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MT5824 Topics in Groups

Problem Sheet VII: Nilpotent groups (Solutions)

1. Show that γ2(G) = G�. Deduce that abelian groups are nilpotent.

Solution: By definition γ2(G) = [G, G]. Thus γ2(G) = � [x, y] | x, y ∈ G � = G�. If
G is abelian, then [x, y] = 1 for all x, y ∈ G, so γ2(G) = G� = 1. Hence G is nilpotent
(of class � 1).

2. Show that Z(S3) = 1. Hence calculate the upper central series of S3 and deduce that S3 is
not nilpotent.

Show that γi(S3) = A3 for all i � 2. [Hint: We have calculated S�
3 previously and now know

that S3 is not nilpotent.]

Find a normal subgroup N of S3 such that S3/N and N are both nilpotent.

Solution: Recall that all permutations with the same cycle structure are conjugate
in Sn. Therefore a permutation lies in the centre of S3 if and only if it is the only
permutation of its cycle structure. Hence Z(S3) = 1 (there are three permutations of
cycle structure (α β) and two of cycle structure (α β γ)).
This shows that Z1(S3) = 1. Suppose that Zi(S3) = 1. Then Zi+1(S3) = Zi+1(S3)/Zi(S3) =
Z(S3/Zi(S3)) = Z(S3) = 1. Hence, by induction, Zi(S3) = 1 for all i. Since
Zi(S3) < S3 for all i, we deduce that S3 is not nilpotent.
Now S�

3 = A3, by Question 2(i) on Problem Sheet VI. Hence γ2(S3) = S�
3 = A3.

Now A3 is of order 3, so has no proper non-trivial subgroups. Hence for i > 2, either
γi(S3) = A3 or γi(S3) = 1. But S3 is not nilpotent, so γi(S3) �= 1 for all i. Hence
γi(S3) = A3 for all i � 2.
Let N = A3 � S3. Then S3/N ∼= C2 and N ∼= C3, so these are both abelian and
hence nilpotent. (Thus we have an example of a non-nilpotent group G with normal
subgroup N such that G/N and N are nilpotent.)

3. Show that Z(G × H) = Z(G) × Z(H).

Show, by induction on i, that Zi(G × H) = Zi(G) × Zi(H) for all i.

Deduce that a direct product of a finite number of nilpotent groups is nilpotent.

Solution: Let (x, y) ∈ Z(G × H). Then for g ∈ G and h ∈ H, it follows that
(x, y)(g, h) = (g, h)(x, y). That is, (xg, yh) = (gx, hy). Hence xg = gx for all g ∈ G,
and yh = hy for all h ∈ H. Therefore x ∈ Z(G) and y ∈ Z(H), so Z(G × H) �
Z(G)× Z(H).
Conversely, if (x, y) ∈ Z(G)× Z(H); that is, x ∈ Z(G) and y ∈ Z(H), then

(x, y)(g, h) = (xg, yh) = (gx, hy) = (g, h)(x, y)

so (x, y) ∈ Z(G×H). This shows that Z(G)× Z(H) � Z(G×H). The equality now
follows.
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For the next step, induct on i. If i = 0, then Z0(G×H) = {(1, 1)} = 1×1 = Z0(G)×
Z0(H), so the result holds. Suppose as an inductive hypothesis that Zi(G × H) =
Zi(G)× Zi(H) for some i. Then

G×H

Zi(G×H)
=

G×H

Zi(G)× Zi(H)
.

The map φ that sends (Zi(G)× Zi(H))(x, y) to (Zi(G)x,Zi(H)y) is an isomorphism:

φ :
G×H

Zi(G)× Zi(H)
→ G

Zi(G)
× H

Zi(H)
.

(This works whenever M � G and N � G, for then (G×H)/(M×N) ∼= G/M×H/N
via a similar isomorphism.) This isomorphism φ maps the centre of the group on the
left-hand side to the centre of the group on the right-hand side. Hence

�
Zi+1(G×H)
Zi(G×H)

�
φ =

�
Z

�
G×H

Zi(G×H)

��
φ

=
�

Z
�

G×H

Zi(G)× Zi(H)

��
φ

= Z(G/Zi(G)×H/Zi(G))
= Z(G/Zi(G))× Z(H/Zi(G)) from the first part
= Zi+1(G)/Zi(G)× Zi+1(H)/Zi(H) by definition

=
�

Zi+1(G)× Zi+1(H)
Zi(G)× Zi(H)

�
φ

with the last step being the definition of φ. Since φ is a bijection,

Zi+1(G×H)
Zi(G×H)

=
Zi+1(G)× Zi+1(H)

Zi(G×H)

and the Correspondence Theorem yields Zi+1(G × H) = Zi+1(G) × Zi+1(H), which
completes the induction.
Let G1, G2, . . . , Gn be nilpotent groups. Then there exist ci such that Zci(Gi) = Gi.
Choose c to be the largest of all the ci. Then Zc(Gi) = Gi for i = 1, 2, . . . , n. By the
previous result, we see that

Zc(G1 ×G2 × · · ·×Gn) = Zc(G1)× Zc(G2)× · · ·× Zc(Gn)
= G1 ×G2 × · · ·×Gn,

and hence G1 ×G2 × · · ·×Gn is nilpotent.

4. Let G be an finite elementary abelian p-group. Show that Φ(G) = 1.

Solution: Let G = Cp × Cp × · · ·× Cp (d times, for some d). Then

M = Mi = Cp × · · ·× Cp × 1× Cp × · · ·× Cp

(where the 1 occurs in the ith entry) is a subgroup of G of index p. If H is a subgroup
of G such that M � H � G, then |G : H| · |H : M | = |G : M | = p, so as p is prime,
either H = G or H = M . Hence M is a maximal subgroup of G. Clearly

d�

i=1

Mi = 1
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and this is the intersection of just some of the maximal subgroups of G. Hence

Φ(G) =
�

M maximal
in G

M �
d�

i=1

Mi = 1.

5. Let G be a finite p-group.

If M is a maximal subgroup of G, show that |G : M | = p. [Hint: G is nilpotent, so M � G.]

Deduce that GpG� � Φ(G).

Use the previous question to show that Φ(G) = GpG�.

Show that G can be generated by precisely d elements if and only if G/Φ(G) is a direct product

of d copies of the cyclic group of order p.

Solution: Since G is a finite p-group, it is nilpotent (Example 7.6). Let M be a
maximal subgroup of G. Then M � G (Lemma 7.15), and G/M possesses no non-
trivial proper subgroups (by the Correspondence Theorem). Therefore G/M is cyclic
of prime order, so |G : M | = p.
If x ∈ G, then (Mx)p = M1, so xp ∈ M . Hence

xp ∈
�

M maximal

M = Φ(G) for all x ∈ G.

We deduce that Gp = �xp | x ∈ G � � Φ(G). We have already observed that G��Φ(G)
(see Theorem 7.18), so

GpG� � Φ(G).

Let N = GpG�. This is a product of two normal subgroups of G, so N � G. Now
G/N is abelian (since G� � N) and if x ∈ G, then

(Nx)p = Nxp = N1

(since xp ∈ Gp � N). Hence G/N is an elementary abelian p-group. It is there-
fore a direct product of a number of copies of Cp. The previous question now gives
Φ(G/N) = 1. Hence there is a collection M1, M2, . . . , Mk of subgroups of G con-
taining N such that Mi/N is a maximal subgroup of G/N and

�
k

i=1(Mi/N) = 1. By
the Correspondence Theorem, Mi is a maximal subgroup of G and

k�

i=1

Mi = N.

Hence

Φ(G) =
�

M maximal
in G

M �
k�

i=1

Mi = N = GpG�.

Taken together with the previous inclusion, Φ(G) = GpG�.
Now as G/Φ(G) is an elementary abelian p-group, it is a direct product of d copies
of the cyclic group Cp (for some d). Choose x1, x2, . . . , xd ∈ G such that

Φ(G)x1, Φ(G)x2, . . . , Φ(G)xd

are the generators of these d direct factors. If g ∈ G, then

Φ(G)g = Φ(G)xe1
1 xe2

2 . . . xed
d
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for some ei ∈ {0, 1, . . . , p− 1}, so g = yxe1
1 xe2

2 . . . xed
d

where y ∈ Φ(G). Hence

G = �x1, x2, . . . , xd,Φ(G)�.

Suppose that x1, x2, . . . , xd do not generate G. Then �x1, x2, . . . , xd� is a proper
subgroup of G, so there exists a maximal subgroup M such that

�x1, x2, . . . , xd� � M < G.

Then x1, x2, . . . , xd ∈ M while, by definition, Φ(G) � M . Hence

G = �x1, x2, . . . , xd,Φ(G)� � M < G,

a contradiction. So x1, x2, . . . , xd generate G. This shows that if G/Φ(G) is a direct
product of d copies of Cp, then G can be generated by d elements.
On the other hand, if G can be generated by d elements, then so can every quotient.
A direct product of more than d copies of Cp cannot be generated by d elements, so
the number of copies of Cp appearing in the direct product for G/Φ(G) is at most d.
Putting the above together we deduce that G can be generated by precisely d elements
(and no fewer) if and only if G/Φ(G) is a direct product of d copies of the cyclic
group Cp of order p.

6. Let G be a nilpotent group with lower central series

G = γ1(G) > γ2(G) > · · · > γc(G) > γc+1(G) = 1.

Suppose N is a non-trivial normal subgroup of G. Choose i to be the largest positive integer
such that N ∩ γi(G) �= 1. Show that [N ∩ γi(G), G] = 1.

Deduce that N ∩ Z(G) �= 1.

Solution: N �= 1, so N ∩ γ1(G) = N ∩ G = N �= 1. Hence we may choose i to be
the largest positive integer such that N ∩ γi(G) �= 1. Then

[N ∩ γi(G), G] � [γi(G), G] = γi+1(G)

while
[N ∩ γi(G), G] � [N,G] � N

since N � G (for if x ∈ N and g ∈ G, then [x, g] = x−1xg ∈ N). Hence

[N ∩ γi(G), G] � N ∩ γi+1(G) = 1

by the hypothesis that i is largest with the given property.
Hence N∩γi(G) � Z(G) since [x, g] = 1 for all x ∈ N∩γi(G) and all g ∈ G. Therefore

1 �= N ∩ γi(G) � N ∩ Z(G)

so N ∩ Z(G) �= 1.
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