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1 (Some) qual problems

• (Spring 2007, 2) Let I, J be two ideals in a commutative ring R (with unit).

(a) Define K = {r : rJ ≤ I}. Show that K is an ideal

(b) If R is a PID, so I = 〈i〉, J = 〈j〉, give a formula for a generator k of K.

• (Spring 2007, 3) Describe up to isomorphism all the R[x]-module structure one might put on
a 3 dimensional real vector space (extending the R action).

Fundamental theorem of modules over a PID.

• (Fall 2009, 8) Let R be a commutative ring with identity. Suppose I and J are ideals of R
such that R/I and R/J are noetherian rings. Prove that R/(I ∩ J) is also a noetherian ring.

• (Spring 2012, 3) Let R be a commutative ring.

(a) Suppose that R is noetherian. Show that if ϕ : R → R is a surjective ring homomor-
phism, then it is injective.

(b) If R is not noetherian, must a surjective ring homomorphism be injective? Prove or give
a counterexample.

item (Spring 2012, 5) Consider f ∈ F [x] where F is an algebraically closed field. Suppose
that f has the property that for all matrices A ∈ Mn(F ) of any size n, if f(A) = 0, then A
is a diagonalizable matrix; then we say the polynomial f forces diagonalizability.

(a) Characterize a simple rule exactly which polynomials in F [x] prove diagonalizability.
Prove your answer.

(b) Fix m ≥ 1. Is every square matrix A with entries in F satisfyingAm = I diagonalizable?
(The answer depends on F ).

• (Fall 2009, 2) Let R denote a commutative ring and I an ideal, I 6= R.

(a) Give an example where R/I has nilpotents but R doesn’t.

(b) Give an example where R has nilpotents but R/I doesn’t.

• (Fall 2009, 3) Let ϕ : C[x]→ F be a ring homomorphism where F is a field, ϕ(1) 6= 0.

(a) Give an example where ϕ is not onto.
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(b) If ϕ is onto, show that F ∼= C.

• (Fall 2009, 4)

(a) Give an example of two finitely generated Z-modules, M and N such that M,N are not
isomorphic (as Z-modules) but Q⊗Z M ∼= Q⊗Z N (as Q-modules).

(b) Let M be a finitely generated R[x]-module, described using the classification of f.g.
modules over a PID. Give a similar description of C[x]⊗R[x] M as a C[x]-module.

2 (Some) ring things to know

• Basic facts and definitions (homomorphisms, isomorphism theorems, subrings, ideals, quotient
rings, etc.)

• Any finite integral domain is a field.

• Isomorphism theorems

• A commutative ring R is a field if and only if its only ideals are 0 and R.

• Kernels of ring homomorphisms are ideals.

• For a commutative ring R and an ideal I, R/I is a domain (resp. field) if and only if I is
prime (resp. maximal).

• (Chinese Remainder Theorem) Let A1, . . . , Ak be ideals of R. Then map

R→ R/A1 × · · · ×R/Ak

has kernel A1∩· · ·∩Ak. If for each i 6= j, Ai and Aj are comaximal, then the map is surjective
and A1 ∩ · · ·Ak = A1 · · ·Ak so

R/(A1 · · ·Ak) = R/(A1 ∩ · · · ∩Ak) ∼= R/A1 × · · · ×R/Ak.

• fields ( Euclidean domains ( PIDs ( UFDs ( Integral domains ( Rings

Examples showing strict inclusion: F [x], Z[(1 +
√
−19)/2], F [x, y], Z[

√
−5], Z4

• A Euclidean domain is a PID, an ideal is generated by an element of minimum norm.

• If (a, b) = (d), where d = gcd(a, b).

• If R[x] is a PID then R is a field.

• If F is a field then F [x] is a Euclidean domain.

• Every prime ideal in a PID is maximal.

• In a UFD, an element is prime if and only if it is irreducible.

• R is a UFD if and only if R[x] is a UFD.
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• Gaussian integers

• (Gauss’ Lemma) Let R be a UFD with field of fractions F and p(x) ∈ R[x]. If p(x) is reducible
in F [x] then p(x) is reducible in R[x].

• (Eisenstein’s criterion) Let P be a prime ideal of an integral domain R and let f(x) =
xn + an−1x

n−1 + · · · + ax + a0 be a polynomial in R[x]. Suppose an−1, . . . , a1, a0 ∈ P and
a0 /∈ P 2. Then f(x) is irreducible.

3 (Some) module things to know

• Basic facts and definitions (homomorphisms, isomorphism theorems, submodules, quotient
ideals, direct products, cyclic modules)

• An F [x]-module V is an F -vector space with a linear transformation V → V .

• Free modules (Let A be any set and consider the free module F (A). If M is any R-module,
ϕA → M any homomorphism, this lifts to a unique R-module homomorphism Φ : F (A) →
M .)

• Tensor product (commutative, associative, right exact, splits over direct sums)

• (Universal property) Any R-bilinear map M ×N → L induces a unique R-module homomor-
phism M ⊗R N → L.

• Extension of scalars

• Hom (is left exact)

• Exact sequences (short, split)

• Projective modules (direct summand of a free module, lifting property, every short exact
sequence ending with a projective splits)

(Lifting property). Given a surjection M → N and any homomorphism ϕP → N , ϕ lifts to
a (not necessarily unique) homomorphism P → N .

• Injective modules (lifting property, every short exact sequence starting with an injective splits)

(Lifting property dual to the projective property). For any injection L → M , and any
homomorphism ϕL→ Q, ϕ lifts to a homomorphism Q→M .

• (Baer’s criterion) An R-module Q is injective if and only if for every left ideal I, any module
homomorphism I → Q can be extended to one R→ Q.

• If R is a PID, Q is injective if and only if rQ = Q for all 0 6= r ∈ R.

• Flat modules (tensoring with a flat module is exact)

• M is a noetherian R-module if nad only if every nonempty set of submodules of M contains
a maximal element if and only if every submodule ofM is finitely generated.
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• (Fundamental Theorem of Modules over a PID)

Invariant factor form

Let R be a PID and M a finitely gnereated R-module. Then

M ∼= Rr ⊕R/(a1)⊕ · · · ⊕R/(am)

for some r ∈ Z≥0 and a1 | a2 | · · · | am.

Rational canonical form

Elementary divisor form:
M ∼= Rr ⊕R/(pα1

1 )⊕ · · ·R/(pαt
t )

for some r ∈ Z≥0 and pα1
1 , . . . , pαt

t are positive powers of not necessarily distinct primes.

Jordan canonical form

• Characteristic polynomials, minimal polynomials
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