 2001 #5.

(a) Determine whether the two-form ω = z dx ∧ dy is exact in R3.

(b) Let M denote the embedded submanifold of R
3 given by M = {z − x2 − y2 = 1}. Determine whether

the restriction of ω to M is exact.

Solution. For part (a), note that

dω = dz ∧ dx ∧ dy = dx ∧ dy ∧ dz

which is non-zero. If ω were exact, i.e. ω = dη, then dω = d2η = 0 which it visibly is not. Therefore ω is
not exact.

For part (b), ω = z dx∧dy = (x2 +y2 +1) dx∧dy is top-level, so dω = 0, so the argument from part (a) does
not apply. Note that M is a paraboloid; this is homeomorphic to the plane. The Poincaré lemma applies:
any closed form (we just saw dω = 0) is exact.

That is enough, but I will go ahead and find an explicit 1-form η such that dη = ω. The proof of the Poincaré
lemma (see section 5.6) is constructive. Namely, let

η = f(x, y) dx+ g(x, y) dy.

We want dη = ω, i.e. (
∂g

∂x
− ∂f

∂y

)
dx ∧ dy =

(
x2 + y2 + 1

)
dx ∧ dy.
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The trick, as before, is that it suffices to take only one term from within the parentheses. We have (letting
the integration constant be zero: we don’t need all η, just any η):

∂g

∂x
= x2 + y2 + 1

g(x, y) =

∫
(x2 + y2 + 1) dx

=
x3

3
+ xy2 + x

η = =

(
x3

3
+ xy2 + x

)
dy.

We can check this:

dη = = (x2 + y2 + 1) dx ∧ dy

as desired.
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16 Fall 2000

16.1 Fall 2000 #3.

Let M = {(x, y)|y2−x2 = 1, y > 0} ⊂ R2. Then M is a one-dimensional manifold with the global coordinate
function x. For a ∈ R define

Ra

(
x
y

)
=

(
cosh a sinh a
sinh a cosh a

)(
x
y

)
.

Then it is easy to check that Ra : M → M and also RaRb = Ra+b. (Recall that cosh a = 1
2 (ea + e−a) and

sinh a = 1
2 (eaie−a).)

Let p0 =

(
0
1

)
be the point in M with x coordinate equal to 0. Every point p in M can be expressed in

the form p = Rap0 for a unique choice of a ∈ R. For p = Rap0 define a vector field V (p) = dRa,0(∂/∂x|x=0)
where dRa,0 : Tp0

(M) → Tp(M) is the derivative of the map Ra at p0 and ∂/∂x|x=0 is the vector field
associated with the coordinate function x evaluated at p0. Show that V (Rap) = dRaV (p) and find the
expression v(x)∂/∂x for the vector field V in the coordinate system x.

Solution. This author’s notation is bizarre. By way of decoding it, note the following:

• M is nothing more than the upper branch of a hyperbola whose asymptotes are the lines y = x and
y = −x.

• The “it is easy to check” statement is a roundabout way of saying that the Ra’s form a one-parameter
family of diffeomorphisms.

• Ra is hyperbolic rotation. It carries p to Rap; what we call Ra∗, or DRa in coordinates (and what the
author appears to call dRa), carries a tangent vector footed at p to a tangent vector footed at Rap.

• As usual, we convert from a flow φt to a vector field X via

Xp =
dφt

dt

∣∣∣∣
t=0

(p).

Using the notation of this problem, this is

V (p) =
dRa

da

∣∣∣∣
a=0

(p).

Since Ra is already linear, it is its own Jacobian:

Ra(x, y) =

(
cosh ax+ sinh ay
sinh ax+ cosh ay

)

DRa(x, y) =

(
cosh a sinh a
sinh a cosh a

)
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To find V (p) in R2 coordinates, use the definition:

V (p) =
dRa

da

∣∣∣∣
a=0

(
x
y

)

=
d

da

∣∣∣∣
a=0

(
cosh a sinh a
sinh a cosh a

)(
x
y

)

=

(
sinh a cosh a
cosh a sinh a

)(
x
y

) ∣∣∣∣
a=0

=

(
0 1
1 0

)(
x
y

)

=

(
y
x

) ∣∣∣∣“
x

y

”

.

Then V (Rap) is found by sending x to cosh ax+ sinh ay and y to sinh ax+ cosh ay:

V (Rap) =

(
sinh ax+ cosh ay
cosh ax+ sinh ay

) ∣∣∣∣“
cosh ax + sinh ay

sinh ax + cosh ay

”

On the other hand, DRaV (p) is

DRaV (p) =

(
cosh a sinh a
sinh a cosh a

)(
y
x

) ∣∣∣∣“
cosh a sinh a

sinh a cosh a

”“

x

y

”

=

(
sinh ax+ cosh ay
cosh ax+ sinh ay

) ∣∣∣∣“
cosh ax + sinh ay

sinh ax + cosh ay

”

which is the same as V (Rap) as desired.

To find ∂/∂x in the x coordinate system, switch from R2 to graph coordinates using y =
√
x2 + 1. Then

p =

(
x
y

)
=

(
x√

x2 + 1

)

∂/∂x =

(
1
x√

x2+1

)
.

To find V (p) in terms of this, remember that V (p) was
(
y
x

) ∣∣∣∣“
x

y

”

=

( √
x2 + 1
x

) ∣∣∣∣“
x

y

”

=
√
x2 + 1

(
1
x√

x2+1

) ∣∣∣∣“
x

y

”

=
√
x2 + 1

∂

∂x
.

That is, v(x) =
√
x2 + 1.

16.2 Fall 2000 #6.

Let p : R → S1 be defined by p(t) = e2πit = cos(2πt) + i sin(2πt). Note that p is a covering space map.
Prove or give a counterexample to the following statement: if f : RP2 → S1 is continuous then there exists
a continuous lift f̃ : RP2 → R so that f = p ◦ f̃ .
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Solution. The lifting lemma tells us that there is a lift iff f∗(π1(RP2)) ≤ p∗(π1(R)). The former is cyclic-two;
the latter is trivial. Therefore the lift does not exist.

16.3 Fall 2005 #7.

Let X be the set of 2 × 2 upper-triangular complex matrices with determinant 1. Note that X is a 4-
dimensional dfferentiable real manifold. For which integers i do there exist closed i forms on X which are
not exact?

Solution (Victor Piercey). First note what the question is really asking: for which i is Hi
dR(X) non-

trivial? Second, write down what X looks like:

X =

{(
a b
0 c

)
: a, b, c ∈ C; ac = 1

}

=

{(
a b
0 1/a

)
: a, b ∈ C; a 6= 0

}

= C
∗ × C.

Now, C∗ retracts to S1 and C retracts to a point. Deformation retracts preserve homology and cohomology,
and we know that H0

dR(S1) ∼= R, H1
dR(S1) ∼= R, and Hi

dR(S1) ∼= 0 for all other i. Thus, X has non-trivial
cohomology only for i = 0 and i = 1.
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17 Spring 2000

17.1 Spring 2000 #2.

Let M and N be C∞ manifolds of the same dimension. If f : M → N is a local diffeomorphism, show that
f(M) is open in N .

Solution (Piercey/Schettler). For each point q ∈ M take an open neighborhood Uq, which exists since
M is a manifold and hence locally Euclidean. For each Uq, restrict f to Uq. A local diffeomorphism is a
homeomorphism, hence an open map, taking open sets to open sets. Unions are respected by f , and the
arbitrary union of open sets is again open.

17.2 Spring 2000 #3.

For the following vector fields X and Y and differential forms α and β on R
3, calculate the Lie bracket [X,Y ]

and the Lie derivatives LXα, LY β, and L[X,Y ](α ∧ β):

X = x
∂

∂x
− z2 ∂

∂y
, Y = z

∂

∂y
+ x3 ∂

∂z
, α = ex dx+ y dy + z dz, β = dx ∧ dy ∧ dz.

Solution. Writing things vertically for visual convenience, and omitting second-order derivatives which
always cancel in the Lie bracket, I have

[X,Y ] = XY − Y X =

(
x ∂/∂x

− z2 ∂/∂y

)(
z ∂/∂y

+ x3 ∂/∂z

)
−
(

z ∂/∂y
+ x3 ∂/∂z

)(
x ∂/∂x

− z2 ∂/∂y

)

= 3x3 ∂/∂z + 2x3z ∂/∂y.

Next, using Cartan’s magic formula,

LX(α) = d(X yα) +X y (dα)

X yα =

(
x ∂/∂x

− z2 ∂/∂y

)
y




ex dx
+ y dy
+ z dz




= xex − z2y

d(X yα) = (1 + x)ex dx− z2 dy − 2yz dz

d(α) = 0

and so
LX(α) = (1 + x)ex dx− z2 dy − 2yz dz.

Likewise,

LY (β) = d(Y yβ) + Y y (dβ)

Y yβ =

(
z ∂/∂y

+ x3 ∂/∂z

)
y

(
dx ∧ dy ∧ dz

)

= −zdx ∧ dz + x3 dx ∧ dy
d(Y yβ) = 0

d(β) = 0
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and so
LY (β) = 0.

Last, α ∧ β = 0 since there is dx ∧ dx, dy ∧ dy, or dz ∧ dz in each term. Therefore

L[X,Y ](α ∧ β) = L[X,Y ](0) = 0.

17.3 Spring 2000 #4.

(a) Show that if n > 1, the 2n-dimensional sphere does not admit any closed 2-form ω such that ωn (the
nth wedge power of ω) is a volume form.

(b) Exhibit a volume form for the 2-sphere S2.

Solution. For part (a), note that a volume form (being top-level) must be closed, yet must not be exact.
To see this, suppose otherwise. Then ωn = dη for some 2n− 1 form η. By Stokes’ theorem, since S2n has no
boundary, ∫

S2n

ωn =

∫

S2n

dη =

∫

∂S2n

η = 0.

But this is absurd since S2n is compact and orientable, hence has non-zero area.

It remains to use this intermediate result by showing that ωn is exact, hence unsuitable for a volume form.
Finding an η such that dη = ωn may seem at first blush like guesswork. However, since there are only so
many symbols to go around, and since η has degree 2n− 1 while ω has degree 2, I want to try

η = ωn−1 ∧ θ

for some 1-form θ. What else do I know about θ? Let’s compute dη. This is

dη = dω ∧ ω ∧ · · · ∧ ω ∧ θ
+ω ∧ dω ∧ · · · ∧ ω ∧ θ
+ · · ·
+ω ∧ ω ∧ · · · ∧ dω ∧ θ
+ω ∧ ω ∧ · · · ∧ ω ∧ dθ.

(Recall that d works through wedges as d(α∧ β) = α∧ β + (−1)ord(α)β ∧ α, but ω has degree 2, so I am not
missing any minus signs.) Since ω is closed, dω = 0 and all but the last term disappears:

dη = ωn−1 ∧ dθ.

Now I see that I need dθ = ω. What guarantee do I have of that? Well, for n > 1, S2n has trivial de Rham
cohomology, so any closed form (which ω is) is exact (so such a θ exists). Then

dη = ωn−1 ∧ θ = ωn−1 ∧ dθ = ωn,

so ωn is exact, which is all that remained to be proved.

For part (b), see section 18.3.
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18 Fall 1999

18.1 Fall 1999 #1.

Find a linear fractional transformation from the upper half plane to the unit disk sending i to 0, 0 to 1, and
∞ to −1. Does there exist such a linear fractional transformation that also sends −1 to i?

Solution. A general linear fractional transformation is

f(z) =
az + b

cz + d

with ad− bc 6= 0. There is an implicit form we can use; alternatively, we can simply solve a system of three
equations. (Note that although there appear to be four unknowns, the same LFT results if numerator and
denominator are scaled by the same non-zero constant. Thus there are really only three degrees of freedom.)
For the first point we have

ai+ b

ci+ d
= 0 =⇒ ai+ b = 0 =⇒ b = −ai

so

f(z) =
az − ai

cz + d
.

Using the second point,
a · 0 − ai

c · 0 + d
= 1 =⇒ −ai = d

so

f(z) =
az − ai

cz − ai
.

For the third point, recall that we define

lim
z→∞

f(z) = lim
z→0

f(1/z).

Then

f(1/z) =
a/z − ai

c/z − ai
=
a− aiz

c− aiz
; lim

z→0
f(1/z) =

a

c
= −1

so
c = −a.

Then

f(z) =
az − ai

−az − ai

for arbitrary non-zero a, so we may as well take a = 1 and write

f(z) =
z − i

−z − i
=
i− z

i+ z
.

Recall that an LFT is uniquely specified by its image on three distinct points, so if this LFT does not send
−1 to i as well as satisfying the above three constraints, then no other LFT does either. We compute

f(−1) =
i+ 1

i− 1
=

(
i+ 1

i− 1

)(
i+ 1

i+ 1

)
=

2i

−2
= −i 6= i.
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Furthermore, since an LFT is uniquely specified by its image on three distinct points, if it does not send the
upper half plane to the unit disk then there is no fixing it. To check that the upper half plane does in fact
land in the unit disk, though, let z = x+ iy with y ≥ 0. Then it suffices to show that |f(z)| ≤ 1:

∣∣∣∣
i− x− iy

i+ x+ iy

∣∣∣∣ =
|i− x− iy|
|i+ x+ iy| =

| − x+ (1 − y)i|
|x+ (1 + y)i| =

√
x2 + (1 − y)2

x2 + (1 + y)2
.

This is less than or equal to 1 if
x2 + (1 − y)2

x2 + (1 + y)2
≤ 1

which is true if
x2 + (1 − y)2 ≤ x2 + (1 + y)2

which is true if
(1 − y)2 ≤ (1 + y)2

which is true if
1 − 2y + y2 ≤ 1 + 2y + y2

which is true if
−2y ≤ 2y

which is true since y ≥ 0.

18.2 Fall 1999 #3.

Let M be a smooth manifold and let X be a vector field on M . Show that for any closed k-form ω on M ,
the Lie derivative LXω of ω in the direction of X is exact.

Solution. Writing down the Lie derivative using Cartan’s magic formula, we have

LXω = X y (dω) + d(X yω).

Since ω is exact, dω = 0; linearity of the contraction operator gives X y 0 = 0. What remains is

LXω = d(X yω)

which is what was to be shown.

18.3 Fall 1999 #7.

Let α be the two-form on R3 \ {0} given by

α =
x dy ∧ dz + y dx ∧ dz + z dx ∧ dy

(x2 + y2 + z2)3/2
.

Let i : S2 → R3 \ {0} be the inclusion map. Evaluate

∫

S2

i∗α.

Is i∗α exact? Why?
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Solution. On S2 we have x2 + y2 + z2 = 1 so, in ambient coordinates,

i∗α = x dy ∧ dz + y dx ∧ dz + z dx ∧ dy.

Now observe that the unit normal field S2 (obtained from half its gradient as usual) is (x, y, z) footed at
each point (x, y, z), i.e.

n̂ = x ∂/∂x+ y ∂/∂y + z ∂/∂z,

while the standard volume form on R3 is dx ∧ dy ∧ dz. Contracting we obtain

n̂ y (dx ∧ dy ∧ dz) = x ∂/∂x y (dx ∧ dy ∧ dz) + y ∂/∂y y (dx ∧ dy ∧ dz) + z ∂/∂z y (dx ∧ dy ∧ dz)
= x dy ∧ dz − y dx ∧ dz + z dx ∧ dy

which is to say that n̂ y (dx ∧ dy ∧ dz) is the standard area form on S2. But this is the same as i∗α.

To evaluate
∫

S2 i
∗α 6= 0, I could state that the area of the two-sphere is 4π. Or, I can compute this using

spherical coordinates. We have




x
y
z


 =




sinφ cos θ
sinφ sin θ

cosφ




i∗(dx) = cosφ cos θ dφ− sinφ sin θ dθ

i∗(dy) = cosφ sin θ dφ+ sinφ cos θ dθ

i∗(dz) = − sinφ dφ

i∗(x dy ∧ dz) = sin3 φ cos2 θ dφ ∧ dθ
i∗(−y dx ∧ dz) = sin3 φ sin2 θ dφ ∧ dθ
i∗(z dx ∧ dy) = (sinφ cos2 φ cos2 θ + sinφ cos2 φ sin2 θ) dφ ∧ dθ

= sinφ cos2 φ dφ ∧ dθ
i∗(α) = (sin3 φ cos2 θ + sin3 φ sin2 θ + sinφ cos2 φ) dφ ∧ dθ

= (sin3 φ+ sinφ cos2 φ) dφ ∧ dθ
= sinφ(sin2 φ+ cos2 φ) dφ ∧ dθ
= sinφ dφ ∧ dθ.

Then by Tonelli’s theorem, using the non-negativity of the integrand, we have

∫

S2

i∗α =

∫ θ=2π

θ=0

(∫ φ=π

φ=0

sinφdφ

)
dθ

= 2π [− cosφ]
φ=π
φ=0

= 4π.

Since 4π 6= 0, this shows i∗α is not exact: If it were, say α = dβ for some one-form β on S2, then by Stokes’
theorem and since S2 has empty boundary,

∫

S2

α =

∫

S2

dβ

∫

∂S2

β = 0.

Contrapositively, since we found the integral to be non-zero, α is not exact.
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19 Spring 1999

19.1 Spring 1999 #2.

Explain why you need at least two coordinate charts to cover a compact manifold.

Solution. A coordinate chart is a homeomorpmism from within M to an open subset of R
m for some m. If

a single coordinate chart covered M , then M would be (globally) homeomorphic to Rm. Homeomorphisms
preserve compactness, yet M is compact while Rm (for m > 0) is not. This is absurd.

19.2 Spring 1999 #3.

Construct a nowhere-vanishing vector field X on S1 = {(x, y) ∈ R : x2 + y2 = 1}. For the function
f(x, y) = xy2 on S1, calculate the function Xf .

Solution. First, the construction. The circle has unit normal given by its normalized gradient, namely,

n̂ =

(
x
y

) ∣∣∣∣“
x

y

”

.

We may write down the vector field

X =

(
−y
x

) ∣∣∣∣“
x

y

”

.

This is tangent to S1 since it is perpendicular to the normal field, as evidenced by the fact that n̂ · X =
−xy + xy = 0. Furthermore, X is nowhere vanishing since its norm is

√
(−y)2 + x2 =

√
x2 + y2 = 1.

* * *

Using ambient coordinates, we have from above

X = −y ∂
∂x

+ x
∂

∂y
.

Then

Xf =

(
−y ∂

∂x
+ x

∂

∂y

)
xy2 = −y3 + 2x2y.

Using polar coordinates, we have

x = cos θ, y = sin θ, X =
∂

∂θ
=

(
∂/∂θ(cos θ)
∂/∂θ(sin θ)

)
=

(
− sin θ

cos θ

)
=

(
−y
x

) ∣∣∣∣“
x

y

”

.

Then

Xf =
∂

∂θ

(
cos θ sin2 θ

)
= − sin3 θ + 2 cos2 θ sin θ.
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19.3 Spring 1999 #4.

Let M be an n-dimensional manifold and let ω be a differential form on M of even degree. Show that the
form ω ∧ dω is always exact.

Solution. Let k be the degree of ω. Then ω ∧ dω has degree 2k+ 1. If 2k+ 1 > n then ω ∧ dω = 0 which is
d of 0, hence exact.

For the more interesting case 2k + 1 ≤ n, well, there are only finitely many symbols here so I will guess
d(ω ∧ ω). Writing this out I have

d(ω ∧ ω) = dω ∧ ω + (−1)kω ∧ dω
= dω ∧ ω + ω ∧ dω
= 2ω ∧ dω

since k is even. (Recall that for a k-form η and an ℓ-form θ, θ ∧ η = (−1)kℓη ∧ θ. Since here we have k even,
dω ∧ ω = ω ∧ dω.) I overguessed by a factor of two; I amend that to

d
(ω ∧ ω

2

)
= ω ∧ dω.

19.4 Spring 1999 #6.

For n ≥ 1, construct an n-form on the n-sphere Sn that represents a non-trivial de Rham cohomology class
in Hn

dR(Sn). Explain your work.

Solution. Let ω be the form, explicitly constructed as

ω = n̂ y dV

where n̂ is the unit normal to S
n and

dV = dx1 ∧ · · · ∧ dxn+1

is the volume form on Rn+1. Since Sn is the level set of

x2
1 + . . .+ x2

n+1 = 1,

a normal is found by the gradient of the left-hand side, namely,




2x1

...
2xn+1


 .

The unit normal is then



x1

...
xn+1



∣∣∣∣0
B

@

x1

.

.

.
xn+1

1

C

A

= x1
∂

∂x 1
+ . . .+ xn+1

∂

∂xn+1
.

Since
∂

∂x j
y (dx1 ∧ · · · ∧ dxn+1) = (−1)j−1dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn+1,
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where the overhat indicates omission, the contraction is

ω = x1dx2 ∧ · · · ∧ dxn+1 − x2dx1 ∧ dx3 ∧ · · · ∧ dxn+1 + · · · + (−1)nxn+1dx1 ∧ dx3 ∧ · · · ∧ dxn.

For ω to represent a non-trivial de Rham cohomology class, it must be closed but not exact. It is closed
since it is top-level on Sn. If it were exact, say ω = dη, then by Stokes’ theorem

∫

Sn

ω =

∫

Sn

dη =

∫

∂Sn

η = 0

since Sn has empty boundary. But Sn is a compact, orientable manifold and thus has a one-dimensional
space of volume forms, of which we have found a specific non-zero element [xxx can’t cite linear independence
with ambient coordinates . . . ]. Thus

∫
Sn ω 6= 0 which is a contradiction. Therefore there is no such η. This

is all that remained to be shown.

68


	Contents
	Disclaimer
	Acknowledgements
	Topics and theorems
	January 2007
	January 2007 #2.
	January 2007 #5.
	January 2007 #6.
	January 2007 #7.

	August 2006
	August 2006 #1.
	August 2006 #2.
	August 2006 #3.
	August 2006 #4.
	August 2006 #5.
	August 2006 #6.
	August 2006 #7.

	Winter 2005
	Winter 2005 #2.
	Winter 2005 #5.

	Fall 2005
	Fall 2005 #2.
	Fall 2005 #3.

	Spring 2005
	Spring 2005 #2.
	Spring 2005 #6.

	Fall 2004
	Fall 2004 #2.
	Fall 2004 #5.

	January 2004
	January 2004 #1.

	August 2003
	August 2003 #2.
	August 2003 #3.
	August 2003 #4.
	August 2003 #5.

	Fall 2002
	Fall 2002 #5.
	Fall 2002 #6.
	Fall 2002 #7.

	Spring 2002
	Spring 2002 #6.
	Spring 2002 #7.

	Fall 2001
	Fall 2001 #3.
	Fall 2001 #4.
	Fall 2001 #5.
	Fall 2001 #7.

	January 2001
	January 2001 #3.
	January 2001 #4.
	January 2001 #5.

	Fall 2000
	Fall 2000 #3.
	Fall 2000 #6.
	Fall 2005 #7.

	Spring 2000
	Spring 2000 #2.
	Spring 2000 #3.
	Spring 2000 #4.

	Fall 1999
	Fall 1999 #1.
	Fall 1999 #3.
	Fall 1999 #7.

	Spring 1999
	Spring 1999 #2.
	Spring 1999 #3.
	Spring 1999 #4.
	Spring 1999 #6.


