SPRING 2007 PRELIMINARY EXAMINATION SOLUTIONS

1A. Let x_{1}, x_{2}, \ldots be an infinite sequence of real numbers such that every subsequence contains a subsequence converging to 0 . Must the original sequence converge?

Solution: Yes; in fact it must converge to 0 . If not, there would exist $\epsilon>0$ such that for infinitely many n, we have $\left|x_{n}\right|>\epsilon$. Choose a subsequence S consisting of such x_{n}. If T is a subsequence of S, then T also consists of numbers of absolute value greater than ϵ, so T cannot converge to 0 . Thus S has no subsequence converging to 0 . This contradicts the given hypothesis.

2A. Find a matrix U such that $U^{-1} A U=J$ is in Jordan canonical form, where

$$
A=\left(\begin{array}{rrc}
0 & -3 & 5 \\
-1 & -6 & 11 \\
0 & -4 & 7
\end{array}\right)
$$

Solution: Expanding by minors along the first column shows that the characteristic determinant is given by

$$
\operatorname{det}(A-\lambda I)=-\lambda^{3}+\lambda^{2}+\lambda-1=-(\lambda-1)^{2}(\lambda+1)
$$

Thus $\lambda_{1}=-1$ is an eigenvalue of algebraic (and hence geometric) multiplicity 1 while $\lambda_{2}=1$ is an eigenvalue of algebraic multiplicity 2 . The eigenvectors of A belong to the kernels of the matrices

$$
A-\lambda_{1} I=\left(\begin{array}{rrc}
1 & -3 & 5 \\
-1 & -5 & 11 \\
0 & -4 & 8
\end{array}\right), \quad A-\lambda_{2} I=\left(\begin{array}{rrc}
-1 & -3 & 5 \\
-1 & -7 & 11 \\
0 & -4 & 6
\end{array}\right)
$$

which can be row-reduced to

$$
P_{1}\left(A-\lambda_{1} I\right)=\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right), \quad P_{2}\left(A-\lambda_{2} I\right)=\left(\begin{array}{ccc}
1 & 0 & -1 / 2 \\
0 & 1 & -3 / 2 \\
0 & 0 & 0
\end{array}\right)
$$

where P_{1} and P_{2} are products of elementary row operations. We see that $u_{1}=(1,2,1)^{T}$ and $u_{2,0}=(1,3,2)^{T}$ are the eigenvectors of A and the geometric multiplicity of λ_{2} is 1 . To put A in Jordan canonical form, we want $A\left(u_{1}, u_{2,0}, u_{2,1}\right)=A U=U J=\left(\lambda_{1} u_{1}, \lambda_{2} u_{2,0}, \lambda_{2} u_{2,1}+u_{2,0}\right)$, so we need to find a vector $u_{2,1}$ satisfying $A u_{2,1}=\lambda_{2} u_{2,1}+u_{2,0}$. This can be done by solving $P_{2}\left(A-\lambda_{2} I\right) u_{2,1}=P_{2} u_{2,0}:$

$$
\left(\begin{array}{rcc|c}
-1 & -3 & 5 & 1 \\
-1 & -7 & 11 & 3 \\
0 & -4 & 6 & 2
\end{array}\right) \xrightarrow{\text { row reduce }}\left(\begin{array}{ccc|c}
1 & 0 & -1 / 2 & 1 / 2 \\
0 & 1 & -3 / 2 & -1 / 2 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

Thus $u_{2,1}=(1,1,1)^{T}$ works (as does $(1,1,1)^{T}+\alpha(1,3,2)^{T}$ for any $\alpha \in \mathbb{C}$) and we have

$$
U=\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 3 & 1 \\
1 & 2 & 1
\end{array}\right), \quad U^{-1} A U=J=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

3A. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is real analytic and periodic with period 2π. Prove that f has an analytic continuation F defined on a strip

$$
S=\{x+i y \in \mathbb{C}:|y|<\rho\}
$$

with $\rho>0$, and that $F(z+2 \pi)=F(z)$ for $z \in S$.
Solution: Since f is real analytic, it possesses derivatives of all orders and agrees with its (convergent) Taylor series on a neighborhood $\left(x-r_{x}, x+r_{x}\right)$ of every point $x \in \mathbb{R}$. The same power series may be used to define F on the complex neighborhood $B\left(x, r_{x}\right)$ of radius r_{x} centered at x. Since f is periodic, the coefficients of the Taylor series at $x+2 \pi$ are the same as those at x, so we may assume that $r_{x+2 \pi}=r_{x}$ for all $x \in \mathbb{R}$. Let us cover the compact interval $[-\pi, \pi] \subset \mathbb{C}$ with open squares $U_{x}=\left(x-\frac{1}{2} r_{x}, x+\frac{1}{2} r_{x}\right) \times\left(-\frac{1}{2} r_{x}, \frac{1}{2} r_{x}\right)$ and choose a finite sub-cover $U_{x_{1}}, \ldots, U_{x_{n}}$ of $[-\pi, \pi]$. We now define

$$
\rho=\min \left\{\frac{1}{2} r_{x_{i}}: 1 \leq i \leq n\right\}
$$

and note that since each square $U_{x_{i}}$ has half-height $\geq \rho$ and satisfies $U_{x_{i}} \subset B\left(x_{i}, r_{x_{i}}\right)$, the balls $\left\{B\left(x_{i k}, r_{x_{i}}\right): x_{i k}=x_{i}+2 \pi k, 1 \leq i \leq n, k \in \mathbb{Z}\right\}$ cover the strip S. For any $z \in S$, we define $F(z)$ using the Taylor series at any $x_{i k}$ for which $z \in B\left(x_{i k}, r_{x_{i}}\right)$. A different choice of $x_{i k}$ will yield the same value $F(z)$ since the intersection of two balls containing z will contain a positive interval of the real axis on which the Taylor expansions agree with f, so they represent the same analytic function on this intersection. F satisfies $F(z+2 \pi)=F(z)$ for $z \in S$ since the Taylor expansion centered at $x_{i k}$ defining F at $z \in B\left(x_{i k}, r_{x_{i}}\right)$ has the same coefficients as the one centered at $x_{i, k+1}$ defining F at $z+2 \pi$.

4A. Define six fields as follows:

- Let $A=\mathbb{Q}(\alpha)$ where \mathbb{Q} is the field of rational numbers and α is the real cube root of 2.
- Let B be a splitting field of $x^{3}-2$ over \mathbb{Q}.
- Let C be an algebraic closure of the field \mathbb{F}_{2} of 2 elements.
- Let D be the subfield of C generated over \mathbb{F}_{2} by the set of $a \in C$ such that there exists $n \geq 1$ with $a^{n}=1$.
- Let E be the field \mathbb{R} of real numbers.
- Let F be the field $\mathbb{Q}[[T]]\left(T^{-1}\right)$ of formal Laurent series with rational coefficients. For each pair of these, determine with proof whether or not they are isomorphic.

Solution: We will show that the only isomorphic pair consists of C and D.
Let $S_{1}=\{A, B\}, S_{2}=\{C, D\}$, and $S_{3}=\{E, F\}$. The fields in S_{1} are of finite dimension over \mathbb{Q}, hence countable and of characteristic 0 . The fields in S_{2} are of characteristic 2 . The fields in S_{3} are uncountable and of characteristic 0 . Hence no field in S_{i} is isomorphic to a field in S_{j} if $i \neq j$.

By Eisenstein's criterion, $x^{3}-2$ is irreducible, so $[A: \mathbb{Q}]=3$. The zeros of this polynomial are $\omega^{i} \alpha$ where ω is a primitive cube root of unity. Thus $\omega \in B$. Since $[\mathbb{Q}(\omega): \mathbb{Q}]=2$, the degree $[B: \mathbb{Q}]$ is even. Hence $A \not \approx B$.

If $a \in C$, then $\mathbb{F}_{2}(a)$ is a finite extension of \mathbb{F}_{2}, hence finite, say of order q; if moreover $a \neq 0$, then $a^{q-1}=1$. Hence $C \subseteq D$. But $D \subseteq C$, so $C=D$.

The square of a nonzero element of $\mathbb{Q}[[T]]\left(T^{-1}\right)$ has a leading coefficient that is a rational square. Thus 2 is not a square in $\mathbb{Q}[[T]]\left(T^{-1}\right)$. But 2 is a square in \mathbb{R}. So $E \not 千 F$.

5A. Let $a_{0}(x), a_{1}(x), \ldots, a_{r-1}(x)$ and $b(x)$ be C^{m} functions on \mathbb{R}. Prove that if $y(x)$ is a solution of the differential equation

$$
y^{(r)}+a_{r-1}(x) y^{(r-1)}+\cdots+a_{1}(x) y^{\prime}+a_{0}(x) y=b(x)
$$

(in particular, assuming that the derivatives $y^{\prime}, y^{\prime \prime}, \ldots, y^{(r)}$ exist), then $y(x)$ is C^{m+r}.
Solution: Rewrite the differential equation as

$$
\begin{equation*}
y^{(r)}=b-\left(a_{r-1} y^{(r-1)}+\cdots+a_{1} y^{\prime}+a_{0} y\right), \tag{1}
\end{equation*}
$$

and proceed by induction on m. For $m=0$, the derivatives of y on the right-hand side of (1) are differentiable and hence continuous. The functions a_{i} and b are continuous by assumption, so $y^{(r)}$ is continuous, i.e., y is C^{r}.

For $m>0$, assume by induction that y is C^{m+r-1}. Then the derivatives of y on the right-hand side of (1) are C^{m}. The functions a_{i} and b are C^{m} by assumption, so $y^{(r)}$ is C^{m}, hence y is C^{m+r}.

6A. Let $A=\alpha_{1} \sigma_{1}+\alpha_{2} \sigma_{2}+\alpha_{3} \sigma_{3}$ where $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathbb{C}$ and $\sigma_{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \sigma_{2}=\left(\begin{array}{rr}0 & -i \\ i & 0\end{array}\right)$, $\sigma_{3}=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$. Let $\beta \in \mathbb{C}$ be any square root of $\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}$.
(a) Prove that $\exp (A)=\cosh (\beta)+\frac{\sinh \beta}{\beta} A$, where $\frac{\sinh (\beta)}{\beta}$ is interpreted as 1 if $\beta=0$. (Hint: First show that A^{2} is a scalar multiple of the identity.)
(b) Evaluate $\exp (A)$ explicitly in the case $\alpha_{1}=i \pi, \alpha_{2}=i \pi$, and $\alpha_{3}=\pi$.

Solution: (a) An explicit calculation shows that $A^{2}=\left(\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}\right) I=\beta^{2} I$. Thus

$$
\begin{aligned}
\exp (A) & =I+A+\frac{1}{2!} A^{2}+\frac{1}{3!} A^{3}+\cdots \\
& =I+A+\frac{\beta^{2}}{2!} I+\frac{\beta^{2}}{3!} A+\frac{\beta^{4}}{4!} I+\frac{\beta^{4}}{5!} A+\cdots \\
& =\cosh (\beta)+\frac{\sinh \beta}{\beta} A
\end{aligned}
$$

where the last step is valid (with our convention) even if $\beta=0$.
(b) The values $\alpha_{1}=i \pi, \alpha_{2}=i \pi, \alpha_{3}=\pi$ give $\beta^{2}=-\pi^{2}$, so we choose $\beta=i \pi$ and obtain $\cosh (\beta)=\cos (i \beta)=\cos (-\pi)=-1, \sinh (\beta)=-i \sin (i \beta)=-i \sin (-\pi)=0$, and $\exp (A)=-I$.

7A. Let a and b be complex numbers, and let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a non-constant entire function such that $f(a z+b)=f(z)$ for all $z \in \mathbb{C}$. Prove that there is a positive integer n such that $a^{n}=1$.

Solution: If $a=1$, we are done, so assume that $a \neq 1$. Then $a z+b=z$ has a unique solution, say c. Define $g(z):=f(z+c)$, so

$$
g(a z)=f(a z+c)=f(a z+a c+b)=f(a(z+c)+b)=f(z+c)=g(z)
$$

If the Taylor series of $g(z)$ at $z=0$ is $\sum_{i \geq 0} g_{i} z^{i}$, then equating coefficients of z^{n} in $g(a z)=$ $g(z)$ yields

$$
a^{n} g_{n}=g_{n}
$$

Since f is not constant, g is not constant. Therefore for some $n \geq 1$ we have $g_{n} \neq 0$, and hence $a^{n}=1$.

8 A. Let $n \geq 3$, and let A_{n} be the alternating subgroup of the symmetric group on n letters. Prove that A_{n} is generated by (123) and $(12 \cdots n)$ if n is odd, or by (123) and $(2 \cdots n)$ if n is even.

Solution: We prove the statement by induction on n. The base case $n=3$ is trivial.
Let G be the subgroup of A_{n} generated by these elements. Then G acts transitively on $\{1, \ldots, n\}$, so it suffices to show that the stabilizer of 1 in G is the full alternating group on $\{2, \ldots, n\}$. By induction we need only show for $n \geq 4$ that G contains (234) and either $(3 \cdots n)$ (if n is odd) or $(2 \cdots n)$ (if n is even).

Case 1: n is odd. Then conjugating (123) by $(12 \cdots n)$ yields $(234) \in G$. And

$$
(3 \cdots n)=(123)^{-1}(12 \cdots n) \in G
$$

Case 2: n is even. Then conjugating (123) by $(2 \cdots n)$ yields (134) $\in G$, and conjugating (123) by (134) yields $(324) \in G$, and hence $(234)=(324)^{-1} \in G$. This time, $(2 \cdots n) \in G$ is part of the inductive hypothesis.

9A. Suppose b and L are positive constants and $f:[0, b] \rightarrow \mathbb{R}$ is continuous and satisfies

$$
f(x) \geq L \int_{0}^{x} f(t) d t, \quad(0 \leq x \leq b)
$$

Show that $f(x) \geq 0$ for $0 \leq x \leq b$.
Solution: Let $F(x)=\int_{0}^{x} f(t) d t$. Since f is continuous, F is differentiable and we have

$$
F^{\prime}(x)=f(x) \geq L F(x), \quad(0 \leq x \leq b)
$$

Thus, for $0 \leq t \leq b$ we have

$$
\begin{aligned}
F^{\prime}(t)-L F(t) & \geq 0 \\
\left(F^{\prime}(t)-L F(t)\right) e^{-L t} & \geq 0, \\
\frac{d}{d t}\left(F(t) e^{-L t}\right) & \geq 0,
\end{aligned}
$$

and since definite integrals preserve inequalities:

$$
F(x) e^{-L x}-F(0) e^{0}=\int_{0}^{x} \frac{d}{d t}\left(F(t) e^{-L t}\right) d t \geq \int_{0}^{x} 0 d t=0, \quad(0 \leq x \leq b)
$$

Since $F(0)=0$ and $e^{-L x}>0$, we learn that $F(x) \geq 0$ for $0 \leq x \leq b$, hence the original inequality $f(x) \geq L F(x)$ gives the desired result.

An alternative proof might run as follows. Let $x_{0}=\sup \{x<b: f(t) \geq 0$ for $t \in[0, x]\}$. We know $x_{0} \geq 0$ since $f(0) \geq 0$. We must show that $x_{0}=b$. Suppose to the contrary that $x_{0}<b$. Since $f(x)$ is continuous and non-negative to the left of $x_{0}, f\left(x_{0}\right) \geq 0$. On the other hand, there are points $x>x_{0}$ arbitrarily close to x_{0} at which $f(x)<0$. Thus $f\left(x_{0}\right)=0$. The given inequality now implies that $f(x)=0$ for $0 \leq x \leq x_{0}$. Now define $x_{1}=\min \left(x_{0}+L^{-1}, b\right)$. Then there is an x_{2} in the interval $x_{0}<x_{2}<x_{1}$ which satisfies $f\left(x_{2}\right)<0$. Let $\varepsilon=\left|f\left(x_{2}\right)\right|$. The given inequality implies that $f(x) \geq L \int_{x_{0}}^{x} f(t) d t$ for $x_{0} \leq x \leq x_{1}$. Thus $u(x)=f(x)+\varepsilon$ satisfies $u\left(x_{0}\right)=\varepsilon, u\left(x_{2}\right)=0$, and

$$
u(x) \geq L \int_{x_{0}}^{x} u(t)-\varepsilon d t+\varepsilon=\int_{x_{0}}^{x} u(t) d t+\varepsilon\left[1-L\left(x-x_{0}\right)\right] \geq \int_{x_{0}}^{x} u(t) d t
$$

for $x_{0} \leq x \leq x_{1}$. But since u is continuous and $u\left(x_{0}\right)=\varepsilon>0$, it's impossible for u to reach 0 over the interval $x_{0}<x<x_{1}$, for at the first crossing x_{3} where $u\left(x_{3}\right)=0$, the integral $\int_{x_{0}}^{x_{3}} u(x) d x>0$. Thus the assumption that $u\left(x_{2}\right)=0$ leads to a contradiction, and we conclude that $x_{0}=b$.
$1 B$. If $c \in \mathbb{R}$, say that a real-valued function $f: \mathbb{R} \rightarrow \mathbb{R}$ is periodic with period c if it satisfies $f(x+c)=f(x)$ for all $x \in \mathbb{R}$.
(i) Let V be the set of continuous real-valued functions f having a positive integer as a period. Prove that V is a vector space.
(ii) Let $p_{1}<p_{2}<\ldots<p_{n}<\ldots$ be the sequence of prime numbers, and for each i, let f_{i} be a function whose minimal positive period is p_{i}. Prove that the functions f_{1}, f_{2}, \ldots are linearly independent in V.

Solution: (i) The set of all functions $\mathbb{R} \rightarrow \mathbb{R}$ is a vector space, so it suffices to check that V contains 0 and is closed under addition and scalar multiplication. The only nontrivial claim is closure under addition. Suppose $f, g \in V$, say with periods c and d. Any positive integer multiple of a period is a period of the same function, so f, g have $c d$ as a common period. Thus $f+g$ has $c d$ as a period (and it is continuous).
(ii) Suppose not. Then there exists a relation

$$
a_{1} f_{1}+\cdots+a_{n} f_{n}=0
$$

where $a_{i} \in \mathbb{R}$ and $a_{n} \neq 0$. Solving for f_{n} shows that f_{n} has $p_{1} p_{2} \cdots p_{n-1}$ as a period. It also has p_{n} as a period. Now $p_{1} p_{2} \cdots p_{n-1}$ and p_{n} are relatively prime, so 1 is an integer combination of $p_{1} p_{2} \cdots p_{n-1}$ and p_{n}. Any integer combination of periods is a period, so in particular 1 is also a period of f_{n}. This contradicts the hypothesis that p_{n} is the minimal period of f_{n}.

2B. Given any real number a_{0}, define a_{1}, a_{2}, \ldots by the rule $a_{n+1}=\cos a_{n}$ for all $n \geq 0$. Prove that the sequence $\left(a_{n}\right)$ converges, and that the limit is the unique solution of the equation $\cos x=x$.

Solution: Let $g(x)=\cos x-x$. Then $g(1)<0$, and since $\cos x$ is decreasing on $[0, \pi]$, we have $\cos (1 / 2)>\cos (\pi / 3)=1 / 2$, that is, $g(1 / 2)>0$. By the Intermediate Value Theorem, there exists $1 / 2<a<1$ such that $\cos a=a$. To see that this a is the unique solution of $\cos x=x$, observe first that any solution must clearly lie in $[-1,1]$. On $[-1,0)$ we have $x<0<\cos x$, so all solutions lie in $[0,1]$. But $g(x)$ is strictly decreasing on $[0,1]$, so the solution is unique.

Consider any function f which is differentiable and satisfies $\left|f^{\prime}(x)\right|<c$ for all x in an interval $(a-d, a+d)$, where $c<1$, and $f(a)=a$. For any $a_{0} \in(a-d, a+d)$, define a sequence $\left(a_{n}\right)$ by $a_{n+1}=f\left(a_{n}\right)$. It follows easily by induction on n using the Mean Value Theorem that $\left|a_{n+1}-a\right|<c\left|a_{n}-a\right|$ for all n, hence $\left(a_{n}\right)$ converges to a.

We'll apply this with $f(x)=\cos x, a$ the solution of $\cos a=a$, and $d=1 / 2$. Note that $[a-d, a+d] \subseteq(0,3 / 2) \subseteq(0, \pi / 2)$ since $a \in(1 / 2,1)$, and therefore $\left|\cos ^{\prime}(x)\right|=|\sin x|<c$ for some $c<1$.

The given sequence $\left(a_{n}\right)$ satisfies $a_{1} \in[-1,1]$, hence $a_{2} \in[\cos (1), 1] \subseteq[1 / 2,1] \subseteq(a-$ $1 / 2, a+1 / 2)$. We conclude that $\left(a_{2}, a_{3}, \ldots\right)$ converges to a.

3B. Let k and l be positive integers. Let $\mathbb{Q}(x)\left(\sqrt[k]{1-x^{l}}\right)$ be any extension field of $\mathbb{Q}(x)$ generated by a k-th root of $1-x^{l}$. Define $\mathbb{Q}(x)\left(\sqrt[l]{1-x^{k}}\right)$ similarly. Prove that $\mathbb{Q}(x)\left(\sqrt[k]{1-x^{l}}\right)$ and $\mathbb{Q}(x)\left(\sqrt[l]{1-x^{k}}\right)$ are isomorphic.

Solution: The polynomial $y^{k}+x^{l}-1$ is irreducible, for any positive integers k, l. One way to prove this is to regard $y^{k}+x^{l}-1$ as a polynomial in y over $\mathbb{Q}[x]$ and apply Eisenstein's criterion, using the fact that $x-1$ divides $x^{l}-1$ but $(x-1)^{2}$ does not. It follows that the fields in question are the fraction fields of $\mathbb{Q}[x, y] /\left(y^{k}+x^{l}-1\right)$ and $\mathbb{Q}[x, y] /\left(y^{l}+x^{k}-1\right)$, respectively, which are obviously isomorphic by the exchange of x and y.

4B. Let E be the \mathbb{C}-vector space of entire functions. Let V be a nonzero finite-dimensional \mathbb{C}-subspace of E with the property that $f \in V$ implies $f^{\prime} \in V$. Prove that V contains a function that is everywhere nonzero.

Solution: The map $T: V \rightarrow V$ sending f to f^{\prime} is a linear transformation. Since V is a \mathbb{C}-vector space, there exists an eigenvalue $\lambda \in \mathbb{C}$. Let $f \in V$ be a corresponding (nonzero) eigenvector. Then $f^{\prime}=\lambda f$, so $f(z)=c e^{\lambda z}$ for some $c \in \mathbb{C}^{\times}$. This function is everywhere nonzero.

5B. Let \mathbb{F}_{q} denote the finite field with q elements, where q is a power of a prime. Let $\mathrm{SL}_{n}\left(\mathbb{F}_{q}\right)$ be the group of $n \times n$ matrices with entries in \mathbb{F}_{q} and determinant 1 , under matrix multiplication. Determine (with proof) a simple necessary and sufficient condition on n and q for the center of $\mathrm{SL}_{n}\left(\mathbb{F}_{q}\right)$ to be trivial.

Solution: Let $E_{i j}$ denote the $n \times n$ matrix with (i, j) entry equal to 1 and all other entries zero. For $i \neq j$, we have $I_{n}+E_{i j} \in \mathrm{SL}_{n}\left(\mathbb{F}_{q}\right)$. A matrix A commutes with $I_{n}+E_{i j}$ if and only if $E_{i j} A=A E_{i j}$. The latter condition implies that $A_{j k}=0$ for $k \neq j$, that $A_{k i}=0$ for
$k \neq i$, and that $A_{i i}=A_{j j}$. If this holds for all $i \neq j$, then $A=x I_{n}$ is a scalar multiple of the identity, and we have $A \in \mathrm{SL}_{n}\left(\mathbb{F}_{q}\right)$ if and only if $x^{n}=1$ in \mathbb{F}_{q}.

The multiplicative group \mathbb{F}_{q}^{\times}is cyclic, so the necessary and sufficient condition for $x=1$ to be the unique solution of $x^{n}=1$ in \mathbb{F}_{q} is that $q-1$ and n are relatively prime.

6 B . Let U be a non-empty open subset of \mathbb{R}^{d} and let $f: U \rightarrow \mathbb{R}^{d}$ be a continuous vector field defined on U. Let K be a compact subset of U and let $b>0$. Suppose $\varphi:[0, b) \rightarrow K$ is a continuous function satisfying

$$
\varphi(t)=\varphi(0)+\int_{0}^{t} f(\varphi(s)) d s, \quad(0 \leq t<b)
$$

Prove that $\lim _{t \rightarrow b^{-}} \varphi(t)$ exists, where $t \rightarrow b^{-}$means t approaches b from the left.
Solution: Let $M=\sup _{y \in K}\|f(y)\|$. For any two points $t_{1}, t_{2} \in[0, b)$,

$$
\left\|\varphi\left(t_{2}\right)-\varphi\left(t_{1}\right)\right\|=\left\|\int_{t_{1}}^{t_{2}} f(\varphi(t)) d t\right\| \leq M\left|t_{2}-t_{1}\right|
$$

so φ is Lipschitz continuous on $[0, b)$ and hence preserves Cauchy sequences. Let $t_{k} \rightarrow b$ from the left. Then $\varphi\left(t_{k}\right)$ is Cauchy and hence converges to some $y_{0} \in \mathbb{R}^{d}$. We claim that $\lim _{t \rightarrow b^{-}} \varphi(t)=y_{0}$. Let $\varepsilon>0$ and choose k large enough that $\left|t_{k}-b\right|<\frac{\varepsilon}{M+1}$ and $\left\|\varphi\left(t_{k}\right)-y_{0}\right\|<\frac{\varepsilon}{M+1}$. Then for $0<b-t<\delta=\frac{\varepsilon}{M+1}$ we have

$$
\begin{aligned}
\left\|\varphi(t)-y_{0}\right\| & \leq\left\|\varphi(t)-\varphi\left(t_{k}\right)\right\|+\left\|\varphi\left(t_{k}\right)-y_{0}\right\| \\
& \leq M\left|t-t_{k}\right|+\frac{\varepsilon}{M+1} \leq \varepsilon
\end{aligned}
$$

as required.
Alternative solution, based on a suggestion of Andre Kornell (using the dominated convergence theorem of Lebesgue integration, however): Because of the given integral equation, it suffices to apply the following claim to the function $g(s)=f(\varphi(s))$: for any continuous bounded function $g:[0, b) \rightarrow \mathbb{R}^{d}$, the limit $\lim _{t \rightarrow b^{-}} \int_{0}^{t} g(s) d s$ exists. To prove this, it suffices to prove that for every increasing sequence $\left(t_{k}\right)$ in $[0, b)$ tending to b, the limit $\lim _{k \rightarrow \infty} \int_{0}^{t_{k}} g(s) d s$ exists. This follows from the dominated convergence theorem applied to the sequence of functions

$$
g_{k}(s):= \begin{cases}g(s), & \text { if } s \in\left[0, t_{k}\right] \\ 0, & \text { if } s \in\left(t_{k}, b\right]\end{cases}
$$

7B. Given any group G, define a binary operation $*$ on the set $H=G \times G$ by $\left(g_{1}, h_{1}\right) *$ $\left(g_{2}, h_{2}\right)=\left(g_{1} g_{2}, g_{2}^{-1} h_{1} g_{2} h_{2}\right)$.
(a) Show that $(H, *)$ is group.
(b) In the case that G is the alternating group A_{n} on n letters with $n \geq 5$, prove that H has no subgroup of index 2 .

Solution: (a) $(H, *)$ is the semidirect product $G \ltimes G$ where G acts on itself by conjugation.
(b) By the solution to part (a), H contains a normal subgroup N such that $N \cong H / N \cong$ A_{n}. Since A_{n} is simple, the Jordan-Hölder theorem implies that $H / M \cong A_{n}$ for every nontrivial proper normal subgroup $M \subseteq H$. In particular, H cannot have a subgroup M of index 2 , since such a subgroup is always normal.
(Alternatively, one could "avoid" the Jordan-Hölder theorem by essentially proving it in the special case needed, considering first the intersection of M with N, and then the image of M in H / N.)

8B. Let A be the set of $z \in \mathbb{C}$ such that $|z| \leq 1, \operatorname{Im}(z) \geq 0$, and $z \notin\{1,-1\}$. Find an explicit continuous function $u: A \rightarrow \mathbb{R}$ such that

- u is harmonic on the interior of A,
- $u(z)=3$ for $z \in A \cap \mathbb{R}$
- $u(z)=7$ for z in the intersection of A with the unit circle.

Solution: We use a conformal transformation to reduce to a problem on a different region. The transformation $w=f(z)$ where $f(z):=(1+z) /(1-z)$ maps the interval $(-1,1)$ to $(0, \infty)$ and maps the upper half of the unit circle to the ray from $f(-1)=0$ to $f(1)=\infty$ passing through $f(i)=i$. It therefore maps A to the first quadrant or its complement (ignoring boundaries); that it is the former can be determined by calculating $f(i / 2)$, or by observing the orientation of the image of the path from -1 to 1 .

Let $Q=f(A)$, so Q is the closed first quadrant minus the origin. The function $\operatorname{Im} \log w$ (where we use the standard branch of \log) is a continuous function on Q, harmonic on the interior, whose values along the positive real and imaginary axes are 0 and $\pi / 2$, respectively, so $3+\frac{8}{\pi} \operatorname{Im} \log w$ is harmonic on the interior of Q and has the values 3 and 7 along those axes. Substituting $w=f(z)$, we find that

$$
u=3+\frac{8}{\pi} \operatorname{Im} \log \left(\frac{1+z}{1-z}\right)
$$

is a solution.
9B. Let k and n be integers with $n \geq k \geq 0$. Let A and B be $n \times k$ matrices with real coefficients. Let A^{t} be the transpose of A. For each size- k subset $I \subseteq\{1, \ldots, n\}$, let A_{I} be the $k \times k$ matrix obtained by discarding all rows of A except those whose index belongs to I. Define B_{I} similarly. Prove that

$$
\operatorname{det}\left(A^{t} B\right)=\sum_{I} \operatorname{det}\left(A_{I}\right) \operatorname{det}\left(B_{I}\right)
$$

where the sum is over all size- k subsets $I \subseteq\{1, \ldots, n\}$. (Suggestion: use linearity to reduce to the case where the columns of A and B are particularly simple.)

Solution: Let a_{i} be the i-th column vector of A. Let b_{j} be the j-th column vector of B. Let e_{1}, \ldots, e_{n} be the standard basis of \mathbb{R}^{n}. Both sides of the identity are linear in each a_{i} and b_{j}, so we may assume that each column is a standard basis vector, say $a_{i}=e_{f(i)}$ and $b_{j}=e_{g(j)}$. Then $A^{t} B$ is the matrix whose $i j$-entry is $a_{i}^{t} b_{j}$, which is 1 if $f(i)=g(j)$ and 0 otherwise.

If $f(1), \ldots, f(k)$ are not all different, then $A^{t} B$ has a repeated row, and every A_{I} has a repeated column, so both sides of the desired identity are 0 . So assume that the $f(i)$ are all different.

Similarly, if $g(1), \ldots, g(k)$ are not all different, then $A^{t} B$ has a repeated column, and every B_{I} has a repeated column, so both sides of the desired identity are 0 . So assume that the $g(j)$ are all different.

If $I \neq\{f(1), \ldots, f(k)\}$, then A_{I} has fewer than k nonzero entries, so $\operatorname{det} A_{I}=0$. If $I \neq\{g(1), \ldots, g(k)\}$, then B_{I} has fewer than k nonzero entries, so $\operatorname{det} B_{I}=0$.

Suppose that $\{f(1), \ldots, f(k)\} \neq\{g(1), \ldots, g(k)\}$. Then $A^{t} B$ has fewer than k nonzero entries. But also, by the previous paragraph, for every I, either $\operatorname{det} A_{I}$ or $\operatorname{det} B_{I}$ is 0 . Thus the desired identity holds.

Finally, suppose that $\{f(1), \ldots, f(k)\}=\{g(1), \ldots, g(k)\}$. Let S be this common k element subset of $\{1, \ldots, n\}$. Then $A^{t} B=\left(A_{S}\right)^{t}\left(B_{S}\right)$, so the left hand side of the identity equals $\operatorname{det}\left(A_{S}\right) \operatorname{det}\left(B_{S}\right)$. If $I \neq S$, then $\operatorname{det}\left(A_{I}\right) \operatorname{det}\left(B_{I}\right)=0$, so the right hand side of the identity equals $\operatorname{det}\left(A_{S}\right) \operatorname{det}\left(B_{S}\right)$ too.

