1A. Consider a sequence of functions $f_n: [a, b] \to \mathbb{R}$ with the property that for each $x \in [a, b]$ there is an open interval I_x containing x such that $(f_n)_{n\geq 1}$ converges uniformly in $I_x \cap [a, b]$. Show that $(f_n)_{n\geq 1}$ converges uniformly in [a, b].

2A. Find a countable abelian group whose endomorphism ring has the same cardinality as the set of real numbers. Justify your answer.

3A. Let $a_1, \ldots, a_n, b_1, \ldots, b_m$ be distinct complex numbers, let r_1, \ldots, r_n be nonnegative integers, and let c_1, \ldots, c_m be complex numbers. Prove that if $m \leq r_1 + \cdots + r_n + 1$, then there exists a rational function $F(z) \in \mathbb{C}(z)$ satisfying all of the following:

- 1. F(z) is holomorphic at ∞ and everywhere in \mathbb{C} except possibly at a_1, \ldots, a_n .
- 2. $\operatorname{ord}_{z=a_i} F(z) \ge -r_i$
- 3. $F(b_j) = c_j$ for j = 1, ..., m.

4A. For which positive integers n is it true that every invertible 2×2 matrix A with real entries can be expressed as the n-th power of another 2×2 matrix with real entries?

5A. Suppose
$$f : \mathbb{R} \to \mathbb{C}$$
 satisfies $f'(t) + 2itf(t) = e^{2it}$ and $f(0) = 0$. Compute
$$\lim_{t \to +\infty} e^{it^2} (f(t) - f(-t)).$$

You may assume $\int_0^\infty e^{-t^2} dt = \sqrt{\pi}/2.$

6A. For which pairs of integers (a, b) is the quotient ring $\mathbb{Z}[x]/(x^2 + ax + b)$ isomorphic (as a ring) to the direct product of rings $\mathbb{Z} \times \mathbb{Z}$?

7A. Evaluate $\int_0^\infty \frac{\sin x}{x} dx$.

8A. Let V and W be finite-dimensional vector spaces over a field k. Let $f: V^n \to W$ be a function such that

(a) For each fixed $i \in \{1, \ldots, n\}$ and fixed $v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n \in V$, the map

$$V \to W$$

 $x \mapsto f(v_1, \dots, v_{i-1}, x, v_{i+1}, \dots, v_n)$

is a k-linear transformation; and

(b) $f(v_1, \ldots, v_n) = 0$ whenever $v_i = v_{i+1}$ for some $i \in \{1, \ldots, n-1\}$. Prove that either dim $V \ge n$ or f is identically zero.

9A. Let $f \colon \mathbb{R}^n \to \mathbb{R}^n$ be a differentiable function, and let L be a nonnegative real number. Prove that the following are equivalent:

(i) For every $x, y \in \mathbb{R}^n$,

$$(f(x) - f(y)).(x - y) \le L|x - y|^2$$

(ii) For every $x, v \in \mathbb{R}^n$,

$$Df(x)v.v \le L|v|^2$$
,

where Df(x) is the derivative of f at x, and . denotes the standard inner product of vectors in \mathbb{R}^n .

1B. Let F be a field (of arbitrary characteristic). Suppose g is a nonnegative integer, and polynomials $a(x), b(x) \in F[x]$ satisfy deg $a(x) \leq g$ and deg b(x) = 2g + 1. Prove that the polynomial $y^2 + a(x)y + b(x)$ is irreducible over F(x).

2B. Find the maximum possible value of |f'(1)| given that f is holomorphic on an open neighborhood of $\{z \in \mathbb{C} : |z| \le 2\}$ and satisfies $|f(z)| \le 1$ when |z| = 2.

3B. Let A be a $d \times d$ matrix with complex entries. Assume that every eigenvalue of A has absolute value 1. Prove that there exists a constant $c \in \mathbb{R}$ independent of n such that

 $\|A^n x\| \le cn^{d-1} \|x\|$

for all $n \ge 1$ and $x \in \mathbb{C}^d$. Here $||x|| := (|x_1|^2 + \dots + |x_d|^2)^{1/2}$ for all $(x_1, \dots, x_d) \in \mathbb{C}^d$.

4B. Let a_1, \ldots, a_n be positive real numbers. Let Δ be the set of points $\mathbf{x} \in \mathbb{R}^n$ satisfying the conditions

$$\sum_{i=1}^{n} a_i x_i = 1, \quad x_i > 0 \text{ for all } i$$

Prove that the function $\log(\prod_{i=1}^{n} x_i)$ has a unique maximum on Δ and find the point where it occurs.

5B. Let n_1, \ldots, n_r be integers ≥ 2 . Prove that there is a finite group G containing elements g_1, \ldots, g_r such that g_i has exact order n_i for each i, and $g_i g_j \neq g_j g_i$ for $i \neq j$.

6B. Let $(u_n(x,y))_{n\geq 1}$ be a sequence of functions that are defined and harmonic for (x,y) in an open neighborhood of the upper half plane $\mathbb{R} \times \mathbb{R}_{\geq 0}$. Suppose that $\frac{\partial u_n}{\partial y}(x,0) = 0$ for all $x \in \mathbb{R}$, and $u_n(x,0)$ converges to 0 as $n \to \infty$ uniformly for $x \in \mathbb{R}$. Must $u_n(x,y) \to 0$ as $n \to \infty$ for every $(x,y) \in \mathbb{R} \times \mathbb{R}_{>0}$?

7B. Let A and B be $n \times n$ matrices with complex entries, such that AB - BA is a linear combination of A and B. Prove that there exists a nonzero vector v that is an eigenvector of both A and B.

8B. For each real number x, compute

$$\lim_{n \to \infty} n\left(\left(1 + \frac{x}{n}\right)^n - e^x\right).$$

9B. Let S_4 be the group of permutations of $\{1, 2, 3, 4\}$. Determine the order of the automorphism group Aut (S_4) . Justify your answer.