CMRD 2010

School of Mathematics and Statistics

MT5824 Topics in Groups

Problem Sheet VII: Nilpotent groups (Solutions)

1. Show that $\gamma_2(G) = G'$. Deduce that abelian groups are nilpotent.

Solution: By definition $\gamma_2(G) = [G, G]$. Thus $\gamma_2(G) = \langle [x, y] | x, y \in G \rangle = G'$. If G is abelian, then [x, y] = 1 for all $x, y \in G$, so $\gamma_2(G) = G' = \mathbf{1}$. Hence G is nilpotent (of class ≤ 1).

2. Show that $Z(S_3) = 1$. Hence calculate the upper central series of S_3 and deduce that S_3 is not nilpotent.

Show that $\gamma_i(S_3) = A_3$ for all $i \ge 2$. [Hint: We have calculated S'_3 previously and now know that S_3 is not nilpotent.]

Find a normal subgroup N of S_3 such that S_3/N and N are both nilpotent.

Solution: Recall that all permutations with the same cycle structure are conjugate in S_n . Therefore a permutation lies in the centre of S_3 if and only if it is the only permutation of its cycle structure. Hence $Z(S_3) = \mathbf{1}$ (there are three permutations of cycle structure ($\alpha \beta$) and two of cycle structure ($\alpha \beta \gamma$)).

This shows that $Z_1(S_3) = \mathbf{1}$. Suppose that $Z_i(S_3) = \mathbf{1}$. Then $Z_{i+1}(S_3) = Z_{i+1}(S_3)/Z_i(S_3) = Z(S_3/Z_i(S_3)) = Z(S_3) = \mathbf{1}$. Hence, by induction, $Z_i(S_3) = \mathbf{1}$ for all *i*. Since $Z_i(S_3) < S_3$ for all *i*, we deduce that S_3 is not nilpotent.

Now $S'_3 = A_3$, by Question 2(i) on Problem Sheet VI. Hence $\gamma_2(S_3) = S'_3 = A_3$. Now A_3 is of order 3, so has no proper non-trivial subgroups. Hence for i > 2, either $\gamma_i(S_3) = A_3$ or $\gamma_i(S_3) = \mathbf{1}$. But S_3 is not nilpotent, so $\gamma_i(S_3) \neq \mathbf{1}$ for all i. Hence $\gamma_i(S_3) = A_3$ for all $i \ge 2$.

Let $N = A_3 \leq S_3$. Then $S_3/N \cong C_2$ and $N \cong C_3$, so these are both abelian and hence nilpotent. (Thus we have an example of a non-nilpotent group G with normal subgroup N such that G/N and N are nilpotent.)

3. Show that $Z(G \times H) = Z(G) \times Z(H)$.

Show, by induction on i, that $Z_i(G \times H) = Z_i(G) \times Z_i(H)$ for all i.

Deduce that a direct product of a finite number of nilpotent groups is nilpotent.

Solution: Let $(x, y) \in Z(G \times H)$. Then for $g \in G$ and $h \in H$, it follows that (x, y)(g, h) = (g, h)(x, y). That is, (xg, yh) = (gx, hy). Hence xg = gx for all $g \in G$, and yh = hy for all $h \in H$. Therefore $x \in Z(G)$ and $y \in Z(H)$, so $Z(G \times H) \leq Z(G) \times Z(H)$.

Conversely, if $(x, y) \in Z(G) \times Z(H)$; that is, $x \in Z(G)$ and $y \in Z(H)$, then

(x, y)(g, h) = (xg, yh) = (gx, hy) = (g, h)(x, y)

so $(x, y) \in Z(G \times H)$. This shows that $Z(G) \times Z(H) \leq Z(G \times H)$. The equality now follows.

For the next step, induct on *i*. If i = 0, then $Z_0(G \times H) = \{(1,1)\} = \mathbf{1} \times \mathbf{1} = Z_0(G) \times Z_0(H)$, so the result holds. Suppose as an inductive hypothesis that $Z_i(G \times H) = Z_i(G) \times Z_i(H)$ for some *i*. Then

$$\frac{G \times H}{\mathbf{Z}_i(G \times H)} = \frac{G \times H}{\mathbf{Z}_i(G) \times \mathbf{Z}_i(H)}$$

The map ϕ that sends $(Z_i(G) \times Z_i(H))(x, y)$ to $(Z_i(G)x, Z_i(H)y)$ is an isomorphism:

$$\phi \colon \frac{G \times H}{\mathbf{Z}_i(G) \times \mathbf{Z}_i(H)} \to \frac{G}{\mathbf{Z}_i(G)} \times \frac{H}{\mathbf{Z}_i(H)}.$$

(This works whenever $M \leq G$ and $N \leq G$, for then $(G \times H)/(M \times N) \cong G/M \times H/N$ via a similar isomorphism.) This isomorphism ϕ maps the centre of the group on the left-hand side to the centre of the group on the right-hand side. Hence

$$\begin{pmatrix} \overline{Z_{i+1}(G \times H)} \\ \overline{Z_i(G \times H)} \end{pmatrix} \phi = \left(Z \left(\frac{G \times H}{Z_i(G \times H)} \right) \right) \phi$$

$$= \left(Z \left(\frac{G \times H}{Z_i(G) \times Z_i(H)} \right) \right) \phi$$

$$= Z(G/Z_i(G) \times H/Z_i(G))$$

$$= Z(G/Z_i(G)) \times Z(H/Z_i(G))$$

$$= Z_{i+1}(G)/Z_i(G) \times Z_{i+1}(H)/Z_i(H)$$

$$by \text{ definition}$$

$$= \left(\frac{Z_{i+1}(G) \times Z_{i+1}(H)}{Z_i(G) \times Z_i(H)} \right) \phi$$

with the last step being the definition of ϕ . Since ϕ is a bijection,

$$\frac{\mathbf{Z}_{i+1}(G \times H)}{\mathbf{Z}_i(G \times H)} = \frac{\mathbf{Z}_{i+1}(G) \times \mathbf{Z}_{i+1}(H)}{\mathbf{Z}_i(G \times H)}$$

and the Correspondence Theorem yields $Z_{i+1}(G \times H) = Z_{i+1}(G) \times Z_{i+1}(H)$, which completes the induction.

Let G_1, G_2, \ldots, G_n be nilpotent groups. Then there exist c_i such that $Z_{c_i}(G_i) = G_i$. Choose c to be the largest of all the c_i . Then $Z_c(G_i) = G_i$ for $i = 1, 2, \ldots, n$. By the previous result, we see that

$$Z_c(G_1 \times G_2 \times \dots \times G_n) = Z_c(G_1) \times Z_c(G_2) \times \dots \times Z_c(G_n)$$
$$= G_1 \times G_2 \times \dots \times G_n,$$

and hence $G_1 \times G_2 \times \cdots \times G_n$ is nilpotent.

4. Let G be an finite elementary abelian p-group. Show that $\Phi(G) = 1$.

Solution: Let $G = C_p \times C_p \times \cdots \times C_p$ (*d* times, for some *d*). Then

$$M = M_i = C_p \times \cdots \times C_p \times \mathbf{1} \times C_p \times \cdots \times C_p$$

(where the **1** occurs in the *i*th entry) is a subgroup of G of index p. If H is a subgroup of G such that $M \leq H \leq G$, then $|G:H| \cdot |H:M| = |G:M| = p$, so as p is prime, either H = G or H = M. Hence M is a maximal subgroup of G. Clearly

$$\bigcap_{i=1}^d M_i = \mathbf{1}$$

and this is the intersection of just some of the maximal subgroups of G. Hence

$$\Phi(G) = \bigcap_{\substack{M \text{ maximal} \\ \text{in } G}} M \leqslant \bigcap_{i=1}^{a} M_i = \mathbf{1}.$$

5. Let G be a finite p-group.

If M is a maximal subgroup of G, show that |G:M| = p. [Hint: G is nilpotent, so $M \triangleleft G$.] Deduce that $G^pG' \leq \Phi(G)$.

Use the previous question to show that $\Phi(G) = G^p G'$.

Show that G can be generated by precisely d elements if and only if $G/\Phi(G)$ is a direct product of d copies of the cyclic group of order p.

Solution: Since G is a finite p-group, it is nilpotent (Example 7.6). Let M be a maximal subgroup of G. Then $M \leq G$ (Lemma 7.15), and G/M possesses no non-trivial proper subgroups (by the Correspondence Theorem). Therefore G/M is cyclic of prime order, so |G:M| = p.

If $x \in G$, then $(Mx)^p = M1$, so $x^p \in M$. Hence

$$x^p \in \bigcap_{M \text{ maximal}} M = \Phi(G) \quad \text{for all } x \in G.$$

We deduce that $G^p = \langle x^p \mid x \in G \rangle \leq \Phi(G)$. We have already observed that $G' \trianglelefteq \Phi(G)$ (see Theorem 7.18), so

$$G^pG' \leq \Phi(G).$$

Let $N = G^p G'$. This is a product of two normal subgroups of G, so $N \leq G$. Now G/N is abelian (since $G' \leq N$) and if $x \in G$, then

$$(Nx)^p = Nx^p = N1$$

(since $x^p \in G^p \leq N$). Hence G/N is an elementary abelian *p*-group. It is therefore a direct product of a number of copies of C_p . The previous question now gives $\Phi(G/N) = \mathbf{1}$. Hence there is a collection M_1, M_2, \ldots, M_k of subgroups of G containing N such that M_i/N is a maximal subgroup of G/N and $\bigcap_{i=1}^k (M_i/N) = \mathbf{1}$. By the Correspondence Theorem, M_i is a maximal subgroup of G and

$$\bigcap_{i=1}^{k} M_i = N$$

Hence

$$\Phi(G) = \bigcap_{\substack{M \text{ maximal} \\ \text{in } G}} M \leqslant \bigcap_{i=1}^{k} M_i = N = G^p G'.$$

Taken together with the previous inclusion, $\Phi(G)=G^pG'.$

Now as $G/\Phi(G)$ is an elementary abelian *p*-group, it is a direct product of *d* copies of the cyclic group C_p (for some *d*). Choose $x_1, x_2, \ldots, x_d \in G$ such that

$$\Phi(G)x_1, \ \Phi(G)x_2, \ldots, \ \Phi(G)x_d$$

are the generators of these d direct factors. If $g \in G$, then

$$\Phi(G)g = \Phi(G)x_1^{e_1}x_2^{e_2}\dots x_d^{e_d}$$

for some $e_i \in \{0, 1, \dots, p-1\}$, so $g = yx_1^{e_1}x_2^{e_2}\dots x_d^{e_d}$ where $y \in \Phi(G)$. Hence

$$G = \langle x_1, x_2, \dots, x_d, \Phi(G) \rangle$$

Suppose that x_1, x_2, \ldots, x_d do not generate G. Then $\langle x_1, x_2, \ldots, x_d \rangle$ is a proper subgroup of G, so there exists a maximal subgroup M such that

$$\langle x_1, x_2, \dots, x_d \rangle \leqslant M < G$$

Then $x_1, x_2, \ldots, x_d \in M$ while, by definition, $\Phi(G) \leq M$. Hence

$$G = \langle x_1, x_2, \dots, x_d, \Phi(G) \rangle \leqslant M < G,$$

a contradiction. So x_1, x_2, \ldots, x_d generate G. This shows that if $G/\Phi(G)$ is a direct product of d copies of C_p , then G can be generated by d elements.

On the other hand, if G can be generated by d elements, then so can every quotient. A direct product of more than d copies of C_p cannot be generated by d elements, so the number of copies of C_p appearing in the direct product for $G/\Phi(G)$ is at most d.

Putting the above together we deduce that G can be generated by precisely d elements (and no fewer) if and only if $G/\Phi(G)$ is a direct product of d copies of the cyclic group C_p of order p.

6. Let G be a nilpotent group with lower central series

$$G = \gamma_1(G) > \gamma_2(G) > \cdots > \gamma_c(G) > \gamma_{c+1}(G) = 1.$$

Suppose N is a non-trivial normal subgroup of G. Choose i to be the largest positive integer such that $N \cap \gamma_i(G) \neq 1$. Show that $[N \cap \gamma_i(G), G] = 1$.

Deduce that $N \cap \mathcal{Z}(G) \neq 1$.

Solution: $N \neq \mathbf{1}$, so $N \cap \gamma_1(G) = N \cap G = N \neq \mathbf{1}$. Hence we may choose *i* to be the largest positive integer such that $N \cap \gamma_i(G) \neq \mathbf{1}$. Then

$$[N \cap \gamma_i(G), G] \leq [\gamma_i(G), G] = \gamma_{i+1}(G)$$

while

$$[N \cap \gamma_i(G), G] \leqslant [N, G] \leqslant N$$

since $N \leq G$ (for if $x \in N$ and $g \in G$, then $[x,g] = x^{-1}x^g \in N$). Hence

$$[N \cap \gamma_i(G), G] \leqslant N \cap \gamma_{i+1}(G) = \mathbf{1}$$

by the hypothesis that *i* is largest with the given property. Hence $N \cap \gamma_i(G) \leq \mathbb{Z}(G)$ since [x, g] = 1 for all $x \in N \cap \gamma_i(G)$ and all $g \in G$. Therefore

$$\mathbf{1} \neq N \cap \gamma_i(G) \leqslant N \cap \operatorname{Z}(G)$$

so $N \cap \mathcal{Z}(G) \neq \mathbf{1}$.