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1 Prologue.

Solutions to Problems 1.1�1.5

Problem 1.1 Solution: We have to calculate the area of an isosceles triangle of side-length r, base b,
height ℎ and opening angle � ∶= 2�∕2j . From elementary geometry we know that

cos �2 =
ℎ
r

and sin �2 =
b
2r

so that
area (triangle) = 1

2
ℎb = r2 cos �2 sin

�
2 =

r2

2
sin�.

Since we have lim�→0
sin�
�
= 1 we find

area (circle) = lim
j→∞

2j r
2

2
sin 2�2j

= r2� lim
j→∞

sin 2�2j
2�
2j

= r2�

just as we had expected.
■■

Problem 1.2 Solution: By construction,

Cn+1 = [0, 1] ⧵

(n+1
⋃

i=1

⋃

t1,…,ti∈{0,2}
It1,…,ti

)

and each interval It1,…,ti has length 2−i. We have used this when calculating l(Cn+1)

l(Cn+1) = l[0, 1] − 20 ×
1
31
− 21 × 1

32
−⋯ − 2n × 1

3n+1

(note that we have removed 2n intervals of length 3−n−1). If we let n→∞, we get for all removed
intervals

l

( ∞
⋃

i=1

⋃

t1,…,ti∈{0,2}
It1,…,ti

)

=
∞
∑

i=1
2i−1 × 1

3i
= 1.

The last line requires �-additivity. (Just in case: you will see in the next chapter that the number
of removed intervals is indeed countable).

■■
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Problem 1.3 Solution: We record the lenghts of the removed pieces in each step
1. In Step 1 we remove one (= 20) piece of length 1

2r;
2. In Step 2 we remove two (= 21) pieces, each of length 1

8r;
3. In Step 3 we remove four (= 22) pieces, each of length 1

32r;
n. In Step n we remove 2n pieces, each of length 1

22n−1 r;
In each step we remove 2n × 2−2n+1 × r = 2−n+1r units of length, i.e. we remove

∞
∑

n=1

r
2n−1

= r.

Thus, l(I) = l[0, 1] − r = 1 − r.
This means that the modified Cantor set does have a length! Consequently it cannot be empty.

■■

Problem 1.4 Solution: In each step the total length is increased by the factor 4∕3, since we remove
the middle interval (relative length 1∕3) and replace it by two copies constituting the sides of an
equilateral triangle (relative length 2∕3). Thus,

l(Kn) =
4
3
× l(Kn−1) =⋯ =

(4
3

)n
l(K0) =

(4
3

)n
.

In particular, limn→∞ l(Kn) = ∞.
Again �-additivity comes in in the form of a limit (compare with Problem 1.2).

■■

Problem 1.5 Solution: In each step the total area is decreased by the factor 3∕4, since we remove the
middle triangle (relative area 1∕4). Thus,

area(Sn) = 3
4
× area(Sn−1) =⋯ =

(3
4

)n
area(S0) =

(3
4

)n
√

3
4
.

In particular, area(S) = limn→∞ area(Sn) = 0.
Again �-additivity comes in in the form of a limit (compare with Problem 1.2). Notice that S is
not empty as it contains the vertices of all black triangles (see figure) of each stage.

■■
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2 The pleasures of counting.

Solutions to Problems 2.1�2.22

Problem 2.1 Solution:

(i) We have

x ∈ A ⧵ B ⇐⇒ x ∈ A and x ∉ B
⇐⇒ x ∈ A and x ∈ Bc
⇐⇒ x ∈ A ∩ Bc .

(ii) Using (i) and de Morgan’s laws (*) yields

(A ⧵ B) ⧵ C
(i)
= (A ∩ Bc) ∩ Cc = A ∩ Bc ∩ Cc

= A ∩ (Bc ∩ Cc)
(∗)
= A ∩ (B ∪ C)c = A ⧵ (B ∪ C).

(iii) Using (i), de Morgan’s laws (*) and the fact that (Cc)c = C gives

A ⧵ (B ⧵ C)
(i)
= A ∩ (B ∩ Cc)c

(∗)
= A ∩ (Bc ∪ C)

= (A ∩ Bc) ∪ (A ∩ C)
(i)
= (A ⧵ B) ∪ (A ∩ C).

(iv) Using (i) and de Morgan’s laws (*) gives

A ⧵ (B ∩ C)
(i)
= A ∩ (B ∩ C)c

(*)
= A ∩ (Bc ∪ Cc)

= (A ∩ Bc) ∪ (A ∩ Cc)
(i)
= (A ⧵ B) ∪ (A ⧵ C)

(v) Using (i) and de Morgan’s laws (*) gives

A ⧵ (B ∪ C)
(i)
= A ∩ (B ∪ C)c

(*)
= A ∩ (Bc ∩ Cc)

= A ∩ Bc ∩ Cc

9
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= A ∩ Bc ∩ A ∩ Cc

(i)
= (A ⧵ B) ∩ (A ⧵ C)

(vi) By definition and the distributive laws for sets we find
(A ∪ B) ⧵ C = (A ∪ B) ∩ Cc

= (A ∩ Cc) ∪ (B ∩ Cc)

= (A ⧵ C) ∪ (B ⧵ C).

■■

Problem 2.2 Solution: Observe, first of all, that
A ⧵ C ⊂ (A ⧵ B) ∪ (B ⧵ C). (*)

This follows easily from
A ⧵ C = (A ⧵ C) ∩X

= (A ∩ Cc) ∩ (B ∪ Bc)

= (A ∩ Cc ∩ B) ∪ (A ∩ Cc ∩ Bc)

⊂ (B ∩ Cc) ∪ (A ∩ Bc)

= (B ⧵ C) ∪ (A ⧵ B).

Using this and the analogous formula for C ⧵ A then gives
(A ∪ B ∪ C) ⧵ (A ∩ B ∩ C)

= (A ∪ B ∪ C) ∩ (A ∩ B ∩ C)c

= [A ∩ (A ∩ B ∩ C)c] ∪ [B ∩ (A ∩ B ∩ C)c] ∪ [C ∩ (A ∩ B ∩ C)c]

= [A ⧵ (A ∩ B ∩ C)] ∪ [B ⧵ (A ∩ B ∩ C)] ∪ [C ⧵ (A ∩ B ∩ C)]

= [A ⧵ (B ∩ C)] ∪ [B ⧵ (A ∩ C)] ∪ [C ⧵ (A ∩ B)]
2.1(iv)
= (A ⧵ B) ∪ (A ⧵ C) ∪ (B ⧵ A) ∪ (B ⧵ C) ∪ (C ⧵ A) ∪ (C ⧵ B)
(*)
= (A ⧵ B) ∪ (B ⧵ A) ∪ (B ⧵ C) ∪ (C ⧵ B)

= (A▵B) ∪ (B ▵C)

■■

Problem 2.3 Solution: It is clearly enough to prove (2.3) as (2.2) follows if I contains 2 points.
De Morgan’s identities state that for any index set I (finite, countable or not countable) and any
collection of subsets Ai ⊂ X, i ∈ I , we have

(a)
(

⋃

i∈I
Ai

)c

=
⋂

i∈I
Aci and (b)

(

⋂

i∈I
Ai

)c

=
⋃

i∈I
Aci .
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In order to see (a) we note that

a ∈

(

⋃

i∈I
Ai

)c

⇐⇒ a ∉
⋃

i∈I
Ai

⇐⇒ ∀ i ∈ I ∶ a ∉ Ai
⇐⇒ ∀ i ∈ I ∶ a ∈ Aci
⇐⇒ a ∈

⋂

i∈I
Aci ,

and (b) follows from

a ∈

(

⋂

i∈I
Ai

)c

⇐⇒ a ∉
⋂

i∈I
Ai

⇐⇒ ∃ i0 ∈ I ∶ a ∉ Ai0
⇐⇒ ∃ i0 ∈ I ∶ a ∈ Aci0
⇐⇒ a ∈

⋃

i∈I
Aci .

■■

Problem 2.4 Solution:

(i) The inclusion f (A∩B) ⊂ f (A)∩f (B) is always true sinceA∩B ⊂ A andA∩B ⊂ B imply
that f (A ∩B) ⊂ f (A) and f (A ∩B) ⊂ f (B), respectively. Thus, f (A ∩B) ⊂ f (A) ∩ f (B).
Furthermore, y ∈ f (A)⧵f (B)means that there is some x ∈ A but x ∉ B such that y = f (x),
that is: y ∈ f (A ⧵ B). Thus, f (A) ⧵ f (B) ⊂ f (A ⧵ B).
To see that the converse inclusions cannot hold we consider some non injective f . Take
X = [0, 2], A = (0, 1), B = (1, 2), and f ∶ [0, 2] → R with x → f (x) = c (c is some
constant). Then f is not injective and

∅ = f (∅) = f ((0, 1) ∩ (1, 2)) ≠ f ((0, 1)) ∪ f ((1, 2)) = {c}.

Moreover, f (X) = f (B) = {c} = f (X ⧵ B) but f (X) ⧵ f (B) = ∅.
(ii) Recall, first of all, the definition of f−1 for a map f ∶ X → Y and B ⊂ Y

f−1(B) ∶= {x ∈ X ∶ f (x) ∈ B}.

Observe that

x ∈ f−1(∪i∈ICi) ⇐⇒ f (x) ∈ ∪i∈ICi
⇐⇒ ∃ i0 ∈ I ∶ f (x) ∈ Ci0
⇐⇒ ∃ i0 ∈ I ∶ x ∈ f−1(Ci0)

⇐⇒ x ∈ ∪i∈If−1(Ci),

11
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and

x ∈ f−1(∩i∈ICi) ⇐⇒ f (x) ∈ ∩i∈ICi
⇐⇒ ∀ i ∈ I ∶ f (x) ∈ Ci
⇐⇒ ∀ i ∈ I ∶ x ∈ f−1(Ci)

⇐⇒ x ∈ ∩i∈If−1(Ci),

and, finally,

x ∈ f−1(C ⧵D) ⇐⇒ f (x) ∈ C ⧵D

⇐⇒ f (x) ∈ C and f (x) ∉ D

⇐⇒ x ∈ f−1(C) and x ∉ f−1(D)

⇐⇒ x ∈ f−1(C) ⧵ f−1(D).

■■

Problem 2.5 Solution:

(i), (vi) For every x we have

1A∩B(x) = 1 ⇐⇒ x ∈ A ∩ B

⇐⇒ x ∈ A, x ∈ B

⇐⇒ 1A(x) = 1 = 1B(x)

⇐⇒

⎧

⎪

⎨

⎪

⎩

1A(x) ⋅ 1B(x) = 1

min{1A(x),1B(x)} = 1

(ii), (v) For every x we have

1A∪B(x) = 1 ⇐⇒ x ∈ A ∪ B

⇐⇒ x ∈ A or x ∈ B
⇐⇒ 1A(x) + 1B(x) ⩾ 1

⇐⇒

⎧

⎪

⎨

⎪

⎩

min{1A(x) + 1B(x), 1} = 1

max{1A(x),1B(x)} = 1

(iii) Since A = (A∩B)⊍ (A⧵B) we see that 1A∩B(x) +1A⧵B(x) can never have the value 2, thus
part (ii) implies

1A(x) = 1(A∩B)⊍(A⧵B)(x) = min{1A∩B(x) + 1A⧵B(x), 1}

= 1A∩B(x) + 1A⧵B(x)

and all we have to do is to subtract 1A∩B(x) on both sides of the equation.

12
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(iv) With the same argument that we use in (iii) and with the result of (iii) we get

1A∪B(x) = 1(A⧵B)⊍(A∩B)⊍(B⧵A)(x)

= 1A⧵B(x) + 1A∩B(x) + 1B⧵A(x)

= 1A(x) − 1A∩B(x) + 1A∩B(x) + 1B(x) − 1A∩B(x)

= 1A(x) + 1B(x) − 1A∩B(x).

(vii) We have

∀i ∶ 1Ai ⩽ 1
⋃

i Ai ⇐⇒ sup
i
1Ai ⩽ 1

⋃

i Ai .

On the other hand,

x0 ∈
⋃

i
Ai ⇐⇒ ∃i0 ∶ x ∈ Ai0 .

Thus,

1⋃
i Ai(x0) = 1 ⇐⇒ 1Ai0

(x0) = 1 ⇐⇒ sup
i
1Ai(x0) = 1

and we get supi 1Ai ⩾ 1⋃i Ai .
(viii) One possibility is to mimic the proof of (vii). We prefer to argue like this: using (iii) and de

Morgan’s identities we get

1⋂
i Ai

(iii)
=de Morgan 1X − 1

⋃

i A
c
i

(vii)
= 1 − sup

i
1Aci

= inf
i
(1 − 1Aci )

(iii)
= inf

i
1Ai .

■■

Problem 2.6 Solution:

(i) Using 2.5(iii), (iv) we see that

1A▵B(x) = 1(A⧵B)⊍(B⧵A)(x)

= 1A⧵B(x) + 1B⧵A(x)

= 1A(x) − 1A∩B(x) + 1B(x) − 1A∩B(x)

= 1A(x) + 1B(x) − 21A∩B(x)

and this expression is 1 if, and only if, x is either in A or B but not in both sets. Thus

1A▵B(x) ⇐⇒ 1A(x) + 1B(x) = 1 ⇐⇒ 1A(x) + 1B(x)mod2 = 1.

It is also possible to show that

1A▵B = |1A − 1B|.

13
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This follows from

1A(x) − 1B(x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0, if x ∈ A ∩ B;
0, if x ∈ Ac ∩ Bc;
+1, if x ∈ A ⧵ B;

−1, if x ∈ B ⧵ A.

Thus,
|1A(x) − 1B(x)| = 1 ⇐⇒ x ∈ (A ⧵ B) ∪ (B ⧵ A) = A▵B.

(ii) From part (i) we see that
1A▵(B ▵C) = 1A + 1B ▵C − 21A1B ▵C

= 1A + 1B + 1C − 21B1C − 21A
(

1B + 1C − 21B1C
)

= 1A + 1B + 1C − 21B1C − 21A1B − 21A1C + 41A1B1C

and this expression treats A,B, C in a completely symmetric way, i.e.
1A▵(B ▵C) = 1(A▵B)▵C .

(iii) Step 1: (P (X),▵, ∅) is an abelian group.
Neutral element: A▵ ∅ = ∅▵A = A;
Inverse element: A▵A = (A ⧵ A) ∪ (A ⧵ A) = ∅, i.e. each element is its own inverse.
Associativity: see part (ii);
Commutativity: A▵B = B ▵A.
Step 2: For the multiplication ∩ we have
Associativity: A ∩ (B ∩ C) = (A ∩ B) ∩ C;
Commutativity: A ∩ B = B ∩ A;
One-element: A ∩X = X ∩ A = A.
Step 3: Distributive law:

A ∩ (B ▵C) = (A ∩ B)▵(A ∩ C).

For this we use again indicator functions and the rules from (i) and Problem 2.5:
1A∩(B ▵C) = 1A1B ▵C = 1A(1B + 1C mod 2)

=
[

1A(1B + 1C )
]

mod 2

=
[

1A1B + 1A1C
]

mod 2

=
[

1A∩B + 1A∩C
]

mod 2

= 1(A∩B)▵(A∩C).

14
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■■

Problem 2.7 Solution: Let f ∶ X → Y . One has

f surjective ⇐⇒ ∀B ⊂ Y ∶ f◦f−1(B) = B

⇐⇒ ∀B ⊂ Y ∶ f◦f−1(B) ⊃ B.

This can be seen as follows: by definition f−1(B) = {x ∶ f (x) ∈ B} so that

f◦f−1(B) = f
(

{x ∶ f (x) ∈ B}
)

= {f (x) ∶ f (x) ∈ B} ⊂ {y ∶ y ∈ B}

and we have equality in the last step if, and only if, we can guarantee that every y ∈ B is of the form
y = f (x) for some x. Since this must hold for all setsB, this amounts to saying that f (X) = Y , i.e.
that f is surjective. The second equivalence is clear since our argument shows that the inclusion
‘⊂’ always holds.
Thus, we can construct a counterexample by setting f ∶ R → R, f (x) ∶= x2 and B = [−1, 1].
Then

f−1([−1, 1]) = [0, 1] and f◦f−1([−1, 1]) = f ([0, 1]) = [0, 1] ⊊ [−1, 1].

On the other hand

f injective ⇐⇒ ∀A ⊂ X ∶ f−1◦f (A) = A

⇐⇒ ∀A ⊂ X ∶ f−1◦f (A) ⊂ A.

To see this we observe that because of the definition of f−1

f−1◦f (A) = {x ∶ f (x) ∈ f (A)} ⊃ {x ∶ x ∈ A} = A (*)

since x ∈ A always entails f (x) ∈ f (A). The reverse is, for non-injective f , wrong since then
there might be some x0 ∉ A but with f (x0) = f (x) ∈ f (A) i.e. x0 ∈ f−1◦f (A) ⧵ A. This means
that we have equality in (∗) if, and only if, f is injective. The second equivalence is clear since
our argument shows that the inclusion ‘⊃’ always holds.
Thus, we can construct a counterexample by setting f ∶ R→ R, f ≡ 1. Then

f ([0, 1]) = {1} and f−1◦f ([0, 1]) = f−1({1}) = R ⊋ [0, 1].

■■

Problem 2.8 Solution: Assume that for x, y we have f◦g(x) = f◦g(y). Since f is injective, we
conclude that

f (g(x)) = f (g(y)) ⇐⇒ g(x) = g(y),

15
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and, since g is also injective,

g(x) = g(y) ⇐⇒ x = y

showing that f◦g is injective.
■■

Problem 2.9 Solution:

• Call the set of odd numbers O . Every odd number is of the form 2k − 1 where k ∈ N. We
are done, if we can show that the map f ∶ N → O , k → 2k − 1 is bijective. Surjectivity is
clear as f (N) = O . For injectivity we take i, j ∈ N such that f (i) = f (j). The latter means
that 2i − 1 = 2j − 1, so i = j, i.e. injectivity.

• The quickest solution is to observe that N × Z = N × N ∪ N × {0} ∪ N × (−N) where
−N ∶= {−n ∶ n ∈ N} are the strictly negative integers. We know from Example 2.5(iv) that
N×N is countable. Moreover, themap � ∶ N×N → N×(−N), �((i, k)) = (i,−k) is bijective,
thus #N × (−N) = #N × N is also countable and so is N × {0} since  ∶ N → N × {0},
(n) ∶= (n, 0) is also bijective.
Therefore,N ×Z is a union of three countable sets, hence countable.

An alternative approach would be to write out Z×N (the swap of Z andN is for notational
reasons—since the map �((j, k)) ∶= (k, j) from Z ×N toN ×Z is bijective, the cardinality
does not change) in the following form

… (−3, 1) (−2, 1) (−1, 1) (0, 1) (1, 1) (2, 1) (3, 1) …
… (−3, 2) (−2, 2) (−1, 2) (0, 2) (1, 2) (2, 2) (3, 2) …
… (−3, 3) (−2, 3) (−1, 3) (0, 3) (1, 3) (2, 3) (3, 3) …
… (−3, 4) (−2, 4) (−1, 4) (0, 4) (1, 4) (2, 4) (3, 4) …
… (−3, 5) (−2, 5) (−1, 5) (0, 5) (1, 5) (2, 5) (3, 5) …
… (−3, 6) (−2, 6) (−1, 6) (0, 6) (1, 6) (2, 6) (3, 6) …

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

and going through the array, starting with (0, 1), then (1, 1) → (1, 2) → (0, 2) → (−1, 2) →
(−1, 1), then (2, 1) → (2, 2) → (2, 3) → (1, 3) → ... in clockwise oriented ⨆-shapes down,
left, up.

• In Example 2.5(iv) we have shown that #Q ⩽ #N. Since N ⊂ Q, we have a canonical
injection | ∶ N → Q, i → i so that #N ⩽ #Q. Using Theorem 2.7 we conclude that
#Q = #N.
The proof of #(N ×N) = #N can be easily adapted—using some pretty obvious notational
changes—to show that the Cartesian product of any two countable sets of cardinality #N has
again cardinality #N. Applying this m − 1 times we see that #Qn = #N.

• ⋃

m∈NQ
m is a countable union of countable sets, hence countable, cf. Theorem 2.6.

16
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■■

Problem 2.10 Solution: Following the hint it is clear that � ∶ N→ N × {1}, i → (i, 1) is a bijection
and that | ∶ N × {1} → N ×N, (i, 1) → (i, 1) is an injection. Thus, #N ⩽ #(N ×N).
On the other hand, N × N =

⋃

j∈NN × {j} which is a countable union of countable sets, thus
#(N ×N) ⩽ #N.
Applying Theorem 2.7 finally gives #(N ×N) = #N.

■■

Problem 2.11 Solution: Since E ⊂ F the map | ∶ E → F , e → e is an injection, thus #E ⩽ #F .
■■

Problem 2.12 Solution: Assume that the set {0, 1}N were indeed countable and that {sj}j∈N was an
enumeration: each sj would be a sequence of the form (dj1, d

j
2, d

j
3, ..., d

j
k, ...) with djk ∈ {0, 1}. We

could write these sequences in an infinite list of the form:
s1 = d11 d12 d13 d14 … d1k …
s2 = d21 d22 d23 d24 … d2k …
s3 = d31 d32 d33 d34 … d3k …
s4 = d41 d42 d43 d44 … d4k …
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱

sk = dk1 dk2 dk3 dk4 … dkk …
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱

and produce a new 0-1-sequence S = (e1, e2, e3,…) by setting

em ∶=
⎧

⎪

⎨

⎪

⎩

0, if dmm = 1

1, if dmm = 0
.

Since S differs from sl exactly at position l, S cannot be in the above list, thus, the above list did
not contain all 0-1-sequences, hence a contradiction.

■■

Problem 2.13 Solution: Consider the function f ∶ (0, 1)→ R given by

f (x) ∶= 1
1 − x

− 1
x
.

This function is obviously continuous and we have limx→0 f (x) = −∞ and limx→1 f (x) = +∞.
By the intermediate value theorem we have therefore f ((0, 1)) = R, i.e. surjectivity.
Since f is also differentiable and f ′(x) = 1

(1 − x)2
+ 1
x2

> 0, we see that f is strictly increasing,
hence injective, hence bijective.

■■
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Problem 2.14 Solution: Since A1 ⊂ ⋃

i∈NAi it is clear that c = #A1 ⩽ #
⋃

i∈NAi. On the other
hand, #Ai = c means that we can map Ai bijectively onto R and, using Problem 2.13, we map R
bijectively onto (0, 1) or (i− 1, i). This shows that #⋃i∈NAi ⩽ #

⋃

i∈N(i− 1, i) ⩽ #R = c. Using
Theorem 2.7 finishes the proof.

■■

Problem 2.15 Solution: Since we can write each x ∈ (0, 1) as an infinite dyadic fraction (o.k. if it
is finite, fill it up with an infinite tail of zeroes !), the proof of Theorem 2.8 shows that #(0, 1) ⩽
#{0, 1}N.
On the other hand, thinking in base-4 expansions, each element of {1, 2}N can be interpreted
as a unique base-4 fraction (having no 0 or 3 in its expansion) of some number in (0, 1). Thus,
#{1, 2}N ⩽ #N.
But #{1, 2}N = #{0, 1}N and we conclude with Theorem 2.7 that #(0, 1) = #{0, 1}N.

■■

Problem 2.16 Solution: Just as before, expand x ∈ (0, 1) as an n-adic fraction, then interpret each
element of {1, 2,… , n+ 1}N as a unique (n+ 1)-adic expansion of a number in (0, 1) and observe
that #{1, 2,… , n + 1}N = {0, 1,… , n}N.

■■

Problem 2.17 Solution: Take a vector (x, y) ∈ (0, 1) × (0, 1) and expand its coordinate entries x, y
as dyadic numbers:

x = 0.x1x2x3… , y = 0.y1y2y3… .

Then z ∶= 0.x1y1x2y2x3y3… is a number in (0, 1). Conversely, we can ‘zip’ each z = 0.z1z2z3z4… ∈
(0, 1) into two numbers x, y ∈ (0, 1) by setting

x ∶= 0.z2z4z6z8… , y ∶= 0.z1z3z5z7…

This is obviously a bijective operation.

Since we have a bijection between (0, 1) ↔ R it is clear that we have also a bijection between
(0, 1) × (0, 1)↔ R ×R.

■■

Problem 2.18 Solution: We have seen in Problem 2.18 that #{0, 1}N = #{1, 2}N = c. Obviously,
{1, 2}N ⊂ NN ⊂ RN and since we have a bijection between (0, 1) ↔ R one extends this (using
coordinates) to a bijection between (0, 1)N ↔ RN. Using Theorem 2.9 we get

c = #{1, 2}N ⩽ #NN ⩽ #RN = c,

and, because of Theorem 2.7 we have equality in the above formula.
■■
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Problem 2.19 Solution: Let F ∈ ℱ with #F = n Then we can write F as a tuple of length n (having
n pairwise different entries...) and therefore we can interpret F as an element of ⋃m∈NN

m. In
this sense, ℱ →

⋃

m∈NN
m and #ℱ ⩽

⋃

m∈NN
m = #N since countably many countable sets are

again countable. SinceN ⊂ ℱ we get #ℱ = #N by Theorem 2.7.

Alternative: Define a map � ∶ ℱ → N by

ℱ ∋ A → �(A) ∶=
∑

a∈A
2a

. It is clear that � increases if A gets bigger: A ⊂ B ⇐⇒ �(A) ⩽ �(B). Let A,B ∈ ℱ be two
finite sets, say A = {a1, a2,… , aM} and {b1, b2,… , bN} (ordered according to size with a1, b1
being the smallest and aM , bN the biggest) such that �(A) = �(B). Assume, to the contrary, that
A ≠ B. If aM ≠ bN , say aM > bN , then

�(A) ⩾ �({aM}) ⩾ 2aM > 2aM − 1
2 − 1

=
aM−1
∑

j=1
2j

= �({1, 2, 3,… aM − 1})

⩾ �(B),

which cannot be the case since we assumed �(A) = �(B). Thus, aM = bN . Now consider
recursively the next elements, aM−1 and bN−1 and the same conclusion yields their equality etc.
The process stops after min{M,N} steps. But ifM ≠ N , sayM > N , then A would contain at
least one more element than B, hence �(A) > �(B), which is also a contradiction. This, finally
shows that A = B, hence that � is injective.
On the other hand, each natural number can be expressed in terms of finite sums of powers of
base-2, so that � is also surjective.
Thus, #ℱ = #N.

■■

Problem 2.20 Solution: (Let ℱ be as in the previous exercise.) Observe that the infinite sets from
P (N), ℐ ∶= P (N) ⧵ ℱ can be surjectively mapped onto {0, 1}N: if {a1, a2, a3,…} = A ⊂ N,
then define an infinite 0-1-sequence (b1, b2, b3,…) by setting bj = 0 or bj = 1 according to whether
aj is even or odd. This is a surjection of P (N) onto {0, 1}N and so #P (N) ⩾ #{0, 1}N. Call this
map  and consider the family −1(s), s ∈ {0, 1}N in ℐ , consisting of obviously disjoint infinite
subsets of N which lead to the same 0-1-sequence s. Now choose from each family −1(s) a
representative, call it r(s) ∈ ℐ . Then the map s → r(s) is a bijection between {0, 1}N and a subset
of ℐ , the set of all representatives. Hence, ℐ has at least the same cardinality as {0, 1}N and as
such a bigger cardinality than N.

■■
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Problem 2.21 Solution: Denote byΘ themapP (N) ∋ A → 1A ∈ {0, 1}N. Let � = (d1, d2, d3,…) ∈
{0, 1}N and define A(�) ∶= {j ∈ N ∶ dj = 1}. Then � = (1A(�)(j))j∈N showing that Θ is surject-
ive.
On the other hand,

1A = 1B ⇐⇒ 1A(j) = 1B(j) ∀j ∈ N ⇐⇒ A = B.

This shows the injectivity of Θ, and #P (N) = #{0, 1}N follows.
■■

Problem 2.22 Solution: Since for A,A′, B, B′ ⊂ X we have the ‘multiplication rule’

(A ∩ B) ∪ (A′ ∩ B′) = (A ∪ A′) ∩ (A ∪ B′) ∩ (B ∪ A′) ∩ (B ∪ B′)

and since this rule carries over to the infinite case, we get the formula from the problem by ‘mul-
tiplying out’ the countable union

(A01 ∩ A
1
1) ∪ (A

0
2 ∩ A

1
2) ∪ (A

0
3 ∩ A

1
3) ∪ (A

0
4 ∩ A

1
4) ∪⋯ .

More formally, one argues as follows:

x ∈
⋃

n∈N
(A0n ∩ A

1
n) ⇐⇒ ∃ n0 ∶ x ∈ A0n0 ∩ A

1
n0

(*)

while

x ∈
⋂

i=(i(k))k∈N∈{0,1}N

⋃

k∈N
Ai(k)k

⇐⇒ ∀i = (i(k))k∈N ∈ {0, 1}N ∶ x ∈
⋃

k∈N
Ai(k)k

⇐⇒ ∀i = (i(k))k∈N ∈ {0, 1}N ∃ k0 ∈ N ∶ x ∈ Ai(k0)k0
(**)

Clearly, (*) implies (**). On the other hand, assume that (**) holds but that (*) is wrong, i.e.
suppose that for every n we have that either x ∈ A0n or x ∈ A1n or x is in neither of A0n, A1n. Thus
we can construct a uniquely defined sequence i(n) ∈ {0, 1}, n ∈ N, by setting

i(n) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if x ∈ A0n;
1 if x ∈ A1n;
0 if x ∉ A0n and x ∉ A1n.

Define by i′(n) ∶= 1 − i(n) the ‘complementary’ 0-1-sequence. Then

x ∈
⋃

n
Ai(n)n but x ∉⋃

n
Ai

′(n)
n

contradicting our assumption (**).
■■

20



3 �-Algebras.
Solutions to Problems 3.1�3.16

Problem 3.1 Solution:

(i) It is clearly enough to show that A,B ∈ A ⇐⇒ A ∩ B ∈ A , because the case of N sets
follows from this by induction, the induction step being

A1 ∩… ∩ AN
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

=∶B∈A

∩AN+1 = B ∩ AN+1 ∈ A .

Let A,B ∈ A . Then, by (Σ2) also Ac , Bc ∈ A and, by (Σ3) and (Σ2)

A ∩ B = (Ac ∪ Bc)c = (Ac ∪ Bc ∪ ∅ ∪ ∅ ∪…)c ∈ A .

Alternative: Of course, the last argument also goes through forN sets:

A1 ∩ A2 ∩… ∩ AN = (Ac1 ∪ A
c
2 ∪… ∪ AcN )

c

= (Ac1 ∪… ∪ AcN ∪ ∅ ∪ ∅ ∪…)
c ∈ A .

(ii) By (Σ2) we have A ∈ A ⇐⇒ Ac ∈ A . Use Ac instead of A and observe that (Ac)c = A to
see the claim.

(iii) Clearly Ac , Bc ∈ A and so, by part (i), A ⧵ B = A ∩ Bc ∈ A as well as A▵B = (A ⧵ B) ∪
(B ⧵ A) ∈ A .

■■

Problem 3.2 Solution:

(iv) Let us assume that B ≠ ∅ and B ≠ X. Then Bc ∉ {∅, B,X}. Since with B also Bc must be
contained in a �-algebra, the family {∅, B,X} cannot be one.

(vi) Set AE ∶= {E ∩ A ∶ A ∈ A}. The key observation is that all set operations in AE are now
relative to E and not to X. This concerns mainly the complementation of sets! Let us check
(Σ1)–(Σ3).
Clearly ∅ = E ∩ ∅ ∈ AE . If B ∈ A , then B = E ∩ A for some A ∈ A and the complement
of B relative to E is E ⧵ B = E ∩ Bc = E ∩ (E ∩ A)c = E ∩ (Ec ∪ Ac) = E ∩ Ac ∈ AE as
Ac ∈ A . Finally, let (Bj)j∈N ⊂ AE . Then there are (Aj)j∈N ⊂ A such that Bj = E ∩ Aj .
SinceA = ⋃

j∈NAj ∈ A we get⋃j∈N Bj =
⋃

j∈N(E∩Aj) = E∩
⋃

j∈NAj = E∩A ∈ AE .
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(vii) Note that f−1 interchanges with all set operations. Let A,Aj , j ∈ N be sets in A . We know
that then A = f−1(A′), Aj = f−1(A′j) for suitable A,A′j ∈ A ′. Since A ′ is, by assumption
a �-algebra, we have

∅ = f−1(∅) ∈ A as ∅ ∈ A ′

Ac =
(

f−1(A′)
)c = f−1(A′c) ∈ A as A′c ∈ A ′

⋃

j∈N
Aj =

⋃

j∈N
f−1(A′j) = f

−1

(

⋃

j∈N
A′j

)

∈ A as ⋃

j∈N
A′j ∈ A

′

which proves (Σ1)–(Σ3) for A .
■■

Problem 3.3 Solution: Denote by Σ = �({x}, x ∈ R). Let A be the �-algebra defined in Ex-
ample 3.3(v). It is clear that {x} ∈ A , and so Σ ⊂ A . On the other hand, if A ∈ A , then either A
or Ac is countable. Wlog assume that A is countable. Then A is a countable union of singletons,
as such A ∈ Σ as well as Ac ∈ Σ. This means A ⊂ Σ.

■■

Problem 3.4 Solution:

(i) Since G is a �-algebra, G ‘competes’ in the intersection of all �-algebras C ⊃ G appearing
in the definition of A in the proof of Theorem 3.4(ii). Thus, G ⊃ �(G ) while G ⊂ �(G ) is
always true.

(ii) Without loss of generality we can assume that ∅ ≠ A ≠ X since this would simplify the
problem. Clearly {∅, A, Ac , X} is a �-algebra containing A and no element can be removed
without losing this property. Thus {∅, A, Ac , X} is minimal and, therefore, = �({A}).

(iii) Assume that ℱ ⊂ G . Then we have ℱ ⊂ G ⊂ �(G ). Now C ∶= �(G ) is a potential
‘competitor’ in the intersection appearing in the proof of Theorem 3.4(ii), and as such C ⊃
�(ℱ ), i.e. �(G ) ⊃ �(ℱ ).

■■

Problem 3.5 Solution:

(i) {∅, (0, 12 ), {0} ∪ [ 12 , 1], [0, 1]}.
We have 2 atoms (see the explanations below): (0, 12 ), (0, 12 )c .

(ii) {∅, [0, 14 ), [14 , 34 ], ( 34 , 1], [0, 34 ], [14 , 1], [0, 14 ) ∪ ( 34 , 1], [0, 1]}.
We have 3 atoms (see below): [0, 14 ), [14 , 34 ], (34 , 1].

(iii) —same solution as (ii)—
Parts (ii) and (iii) are quite tedious to do and they illustrate how difficult it can be to find a �-algebra
containing two distinct sets.... imagine how to deal with something that is generated by 10, 20,
or infinitely many sets. Instead of giving a particular answer, let us describe the method to find
�({A,B}) practically, and then we are going to prove it.
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1. Start with trivial sets and given sets: ∅, X, A, B.
2. now add their complements: Ac , Bc
3. now add their unions and intersections and differences: A ∪ B,A ∩ B,A ⧵ B,B ⧵ A

4. now add the complements of the sets in 3.: Ac ∩ Bc , Ac ∪ Bc , (A ⧵ B)c , (B ⧵ A)c

5. finally, add unions of differences and their complements: (A⧵B)∪(B⧵A), (A⧵B)c∩(B⧵A)c .
All in all one should have 16 sets (some of them could be empty or X or appear several times,
depending on howmuchA differs fromB). That’s it, but the trouble is: is this construction correct?
Here is a somewhat more systematic procedure:

Definition: An atom of a �-algebra A is a non-void set ∅ ≠ A ∈ A that contains no other set of
A .

Since A is stable under intersections, it is also clear that all atoms are disjoint sets! Now we can
make up every set from A as union (finite or countable) of such atoms. The task at hand is to
find atoms if A,B are given. This is easy: the atoms of our future �-algebra must be: A ⧵ B,
B ⧵ A, A ∩ B, (A ∪ B)c . (Test it: if you make a picture, this is a tesselation of our space X using
disjoint sets and we can get back A,B as union! It is also minimal, since these sets must appear in
�({A,B}) anyway.) The crucial point is now:

Theorem. If A is a �-algebra with N atoms (finitely many!), then A consists of exactly 2N

elements.

Proof. The question is how many different unions we can make out of N sets. Simple answer:
we find (N

j

), 0 ⩽ j ⩽ N different unions involving exactly j sets (j = 0 will, of course, produce
the empty set) and they are all different as the atoms were disjoint. Thus, we get ∑N

j=0
(N
j

)

=
(1 + 1)N = 2N different sets.
It is clear that they constitute a �-algebra.

This answers the above question. The number of atoms depends obviously on the relative position
of A,B: do they intersect, are they disjoint etc. Have fun with the exercises and do not try to find
�-algebras generated by three or more sets..... (By the way: can you think of a situation in [0, 1]
with two subsets given and exactly four atoms? Can there be more?)

■■

Problem 3.6 Solution:

(i) See the solution to Problem 3.5.
(ii) If A1,… , AN ⊂ X are given, there are at most 2N atoms. This can be seen by induction. If

N = 1, then there are #{A,Ac} = 2 atoms. If we add a further set AN+1, then the worst case
would be that AN+1 intersects with each of the 2N atoms, thus splitting each atom into two
sets which amounts to saying that there are 2 ⋅ 2N = 2N+1 atoms.
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■■

Problem 3.7 Solution: We follow the hint. Since #A = #N, the following set is a countable inter-
section of measurable sets, hence itself in A :

∀x ∈ X ∶ A(x) ∶=
⋂

A∈A ,A∋x
A ∈ A . (*)

Write A0 for the atoms of A . Then
• A(x) ∈ A is an atom which contains x.

Indeed: Otherwise, there is some B ⊂ A(x) such that B ∈ A , B ≠ ∅, B ≠ A(x). We can
assume that x ∈ B, or we would take B′ ∶= A(x) ⧵ B instead of B. Since x ∈ B, B is part
of the intersection appearing in (*) so that B ⊃ A(x), hence B = A(x), which is impossible.

• Every atom A ≠ ∅ of A is of the form (*).
Indeed: By assumption, x0 ∈ A so that A = A(x0).

• A has #N many atoms.
Indeed: Since #A = #N, there are countably infinitely many disjoint sets in A , thus the
procedure (*) yields at least #Nmany atoms. On the other hand, there cannot be more atoms
than members of A , and the claim follows.

Since A contains all countable unions of sets from A0, and since there are more than countably
many such unions, it is clear that #A > #N.

Remark: A �-algebra may have no non-empty atoms at all! Here is an example (which I learned
from Julian Hollender). Let I be an uncountable set, e.g. I = [0, 1], and considerΩ = {0, 1}I . We
can construct a �-algebra onΩ in the followingway: LetK ⊂ I and definePK ∶ {0, 1}I → {0, 1}K

the coordinate projection. A cylinder set or finitely based set with basis K ⊂ I is a set of the form
P−1K (B) where #K < ∞ and B ⊂ {0, 1}K . Now consider the �-algebra A ∶= �({cylinder sets})
on {0, 1}I . Intuitively, A ∈ A is of the form P−1L (B) where L is countable. (The proof as such
is not obvious, a possible source is Lemma 4.5 in Schilling & Partzsch: Brownian Motion. De
Gruyter, Berlin 2012.) Assume that A0 ∈ A were an atom. Then A0 has the basis L. Take
i ∈ I ⧵ L, consider L′ = L ∪ {i} and construct a set P−1L′ (B′) where B′ = B × {0}, say. Then
P−1L′ (B

′) ⊂ A0 and P−1L′ (B′) ∈ A .
■■

Problem 3.8 Solution: We begin with an example: Let X = (0, 1] and A = ℬ(0, 1] be the Borel
sets. Define

An ∶= �
(

((j − 1)2−n, j2−n] , j = 1, 2,… , 2n
)

the dyadic �-algebra of step 2−n. Clearly, #An = 2n. Moreover,
An ⊊ An+1 and A∞ ∶=

⋃

n
An.
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However, A∞ is NOT a �-algebra.
Argument 1: I ∈ A∞ ⇐⇒ I ∈ An for some n, i.e. I is a finite union of intervals with dyadic
end-points. (More precisely: the topological boundary I ⧵ I◦ consists of dyadic points).
On the other hand, every open set (a, b) ⊂ [0, 1] is a countable union of sets from A∞:

(a, b) =
⋃

I∈A∞,I⊂(a,b)
I

which follows from the fact that the dyadic numbers are dense in (0, 1]. (If you want it more
elementary, then approximate a and b from the right and left, respectively, by dyadic numbers
and construct the approximating intervals by hand....). If, for example, a and b are irrational, then
(a, b) ∉ A∞. This shows that A∞ cannot be a �-algebra.
In fact, our argument shows that �(A∞) =ℬ(0, 1].
Argument 2: Since #An = 2n we see that #A∞ = #N. But Problem 3.7 tells us that A∞ can’t be a
�-algebra.

Let us now turn to the general case. We follow the note by
A. Broughton and B.W. Huff: A comment on unions of sigma-fields. Am.Math. Monthly 84 (1977)
553–554.

Since the An are strictly increasing, we may assume that A1 ≠ {∅, X}. Recall also the notion of a
trace �-Algebra

B ∩An ∶= {B ∩ A ∶ A ∈ An}.

Step 1. Claim: There exists a set E ∈ A1 such that (E ∩An+1) ⧵ (E ∩An) ≠ ∅ for infinitely many
n ∈ N.
To see this, assume – to the contrary – that for some n and some B ∈ A1 we have

B ∩An = B ∩An+1 and Bc ∩An = Bc ∩An+1.

If U ∈ An+1 ⧵An, then

U = (B ∩ U )
⏟⏟⏟

∈B∩An+1=B∩An⊂An

∪ (Bc ∩ U )
⏟⏞⏟⏞⏟

∈Bc∩An+1=Bc∩An⊂An

leading to the contradiction U ∈ An. Thus the claim holds with either E = B or E = Bc .

Step 2. Let E be the set from Step 1 and denote by n1, n2,… a sequence for which the assertion
in Step 1 holds. Then

ℱk ∶= E ∩Ank , k ∈ N
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is a strictly increasing sequence of �-Algebras over the set E. Again we may assume that ℱ1 ≠
{∅, E} As in Step 1, we find some E1 ∈ ℱ1 such that E1 is not trivial (i.e. E1 ≠ ∅ and E1 ≠ E)
and (E1 ∩ℱk+1) ⧵ (E1 ∩ℱk) ≠ ∅ holds for infinitely many k.

Step 3. Now we repeat Step 2 and construct recursively a sequence of �-algebras Ai1 ⊂ Ai2 ⊂
Ai3… and a sequence of sets E1 ⊃ E2 ⊃ E3… such that

Ek ∈ Aik and Ek+1 ∈ (Ek ∩Aik+1) ⧵ (Ek ∩Aik).

Step 4. The sets Fk ∶= Ek ⧵ Ek+1 have the property that they are disjoint and Fk ∈ Aik+1 ⧵ Aik .
Since the �-algebras are increasing, we have

⋃

n∈N
An =

⋃

k∈N
Aik

which means that we can restrict ourselves to a subsequence. This means that we can assume that
ik = k.

Step 5. Without loss of generality we can identify Fk with {k} and assume that the An are �-
algebras on N such that {k} ∈ Ak+1 ⧵ Ak. Let Bn the smallest set in An such that n ∈ Bn. Then
n ∈ Bn ⊂ {n, n + 1, n + 2,…} and Bn ≠ {n}. Moreover

m ∈ Bn ⇐⇒ Bm ⊂ Bn since m ∈ Bn ∩ Bm ∈ Am.

Now define n1 = 1 and pick nk+1 recursively: nk+1 ∈ Bnk such that nk+1 ≠ nk. Then Bn1 ⊃ Bn2 ⊃
… . Set E = {n2, n4, n6,…}. If A∞ were a �-algebra, then E ∈ An for some n, thus E ∈ An2k for
some k. Then {n2k, n2k+2,…} ∈ An2k and thus Bn2k ⊂ {n2k, n2k+2,…}. This contradicts the fact
n2k+1 ∈ Bn2k .

■■

Problem 3.9 Solution:

O1 Since ∅ contains no element, every element x ∈ ∅ admits certainly some neighbourhood
B�(x) and so ∅ ∈ O . Since for all x ∈ Rn also B�(x) ⊂ Rn, Rn is clearly open.

O2 Let U, V ∈ O . If U ∩ V = ∅, we are done. Else, we find some x ∈ U ∩ V . Since U, V are
open, we find some �1, �2 > 0 such that B�1(x) ⊂ U and B�2(x) ⊂ V . But then we can take
ℎ ∶= min{�1, �2} > 0 and find

Bℎ(x) ⊂ B�1(x) ∩ B�2(x) ⊂ U ∩ V ,

i.e.U ∩V ∈ O . For finitely many, sayN , sets, the same argument works. Notice that already
for countably many sets we will get a problem as the radius ℎ ∶= min{�j ∶ j ∈ N} is not
necessarily any longer > 0.
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O2 Let I be any (finite, countable, not countable) index set and (Ui)i∈I ⊂ O be a family of open
sets. SetU ∶=

⋃

i∈I Ui. For x ∈ U we find some j ∈ I with x ∈ Uj , and sinceUj was open,
we find some �j > 0 such that B�j (x) ⊂ Uj . But then, trivially, B�j (x) ⊂ Uj ⊂

⋃

i∈I Ui = U
proving that U is open.

The family On cannot be a �-algebra since the complement of an open set U ≠ ∅,≠ Rn is closed.
■■

Problem 3.10 Solution: Let X = R and set Uk ∶= (− 1
k
, 1
k
) which is an open set. Then ⋂k∈N Uk =

{0} but a singleton like {0} is closed and not open.
■■

Problem 3.11 Solution: We know already that the Borel setsℬ =ℬ(R) are generated by any of the
following systems:

{[a, b) ∶ a, b ∈ Q}, {[a, b) ∶ a, b ∈ R},

{(a, b) ∶ a, b ∈ Q}, {(a, b) ∶ a, b ∈ R}, O1, or C 1

Here is just an example (with the dense set D = Q) how to solve the problem. Let b > a. Since
(−∞, b) ⧵ (−∞, a) = [a, b) we get that

{[a, b) ∶ a, b ∈ Q} ⊂ �({(−∞, c) ∶ c ∈ Q})

⇐⇒ ℬ = �({[a, b) ∶ a, b ∈ Q}) ⊂ �({(−∞, c) ∶ c ∈ Q}).

On the other hand we find that (−∞, a) = ⋃

k∈N[−k, a) proving that

{(−∞, a) ∶ a ∈ Q} ⊂ �({[c, d) ∶ c, d ∈ Q}) =ℬ

⇐⇒ �({(−∞, a) ∶ a ∈ Q}) ⊂ℬ

and we get equality.
The other cases are similar.

■■

Problem 3.12 Solution: Let B ∶= {Br(x) ∶ x ∈ Rn, r > 0} and let B′ ∶= {Br(x) ∶ x ∈ Qn, r ∈
Q+}. Clearly,

B′ ⊂ B ⊂ On

⇐⇒ �(B′) ⊂ �(B) ⊂ �(On) =ℬ(Rn).

On the other hand, any open set U ∈ On can be represented by

U =
⋃

B∈B′, B⊂U
B. (*)
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Indeed, U ⊃
⋃

B∈B′, B⊂U B follows by the very definition of the union. Conversely, if x ∈ U we
use the fact thatU is open, i.e. there is some B�(x) ⊂ U . Without loss of generality we can assume
that � is rational, otherwise we replace it by some smaller rational �. Since Qn is dense in Rn we
can find some q ∈ Qn with |x − q| < �∕3 and it is clear that B�∕3(q) ⊂ B�(x) ⊂ U . This shows
that U ⊂

⋃

B∈B′, B⊂U B.
Since #B′ = #(Qn ×Q) = #N, formula (∗) entails that

On ⊂ �(B′) ⇐⇒ �(On) = �(B′) and, therefore, �(On) = �(B)

and we are done.
■■

Problem 3.13 Solution:

(i) O1: We have ∅ = ∅ ∩ A ∈ OA, A = X ∩ A ∈ OA.
O1: LetU ′ = U ∩A ∈ OA, V ′ = V ∩A ∈ OA withU, V ∈ O . ThenU ′∩V ′ = (U ∩V )∩A ∈
OA since U ∩ V ∈ O .
O2: Let U ′

i = Ui∩A ∈ OA with Ui ∈ O . Then⋃i U
′
i =

(
⋃

i Ui
)

∩A ∈ OA since⋃i Ui ∈ O .
(ii) We use for a set A and a family ℱ ⊂ P (X) the shorthand A ∩ℱ ∶= {A ∩ F ∶ F ∈ ℱ }.

Clearly, A ∩ O ⊂ A ∩ �(O) = A ∩ℬ(X). Since the latter is a �-algebra, we have
�(A ∩ O) ⊂ A ∩ℬ(X) i.e. ℬ(A) ⊂ A ∩ℬ(X).

For the converse inclusion we define the family
Σ ∶= {B ⊂ X ∶ A ∩ B ∈ �(A ∩ O)}.

It is not hard to see that Σ is a �-algebra and that O ⊂ Σ. Thus ℬ(X) = �(O) ⊂ Σ which
means that

A ∩ℬ(X) ⊂ �(A ∩ O).

Notice that this argument does not really need that A ∈ ℬ(X). If, however, A ∈ ℬ(X) we
have in addition to A ∩ℬ(X) =ℬ(A) that

ℬ(A) = {B ⊂ A ∶ B ∈ℬ(X)}

■■

Problem 3.14 Solution:

(i) We see, as in the proof of Theorem 3.4, that the intersection of arbitrarily many mono-
tone classes (MC, for short) is again a MC. Thus,

m(ℱ ) ∶=
⋂

ℱ⊂G
G MC

G ,
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is itself a MC. Note, that the intersection is non-void as the power setP (X) is (trivially)
aMCwhich containsℱ . By construction, see also the argument of Theorem 3.4,m(ℱ )
is a minimal MC containing ℱ .

(ii) Define
D ∶= {F ∈ m(ℱ ) ∶ F c ∈ m(ℱ )}.

By assumption, ℱ ⊂ D . We are done, if we can show that D is a MC.
(MC1) Let (Mn)n∈N ⊂ D be an increasing familyMn ↑M =

⋃

n∈NMn. Sincem(ℱ )
is a MC,M ∈ m(ℱ ) and

Mc =

(

⋃

n∈N
Mn

)c

=
⋂

n∈N
Mc

n
⏟⏟⏟
∈m(ℱ )

∈ m(ℱ ).

Here we use thatMn ↑ ⇐⇒ Mc
n ↓ and so⋂n∈NM

c
n ∈ m(ℱ ) because of (MC2)

for the system m(ℱ ). This provesM ∈ D .
(MC2) Let (Nn)n∈N ⊂ D be a decreasing family Nn ↓ N =

⋂

n∈NNn. As in the first
part we get fromN ∈ m(ℱ ) andNc

n ↑ Nc thatNc ∈ m(ℱ ) due to (MC1) for
the family m(ℱ ). Consequently,N ∈ D .

(iii) We follow the hint. Because of the ∩-stability of ℱ we get ℱ ⊂ Σ. Let us check that Σ
is a MC:
(MC1) Let (Mn)n∈N ⊂ Σ be an increasing sequence Mn ↑ M and F ∈ ℱ . Then

M ∈ m(ℱ ) and from m(ℱ ) ∋Mn ∩ F ↑M ∩ F we get (using (MC1) for the
system m(ℱ )), thatM ∩ F ∈ m(ℱ ), hence,M ∈ Σ.

(MC2) This is similar to (MC1).
Therefore, Σ is a MC and ℱ ⊂ Σ. This proves m(ℱ ) ⊂ Σ and ℱ ⊂ Σ′. Since Σ′
is also a MC (the proof is very similar to the one for Σ; just replace “F ∈ ℱ ” with
“F ∈ m(ℱ )”) we get m(ℱ ) ⊂ Σ′, too. This proves our claim.

(iv) Sinceℳ ⊃ ℱ , we get
ℳ = m(ℳ) ⊃ m(ℱ );

so it is enough to show thatm(ℱ ) is a �-algebra containing ℱ . Clearly, ℱ ⊂ m(ℱ ).
(Σ1) By assumption, X ∈ ℱ ⊂ m(ℱ ).
(Σ2) This follows immediately from (ii).
(Σ3) First we show thatm(ℱ ) is ∪-stable: sincem(ℱ ) is ∩-stable – by (iii) – we get

C,D ∈ m(ℱ ) ⇐⇒ C ⧵D = C ∩Dc ∈ m(ℱ )

and so

C,D ∈ m(ℱ )
(Σ2)
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒(Σ1)

C ∪D = X ⧵
[

(X ⧵ C) ⧵D
]

∈ m(ℱ ).
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If (An)n∈N ⊂ m(ℱ ) is any sequence, the new sequence Bn ∶= A1 ∪⋯ ∪ An is
increasing and⋃n∈NAn =

⋃

n∈N Bn. Thus, (Σ3) follows from (MC1).
■■

Problem 3.15 Solution: Clearly,ℳ = m(O), i.e. it is the monotone class generated by the open sets.
Since �(O) is itself a monotone class, the minimality ofm(O) yields

m(O) ⊂ �(O).

On the other hand, the monotone class theorem (Problem 3.14(iv)) shows

m(O) =ℳ ⊃ O ⇐⇒ m(O) =ℳ ⊃ �(O).

This finishes the first part of the problem.
The answer to the additional question is: yes, we can omit the monotonicity in the countable inter-
section and union. The argument is as follows: Problem 3.14 still works without the monotonicity
(giving a slightly different notion of monotone class), and so the above proof goes through!

■■

Problem 3.16 Solution: Write Σ ∶= ⋃

{�(C ) ∶ C ⊂ ℱ , C is a countable sub-family}.
If C ⊂ ℱ we get �(C ) ⊂ �(ℱ ), and so Σ ⊂ �(ℱ ).
Conversely, it is clear that ℱ ⊂ Σ, just take C ∶= CF ∶= {F } for each F ∈ ℱ . If we can show
that Σ is a �-algebra we get �(ℱ ) ⊂ �(Σ) = Σ and equality follows.

• Clearly, ∅ ∈ Σ.
• If S ∈ Σ, then S ∈ �(CS) for some countable CS ⊂ ℱ . Moreover, Sc ∈ �(CS), i. e. Sc ∈
Σ.

• If (Sn)n⩾0 ⊂ Σ are countably many sets, then Sn ∈ �(Cn) for some countable Cn ⊂ ℱ and
each n ⩾ 0. Set C ∶=

⋃

n Cn. This is again countable and we get Sn ∈ �(C ) for all n, hence
⋃

n Sn ∈ �(C ) and so
⋃

n Sn ∈ Σ.
■■
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4 Measures.

Solutions to Problems 4.1�4.22

Problem 4.1 Solution:

(i) We have to show that for ameasure� and finitelymany, pairwise disjoint setsA1, A2,… , AN ∈
A we have

�(A1 ⊍ A2 ⊍… ⊍ AN ) = �(A1) + �(A2) +… + �(AN ).

We use induction in N ∈ N. The hypothesis is clear, for the start (N = 2) see Proposition
4.3(i). Induction step: takeN+1 disjoint setsA1,… , AN+1 ∈ A , setB ∶= A1⊍…⊍AN ∈ A
and use the induction start and the hypothesis to conclude

�(A1 ⊍… ⊍ AN ⊍ AN+1) = �(B ⊍ AN+1)

= �(B) + �(AN+1)

= �(A1) +… + �(AN ) + �(AN+1).

(iv) To get an idea what is going on we consider first the case of three sets A,B, C . Applying the
formula for strong additivity thrice we get

�(A ∪ B ∪ C) = �(A ∪ (B ∪ C))

= �(A) + �(B ∪ C) − �(A ∩ (B ∪ C)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
= (A∩B)∪(A∩C)

)

= �(A) + �(B) + �(C) − �(B ∩ C) − �(A ∩ B)

− �(A ∩ C) + �(A ∩ B ∩ C).

As an educated guess it seems reasonable to suggest that

�(A1 ∪… ∪ An) =
n
∑

k=1
(−1)k+1

∑

�⊂{1,…,n}
#�=k

�
(

∩
j∈�

Aj
)

.

We prove this formula by induction. The induction start is just the formula from Proposition
4.3(iv), the hypothesis is given above. For the induction step we observe that

∑

�⊂{1,…,n+1}
#�=k

=
∑

�⊂{1,…,n,n+1}
#�=k, n+1∉�

+
∑

�⊂{1,…,n,n+1}
#�=k, n+1∈�

=
∑

�⊂{1,…,n}
#�=k

+
∑

�′⊂{1,…,n}
#�′=k−1, �∶=�′∪{n+1}

(∗)
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Having this in mind we get for B ∶= A1 ∪… ∪ An and An+1 using strong additivity and the
induction hypothesis (for A1,… , An resp. A1 ∩ An+1,… , An ∩ An+1)

�(B ∪ An+1) = �(B) + �(An+1) − �(B ∩ An+1)

= �(B) + �(An+1) − �
( n
∪
j=1
(Aj ∩ An+1)

)

=
n
∑

k=1
(−1)k+1

∑

�⊂{1,…,n}
#�=k

�
(

∩
j∈�

Aj
)

+ �(An+1)

+
n
∑

k=1
(−1)k+1

∑

�⊂{1,…,n}
#�=k

�
(

An+1 ∩j∈�Aj
)

.

Because of (∗) the last line coincides with
n+1
∑

k=1
(−1)k+1

∑

�⊂{1,…,n,n+1}
#�=k

�
(

∩
j∈�

Aj
)

and the induction is complete.
(v) We have to show that for a measure � and finitely many sets B1, B2,… , BN ∈ A we have

�(B1 ∪ B2 ∪… ∪ BN ) ⩽ �(B1) + �(B2) +… + �(BN ).

We use induction in N ∈ N. The hypothesis is clear, for the start (N = 2) see Proposition
4.3(v). Induction step: takeN +1 sets B1,… , BN+1 ∈ A , set C ∶= B1 ∪…∪BN ∈ A and
use the induction start and the hypothesis to conclude

�(B1 ∪… ∪ BN ∪ BN+1) = �(C ∪ BN+1)

⩽ �(C) + �(BN+1)

⩽ �(B1) +… + �(BN ) + �(BN+1).

■■

Problem 4.2 Solution:

(i) The Dirac measure is defined on an arbitrary measurable space (X,A ) by

�x(A) ∶=
⎧

⎪

⎨

⎪

⎩

0, if x ∉ A
1, if x ∈ A

,

where A ∈ A and x ∈ X is a fixed point.
(M1) Since ∅ contains no points, x ∉ ∅ and so �x(∅) = 0.
(M2) Let (Aj)j∈N ⊂ A a sequence of pairwise disjoint measurable sets. If x ∈ ⋃

j∈NAj ,
there is exactly one j0 with x ∈ Aj0 , hence

�x

(

⋃

j∈N
Aj

)

= 1 = 1 + 0 + 0 +…
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= �x(Aj0) +
∑

j≠j0

�x(Aj)

=
∑

j∈N
�x(Aj).

If x ∉ ⋃

j∈NAj , then x ∉ Aj for every j ∈ N, hence

�x

(

⋃

j∈N
Aj

)

= 0 = 0 + 0 + 0 +… =
∑

j∈N
�x(Aj).

(ii) The measure  is defined on (R,A ) by (A) ∶=
⎧

⎪

⎨

⎪

⎩

0, if #A ⩽ #N

1, if #Ac ⩽ #N
where A ∶= {A ⊂ R ∶

#A ⩽ #N or #Ac ⩽ #N}. (Note that #A ⩽ #N if, and only if, #Ac = #R ⧵ A > #N.)

(M1) Since ∅ contains no elements, it is certainly countable and so (∅) = 0.

(M2) Let (Aj)j∈N be pairwise disjointA -sets. If all of them are countable, then A ∶= ⋃

j∈N

is countable and we get



(

⋃

j∈N
Aj

)

= (A) = 0 =
∑

j∈N
(Aj).

If at least one Aj is not countable, say for j = j0, then A ⊃ Aj0 is not countable and therefore
(A) = (Aj0) = 1. Assume we could find some other j1 ≠ j0 such that Aj0 , Aj1 are not
countable. SinceAj0 , Aj1 ∈ A we know that their complementsAcj0 , Acj1 are countable, hence
Acj0∪A

c
j1
is countable and, at the same time,∈ A . Because of this, (Acj0∪Acj1)c = Aj0∩Aj1 = ∅

cannot be countable, which is absurd! Therefore there is at most one index j0 ∈ N such that
Aj0 is uncountable and we get then



(

⋃

j∈N
Aj

)

= (A) = 1 = 1 + 0 + 0 +… = (Aj0) +
∑

j≠j0

(Aj).

(iii) We have an arbitrarymeasurable space (X,A ) and themeasure |A| =
⎧

⎪

⎨

⎪

⎩

#A, if A is finite
∞, else

.

(M1) Since ∅ contains no elements, #∅ = 0 and |∅| = 0.

(M2) Let (Aj)j∈N be a sequence of pairwise disjoint sets in A . Case 1: All Aj are finite and
only finitely many, say the first k, are non-empty, then A =

⋃

j∈NAj is effectively a finite
union of k finite sets and it is clear that

|A| = |A1| +…+ |Ak| + |∅| + |∅| +… =
∑

j∈N
|Aj|.
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Case 2: All Aj are finite and infinitely many are non-void. Then their union A =
⋃

j∈NAj
is an infinite set and we get

|A| = ∞ =
∑

j∈N
|Aj|.

Case 3: At least one Aj is infinite, and so is then the union A = ⋃

j∈NAj . Thus,

|A| = ∞ =
∑

j∈N
|Aj|.

(iv) On a countable setΩ = {!1, !2,…}we define for a sequence (pj)j∈N ⊂ [0, 1]with∑j∈N pj =
1 the set function

P (A) =
∑

j∶!j∈A
pj =

∑

j∈N
pj �!j (A), A ⊂ Ω.

(M1) P (∅) = 0 is obvious.

(M2) Let (Ak)k∈N be pairwise disjoint subsets of Ω. Then
∑

k∈N
P (Ak) =

∑

k∈N

∑

j∈N
pj �!j (Ak)

=
∑

j∈N

∑

k∈N
pj �!j (Ak)

=
∑

j∈N
pj

(

∑

k∈N
�!j (Ak)

)

=
∑

j∈N
pj�!j

(

∪
k
Ak

)

= P
(

∪
k
Ak

)

.

The change in the order of summation needs justification; one possibility is the argument
used in the solution of Problem 4.7(ii). (Note that the reordering theorem for absolutely
convergent series is not immediately applicable since we deal with a double series!)

(v) This is obvious.
■■

Problem 4.3 Solution:

• On (R,ℬ(R)) the function  is not be a measure, since we can take the sets A = (1,∞),
B = (−∞,−1) which are disjoint, not countable and both have non-countable complements.
Hence, (A) = (B) = 1. On the other hand, A⊍B is non-countable and has non-countable
complement, [−1, 1]. So, (A ⊍ B) = 1. This contradicts the additivity: (A ⊍ B) = 1 ≠
2 = (A) + (B). Notice that the choice of the �-algebra A avoids exactly this situation. ℬ
is the wrong �-algebra for  .
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• On Q (and, actually, any possible �-algebra thereon) the problem is totally different: if A
is countable, then Ac = Q ⧵ A is also countable and vice versa. This means that (A) is,
according to the definition, both 1 and 0 which is, of course, impossible. This is to say:  is
not well-defined.  makes only sense on a non-countable set X.

■■

Problem 4.4 Solution:

(i) If A = {∅,R}, then � is a measure.
But as soon as A contains one set A which is trivial (i.e. either ∅ or X), we have actually
Ac ∈ A which is also non-trivial. Thus,

1 = �(X) = �(A ⊍ Ac) ≠ �(A) + �(Ac) = 1 + 1 = 2

and � cannot be a measure.
(ii) If we equip R with a �-algebra which contains sets such that both A and Ac can be infinite

(the Borel �-algebra would be such an example: A = (−∞, 0) ⇐⇒ Ac = [0,∞)), then � is
not well-defined. The only type of sets where � is well-defined is, thus,

A ∶= {A ⊂ R ∶ #A <∞ or #Ac <∞}.

But this is no �-algebra as the following example shows: Aj ∶= {j} ∈ A , j ∈ N, are
pairwise disjoint sets but ⋃j∈NAj = N is not finite and its complement is R ⧵N not finite
either! Thus, N ∉ A , showing that A cannot be a �-algebra. We conclude that � can never
be a measure if the �-algebra contains infinitely many sets. If we are happy with finitely many
sets only, then here is an example that makes � into a measure A = {∅, {69},R ⧵ {69},R}
and similar families are possible, but the point is that they all contain only finitely many
members.

■■

Problem 4.5 Solution: Denote by � one-dimensional Lebesgue measure and consider the Borel sets
Bk ∶= (k,∞). Clearly⋂k Bk = ∅, k ∈ N, so that Bk ↓ ∅. On the other hand,

�(Bk) = ∞ ⇐⇒ inf
k
�(Bk) = ∞ ≠ 0 = �(∅)

which shows that the finiteness condition is indeed essential.
■■

Problem 4.6 Solution: Mind the typo in the problem: it should read “infinite mass” – otherwise the
problem is pointless.
Solution 1: Define a measure � which assigns every point n − 1

2k , n ∈ Z, k ∈ N the mass 1
2k :

� =
∑

n∈Z

∑

k∈N

1
2k
�n− 1

2k
.
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(SinceZ×N is countable, Problem 4.7 shows that this object is indeed a measure!) Obviously, any
interval [a, b) of length b−a > 2 contains some integer, saym ∈ [a, b) so that [m−1∕2, m) ⊂ [a, b),
thus

�[a, b) ⩾ �[m − 1∕2, m) =
∑

k∈N

1
2k

= ∞.

On the other hand, the sequence of sets

Bn ∶=
n
⋃

k=−n

[

k − 1, k − 1
2n

)

satisfies �(Bn) <∞ and⋃n Bn = R.
Solution 2: Set �(B) ∶= #(B ∩ Q), B ∈ ℬ(R), i.e. the counting measure of the rationals in R.
Clearly, �[a, b) = ∞ for every (non-empty) interval with a < b. On the other hand, if (qk)k∈N
is an enumeration of Q, the sets Bn ∶= (R ⧵Q) ∪ {q1,… , qn} satisfy

Bn ↑ R and �(Bn) = n,

i.e. � is �-finite.
■■

Problem 4.7 Solution:

(i) Clearly, � ∶= a� + b� ∶ A → [0,∞] (since a, b ⩾ 0!). We check (M1), (M2).
(M1) Clearly, �(∅) = a�(∅) + b�(∅) = a ⋅ 0 + b ⋅ 0 = 0.
(M2) Let (Aj)j∈N ⊂ A be mutually disjoint sets. Then we can use the �-additivity of �, � to
get

�
(

⋃

j∈N
Aj

)

= a�
(

⋃

j∈N
Aj

)

+ b�
(

⋃

j∈N
Aj

)

= a
∑

j∈N
�(Aj) + b

∑

j∈N
�(Aj)

=
∑

j∈N

(

a�(Aj) + b�(Aj)
)

=
∑

j∈N
�(Aj).

Since all quantities involved are positive and since we allow the value +∞ to be attained,
there are no convergence problems.

(ii) Since all �j are positive, the sum∑

j∈N �j�j(A) is a sum of positive quantities and, allowing
the value +∞ to be attained, there is no convergence problem. Thus, � ∶ A → [0,∞] is
well-defined. Before we check (M1), (M2) we prove the following

Lemma. Let �ij , i, j ∈ N, be real numbers. Then

sup
i∈N

sup
j∈N

�ij = sup
j∈N

sup
i∈N

�ij .
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Proof. Observe that we have �mn ⩽ supj∈N supi∈N �ij for all m, n ∈ N. The right-hand side
is independent of m and n and we may take the sup over all n

sup
n∈N

�mn ⩽ sup
j∈N

sup
i∈N

�ij ∀m ∈ N

and then, with the same argument, take the sup over all m

sup
m∈N

sup
n∈N

�mn ⩽ sup
j∈N

sup
i∈N

�ij ∀m ∈ N.

The opposite inequality, ‘⩾’, follows from the same argument with i and j interchanged.

(M1) We have �(∅) = ∑

j∈N �j�j(∅) =
∑

j∈N �j ⋅ 0 = 0.

(M2) Take pairwise disjoint sets (Ai)i∈N ⊂ A . Then we can use the �-additivity of each of
the �j’s to get

�
(

⋃

i∈N
Ai

)

=
∑

j∈N
�j�j

(

⋃

i∈N
Ai

)

= lim
N→∞

N
∑

j=1
�j

∑

i∈N
�j

(

Ai
)

= lim
N→∞

N
∑

j=1
�j limM→∞

M
∑

i=1
�j

(

Ai
)

= lim
N→∞

lim
M→∞

N
∑

j=1

M
∑

i=1
�j�j

(

Ai
)

= sup
N∈N

sup
M∈N

N
∑

j=1

M
∑

i=1
�j�j

(

Ai
)

where we use that the limits are increasing limits, hence suprema. By our lemma:

�
(

⋃

i∈N
Ai

)

= sup
M∈N

sup
N∈N

M
∑

i=1

N
∑

j=1
�j�j

(

Ai
)

= lim
M→∞

lim
N→∞

M
∑

i=1

N
∑

j=1
�j�j

(

Ai
)

= lim
M→∞

M
∑

i=1

∑

j∈N
�j�j

(

Ai
)

= lim
M→∞

M
∑

i=1
�
(

Ai
)

=
∑

i∈N
�
(

Ai
)

.

■■
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Problem 4.8 Solution: Finite additivity implies monotonicity: A ⊂ B ⇐⇒ B = A ⊍ (B ⧵ A) and so

�(B) = �(A ⊍ (B ⧵ A)) = �(A) + �(B ⧵ A) ⩾ �(A).

Let Bn ↑ B and Dn ∶= Bn ⧵ Bn−1 with B0 ∶= ∅. This gives

�
( ∞
⋃

n=1
Bn

)

⩾ sup
n∈N

�(Bn) = sup
n∈N

�
( n
⨃

i=1
Di

)

(1)
= sup

n∈N

n
∑

i=1
�(Di) =

∞
∑

i=1
�(Di)

(2)
⩾ �

( ∞
⋃

i=1
Di

)

= �
( ∞
⋃

n=1
Bn

)

.

where we use finite additivity for (1) and �-subaddtitivity for (2).
■■

Problem 4.9 Solution: Set �(A) ∶= �(A ∩ F ). We know, by assumption, that � is a measure on
(X,A ). We have to show that � is a measure on (X,A ). Since F ∈ A , we have F ∩ A ∈ A for
all A ∈ A , so � is well-defined. Moreover, it is clear that �(A) ∈ [0,∞]. Thus, we only have to
check

(M1) �(∅) = �(∅ ∩ F ) = �(∅) = 0.

(M2) Let (Aj)j∈N ⊂ A be a sequence of pairwise disjoint sets. Then also (Aj ∩ F )j∈N ⊂ A are
pairwise disjoint and we can use the �-additivity of � to get

�
(

⋃

j∈N
Aj

)

= �
(

F ∩
⋃

j∈N
Aj

)

= �
(

⋃

j∈N
(F ∩ Aj)

)

=
∑

j∈N
�(F ∩ Aj)

=
∑

j∈N
�(Aj).

■■

Problem 4.10 Solution: SinceP is a probabilitymeasure, P (Acj ) = 1−P (Aj) = 0. By �-subadditivity,

P
(

⋃

j∈N
Acj

)

⩽
∑

j∈N
P (Acj ),= 0

and we conclude that

P
(

⋂

j∈N
Aj

)

= 1 − P
([

⋂

j∈N
Aj

]c )

= 1 − P
(

⋃

j∈N
Acj

)

= 1 − 0 = 0.

■■
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Problem 4.11 Solution: Note that
⋃

j
Aj ⧵

⋃

k
Bk =

⋃

j

(

Aj ⧵
⋃

k
Bk

⏟⏟⏟
⊃Bj ∀ j

)

⊂
⋃

j

(

Aj ⧵ Bj
)

Since⋃j Bj ⊂
⋃

j Aj we get from �-subadditivity

�
(

⋃

j
Aj

)

− �
(

⋃

j
Bj

)

= �
(

⋃

j
Aj ⧵

⋃

k
Bk

)

⩽ �
(

⋃

j

(

Aj ⧵ Bj
)

)

⩽
∑

j
�(Aj ⧵ Bj).

■■

Problem 4.12 Solution:

(i) We have ∅ ∈ A and �(∅) = 0, thus ∅ ∈ N�.
(ii) SinceM ∈ A (this is essential in order to apply � toM!) we can use the monotonicity of

measures to get 0 ⩽ �(M) ⩽ �(N) = 0, i.e. �(M) = 0 andM ∈ N� follows.
(iii) Since all Nj ∈ A , we get N ∶=

⋃

j∈NNj ∈ A . By the �-subadditivity of a measure we
find

0 ⩽ �(N) = �
(

⋃

j∈N
Nj

)

⩽
∑

j∈N
�(Nj) = 0,

hence �(N) = 0 and soN ∈ N�.
■■

Problem 4.13 Solution:

(i) The one-dimensional Borel setsℬ ∶=ℬ(R) are defined as the smallest �-algebra containing
the open sets. Pick x ∈ R and observe that the open intervals (x − 1

k
, x + 1

k
), k ∈ N, are

all open sets and therefore (x − 1
k
, x + 1

k
) ∈ ℬ. Since a �-algebra is stable under countable

intersections we get {x} = ⋂

k∈N(x −
1
k
, x + 1

k
) ∈ℬ.

Using the monotonicity of measures and the definition of Lebesgue measure we find
0 ⩽ �({x}) ⩽ �((x − 1

k
, x + 1

k
)) = (x + 1

k
) − (x − 1

k
) = 2

k
←←←←←←←←←←←←←←←←←←←←→
k→∞

0.

[Following the hint leads to a similar proof with [x − 1
k
, x + 1

k
) instead of (x − 1

k
, x + 1

k
).]

(ii) a) Since Q is countable, we find an enumeration {q1, q2, q3,…} and we get trivially Q =
⋃

j∈N{qj}which is a disjoint union. (This shows, by the way, thatQ ∈ℬ as {qj} ∈ℬ.)
Therefore, using part (i) of the problem and the �-additivity of measures,

�(Q) = �
(

⋃

j∈N
{qj}

)

=
∑

j∈N
�({qj}) =

∑

j∈N
0 = 0.
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b) Take again an enumeration Q = {q1, q2, q3,…}, fix � > 0 and define C(�) as stated in
the problem. Then we have C(�) ∈ ℬ and Q ⊂ C(�). Using the monotonicity and
�-subadditivity of � we get

0 ⩽ �(Q) ⩽ �
(

C(�)
)

= �
(

⋃

k∈N
[qk − �2−k, qk + �2−k)

)

⩽
∑

k∈N
�
(

[qk − �2−k, qk + �2−k)
)

=
∑

k∈N
2 ⋅ � ⋅ 2−k

= 2�
1
2

1 − 1
2

= 2�.

As � > 0 was arbitrary, we can make � → 0 and the claim follows.
(iii) Since ⋃0⩽x⩽1{x} is a disjoint union, only the countability assumption is violated. Let’s see

what happens if we could use ‘�-additivity’ for such non-countable unions:

0 =
∑

0⩽x⩽1
0 =

∑

0⩽x⩽1
�({x}) = �

(

⋃

0⩽x⩽1
{x}

)

= �([0, 1]) = 1

which is impossible.
■■

Problem 4.14 Solution: Without loss of generality we may assume that a ≠ b; set � ∶= �a + �b.
Then �(B) = 0 if, and only if, a ∉ B and b ∉ B. Since {a}, {b} and {a, b} are Borel sets, all null
sets of � are given by

N� =
{

B ⧵ {a, b} ∶ B ∈ℬ(R)
}

.

(This shows that, in some sense, null sets can be fairly large!).
■■

Problem 4.15 Solution: Let us write N for the family of all (proper and improper) subsets of � null
sets. We note that sets in N can be measurable (that is: N ∈ A ) but need not be measurable.
(i) Since ∅ ∈ N, we find that A = A∪ ∅ ∈ A for every A ∈ A ; thus, A ⊂ A . Let us check that

A is a �-algebra.
(Σ1) Since ∅ ∈ A ⊂ A , we have ∅ ∈ A .
(Σ2) Let A∗ ∈ A . Then A∗ = A ∪N for A ∈ A and N ∈ N. By definition, N ⊂ M ∈ A

where �(M) = 0. Now

A∗c = (A ∪N)c = Ac ∩Nc

= Ac ∩Nc ∩ (Mc ∪M)
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= (Ac ∩Nc ∩Mc) ∪ (Ac ∩Nc ∩M)

= (Ac ∩Mc) ∪ (Ac ∩Nc ∩M)

where we use that N ⊂ M , henceMc ⊂ Nc , henceMc ∩Nc = Mc . But now we see
that Ac ∩Mc ∈ A and Ac ∩Nc ∩M ∈ N since Ac ∩Nc ∩M ⊂ M andM ∈ A is a
� null set: �(M) = 0.

(Σ3) Let (A∗j )j∈N be a sequence of A -sets. From its very definition we know that each
A∗j = Aj ∪Nj for some (not necessarily unique!) Aj ∈ A andNj ∈ N. So,

⋃

j∈N
A∗j =

⋃

j∈N
(Aj ∪Nj) =

(

⋃

j∈N
Aj

)

∪
(

⋃

j∈N
Nj

)

=∶ A ∪N.

Since A is a �-algebra, A ∈ A . All we have to show is that Nj is in N. Since eachNj

is a subset of a (measurable!) null set, say, Mj ∈ A , we find that N =
⋃

j∈NNj ⊂
⋃

j∈NMj = M ∈ A and all we have to show is that �(M) = 0. But this follows from
�-subadditivity,

0 ⩽ �(M) = �
(

⋃

j∈N
Mj

)

⩽
∑

j∈N
�(Mj) = 0.

Thus, A ∪N ∈ A .
(ii) As already mentioned in part (i), A∗ ∈ A could have more than one representation, e.g.

A ∪N = A∗ = B ∪M with A,B ∈ A and N,M ∈ N. If we can show that �(A) = �(B)
then the definition of �̄ is independent of the representation of A∗. Since M,N are not
necessarily measurable but, by definition, subsets of (measurable) null setsM ′, N ′ ∈ A we
find

A ⊂ A ∪N = B ∪M ⊂ B ∪M ′,

B ⊂ B ∪M = A ∪N ⊂ A ∪N ′

and sinceA,B,B∪M ′, A∪N ′ ∈ A , we get frommonotonicity and subadditivity of measures

�(A) ⩽ �(B ∪M ′) ⩽ �(B) + �(M ′) = �(B),

�(B) ⩽ �(A ∪N ′) ⩽ �(A) + �(N ′) = �(A)

which shows �(A) = �(B).
(iii) We check (M1) and (M2)

(M1) Since ∅ = ∅ ∪ ∅ ∈ A , ∅ ∈ A , ∅ ∈ N, we have �̄(∅) = �(∅) = 0.
(M2) Let (A∗j )j∈N ⊂ A be a sequence of pairwise disjoint sets. ThenA∗j = Aj ∪Nj for some

Aj ∈ A and Nj ∈ N. These sets are also mutually disjoint, and with the arguments in
(i) we see that A∗ = A ∪ N where A∗ ∈ A , A ∈ A , N ∈ N stand for the unions of
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A∗j , Aj and Nj , respectively. Since �̄ does not depend on the special representation of
A -sets, we get

�̄
(

⋃

j∈N
A∗j

)

= �̄(A∗) = �(A) = �
(

⋃

j∈N
Aj

)

=
∑

j∈N
�(Aj)

=
∑

j∈N
�̄(A∗j )

showing that �̄ is �-additive.
(iv) LetM∗ be a �̄ null set, i.e.M∗ ∈ A and �̄(M∗) = 0. Take any B ⊂ M∗. We have to show

that B ∈ A and �̄(B) = 0. The latter is clear from the monotonicity of �̄ once we have
shown that B ∈ A which means, once we know that we may plug B into �̄.
Now, B ⊂ M∗ andM∗ = M ∪N for someM ∈ A and N ∈ N. As �̄(M∗) = 0 we also
know that �(M) = 0. Moreover, we know from the definition of N that N ⊂ N ′ for some
N ′ ∈ A with �(N ′) = 0. This entails

B ⊂ M∗ =M ∪N ⊂ M ∪N ′ ∈ A

and �(M ∪N ′) ⩽ �(M) + �(N ′) = 0.

Hence B ∈ N as well as B = ∅ ∪ B ∈ A . In particular, �̄(B) = �(∅) = 0.
(v) Set C = {A∗ ⊂ X ∶ ∃A,B ∈ A , A ⊂ A∗A ⊂ B, �(B ⧵ A) = 0}. We have to show that

A = C .
Take A∗ ∈ A . Then A∗ = A ∪N with A ∈ A , N ∈ N and choose N ′ ∈ A , N ⊂ N ′ and
�(N ′) = 0. This shows that

A ⊂ A∗ = A ∪N ⊂ A ∪N ′ =∶ B ∈ A

and that �(B⧵A) = �((A∪N ′)⧵A) ⩽ �(N ′) = 0. (Note that (A∪N ′)⧵A = (A∪N ′)∩Ac =
N ′ ∩ Ac ⊂ N ′ and that equality need not hold!).
Conversely, takeA∗ ∈ C . Then, by definition,A ⊂ A∗ ⊂ BwithA,B ∈ A and�(B⧵A) = 0.
Therefore, N ∶= B ⧵ A is a null set and we see that A∗ ⧵ A ⊂ B ⧵ A, i.e. A∗ ⧵ A ∈ N. So,
A∗ = A ∪ (A∗ ⧵ A) where A ∈ A and A∗ ⧵ A ∈ N showing that A∗ ∈ A .

■■

Problem 4.16 Solution: Set

Σ ∶=
{

F ▵N ∶ F ∈ ℱ , N ∈ N
}

.

and denote, without further mentioning, by F , Fj resp.N,Nj sets fromℱ resp.N . Since F ▵ ∅ =
F , ∅▵N = N and F ▵N ∈ �(ℱ ,N ) we get

ℱ , N ⊂ Σ ⊂ �(ℱ ,N ) (*)
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and the first assertion follows if we can show that Σ is a �-algebra. In this case, we can apply the
�-operation to the inclusions (*) and get

�(ℱ ,N ) ⊂ �(Σ) ⊂ �(�(ℱ ,N ))

which is just

�(ℱ ,N ) ⊂ Σ ⊂ �(ℱ ,N ).

To see that Σ is a �-algebra, we check conditions (Σ1)–(Σ3).
(Σ1): Clearly, X ∈ ℱ andN ∈ N so that X = X ▵ ∅ ∈ Σ;
(Σ2): We have, using de Morgan’s identities over and over again:

[F ▵N]c = [(F ⧵N) ∪ (N ⧵ F )]c

= (F ∩Nc)c ∩ (N ∩ F c)c

= (F c ∪N) ∩ (Nc ∪ F )

= (F c ∩Nc) ∪ (Gc ∩ G) ∪ (N ∩Nc) ∪ (N ∩ F )

= (F c ∩Nc) ∪ (N ∩ F )

= (F c ⧵N) ∪ (N ⧵ F c)

= F c
⏟⏟⏟
∈ℱ

▵N

∈ Σ;

(Σ3): We begin by a few simple observations, namely that for all F ∈ ℱ andN,N ′ ∈ N

F ∪N = F ▵ (N ⧵ F )
⏟⏞⏟⏞⏟
∈N

∈ Σ; (a)

F ⧵N = F ▵ (N ∩ F )
⏟⏞⏟⏞⏟

∈N

∈ Σ; (b)

N ⧵ F = N ▵ (F ∩N)
⏟⏞⏟⏞⏟

∈N

∈ Σ; (c)

(F ▵N) ∪N ′ =
(

F ▵N
)

▵
(

N ′ ⧵ (F ▵N)
)

= F ▵
(

N ▵(N ′ ⧵ (F ▵N))
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∈N

∈ Σ, (d)

where we use Problem 2.6(ii) and part (a) for (d).
Now let (Fj)j∈N ⊂ ℱ and (Nj)j∈N ⊂ N and set F ∶=

⋃

j Fj ∈ ℱ and, because of �-
subadditivity of measuresN ∶=

⋃

j Nj ∈ N . Then

F ⧵N =
⋃

j∈N
(Fj ⧵N) ⊂

⋃

j∈N
(Fj ⧵Nj) ⊂

⋃

j∈N
Fj = F
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as well as
∅ ⊂

⋃

j∈N
(Nj ⧵ Fj) ⊂

⋃

j∈N
Nj = N

which shows that
F ⧵N ⊂

⋃

j∈N
(Fj ▵Nj) ⊂ F ∪N. (**)

Since ℱ ,N ⊂ A , and consequently ⋃j∈N(Fj ▵Nj) ∈ A , and since A -measurable subsets
of null sets are again in N , the inclusions (**) show that there exists someN ′ ∈ N so that

⋃

j∈N
(Fj ▵Nj) = (F ⧵N)

⏟⏞⏟⏞⏟
∈Σ, cf. (b)

∪N ′ ∈ Σ

where we use (d) for the last inclusion.
■■

Problem 4.17 Solution: By definition,
A =

{

A ∪N ∶ A ∈ A , N ∈ N
}

.

Since
A ∪N = A▵ (N ⧵ A)

⏟⏟⏟
∈N

and since by an application of Problem 4.16 to (X,A , �̄),A ,N (instead of (X,A , �),G ,N ) we
get

�(A ,N ) =
{

A▵N ∶ A ∈ A , N ∈ N
}

and we conclude that
A ⊂ �(A ,N ).

On the other hand,
A ⊂ A and N ⊂ A

so that, since A is a �-algebra,
�(A ,N ) ⊂ �(A ) = A ⊂ �(A ,N ).

Finally, assume that A∗ ∈ A and A ∈ A . Then A = A∗ ▵N and we get
A∗ ▵A = A▵N ▵A = (A▵A)▵N = N.

Note that this result would also follow directly from 4.15 since we know from there thatA∗ = A∪N
so that

A∗ ▵A = (A ∪N)▵A = A▵(N ⧵ A)▵A = N ⧵ A

■■
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Problem 4.18 Solution: Denote the completion byℬ∗ and writeNx for all subsets of Borel null sets
of �x. Clearly,

Nx = {A ⊂ Rn ∶ x ∉ A}.

Recall from Problem 4.15(i) thatℬ∗ contains all sets of the formB∪N withB ∈ℬ andN ∈ Nx.
Now let C ⊂ Rn be any set. If x ∈ C , then write

C = {x}
⏟⏟⏟
∈ℬ

∪ (C ⧵ {x})
⏟⏞⏞⏟⏞⏞⏟

∈Nx

∈ℬ∗;

Otherwise, x ∉ C and

C = C ⧵ {x} = ∅
⏟⏟⏟
∈ℬ

∪ (C ⧵ {x})
⏟⏞⏞⏟⏞⏞⏟

∈Nx

∈ℬ∗.

This shows thatℬ∗ = P (Rn) is the power set of Rn.
■■

Problem 4.19 Solution:

(i) Sinceℬ is a �-algebra, it is closed under countable (disjoint) unions of its elements, thus �
inherits the properties (M1), (M2) directly from �.

(ii) Yes [yes], since the full space X ∈ℬ so that �(X) = �(X) is finite [resp. = 1].
(iii) No, �-finiteness is also a property of the �-algebra. Take, for example, Lebesgue measure �

on the Borel sets (this is �-finite) and consider the �-algebra C ∶= {∅, (−∞, 0), [0,∞),R}.
Then �||

|C
is not �-finite since there is no increasing sequence ofC -sets having finite measure.

■■

Problem 4.20 Solution: By definition, � is �-finite if there is an increasing sequence (Bj)j∈N ⊂ A
such that Bj ↑ X and �(Bj) <∞. Clearly, Ej ∶= Bj satisfies the condition in the statement of the
problem.
Conversely, let (Ej)j∈N be as stated in the problem. Then Bn ∶= E1 ∪ … ∪ En is measurable,
Bn ↑ X and, by subadditivity,

�(Bn) = �(E1 ∪… ∪ En) ⩽
n
∑

j=1
�(Ej) <∞.

Remark: A small change in the above argument allows to take pairwise disjoint sets Ej .
■■

Problem 4.21 Solution:
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(i) Fix � > 0 and choose forA ∈ Σ setsU ∈ O , F ∈ ℱ such that F ⊂ A ⊂ U and �(U ⧵F ) < �.
Set U ′ ∶= F c ∈ O and F ′ ∶= U c ∈ ℱ . Then we have

F ′ ⊂ Ac ⊂ U ′ and U ′ ⧵ F ′ = F c ⧵ U c = F c ∩ U = U ⧵ F

and so �(U ′ ⧵ F ′) = �(U ⧵ F ) < �. This means that Ac ∈ Σ.

Denote by d(x, y) the distance of two points x, y ∈ X and write B1∕n(0) for the open ball
{y ∈ X ∶ d(y, 0) < 1

n
}. As in the solution of Problem 3.14(ii) we see thatUn ∶= F +B1∕n(0)

is a sequence of open sets such that Un ↓ F . Because of the continuity of measures we get
�(Un ⧵ F ) ←←←←←←←←←←←←←←←←←←←←→n→∞

0 and since ℱ ∋ F ⊂ F ⊂ Un ∈ O , this means that ℱ ⊂ Σ.
(ii) Fix � > 0 and pick for Aj ∈ Σ, j = 1, 2, open sets Uj and closed sets Fj such that Fj ⊂

A ⊂ Uj and �(Uj ⧵ Fj) < �. Then F1 ∩ F2 and U1 ∩ U2 are again closed resp. open, satisfy
F1 ∩ F2 ⊂ A1 ∩ A2 ⊂ U1 ∩ U2 as well as

�
(

(U1 ∩ U2) ⧵ (F1 ∩ F2)
)

= �
(

(U1 ∩ U2) ∩ (F c1 ∪ F
c
2 )
)

= �
(

[(U1 ∩ U2) ⧵ F1] ∪ [(U1 ∩ U2) ⧵ F2]
)

⩽ �
(

(U1 ∩ U2) ⧵ F1
)

+ �
(

(U1 ∩ U2) ⧵ F2
)

< 2�.

This shows that Σ is ∩-stable.
(iii) Fix � and pick for a given sequence (Aj)j∈N ⊂ Σ open sets Uj and closed sets Fj such that

Fj ⊂ Aj ⊂ Uj and �(Uj ⧵ Fj) < �2−j .

Set A ∶= ⋃

j Aj . Then U ∶=
⋃

j Uj ⊃ A is an open set wile F ∶=
⋃

j Fj is contained in A
but it is only an increasing limit of closed sets Φn ∶= F1 ∪… ∪ Fn. Using Problem 4.11 we
get

�(U ⧵ F ) ⩽
∑

j
�(Uj ⧵ Fj) ⩽

∑

j
�2−j ⩽ �.

Since Φn ⊂ A ⊂ U and U ⧵Φn ↓ U ⧵ F , we can use the continuity of measures to conclude
that infn �(U ⧵ Φn) = �(U ⧵ F ) ⩽ �, i.e. �(U ⧵ ΦN ) ⩽ 2� if N = N� is sufficiently large.
This shows that Σ contains all countable unions of its members. Because of part (i) it is also
stable under complementation and contains the empty set. Thus, Σ is a �-algebra.
As ℱ ⊂ Σ andℬ = �(ℱ ), we haveℬ ⊂ Σ.

(iv) For any Borel set B ∈ Σ and any � > 0 we can find open and closed sets U� and F�, respect-
ively, such that F� ⊂ B ⊂ U� and

�(B ⧵ F�) ⩽ �(U� ⧵ F�) < � ⇐⇒ �(B) ⩽ � + �(F�),

�(U� ⧵ B) ⩽ �(U� ⧵ F�) < � ⇐⇒ �(B) ⩾ �(U�) − �.
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Thus,

sup
F⊂B, F∈ℱ

�(F ) ⩽ �(B) ⩽ � + �(F�) ⩽ � + sup
F⊂B, F∈ℱ

�(F )

inf
U⊃B,U∈O

�(U ) − � ⩽ �(U�) − � ⩽ �(b) ⩽ inf
U⊃B,U∈O

�(U ).

(v) For every closed F ∈ ℱ the intersections Kj ∩ F , j ∈ N, will be compact and Kj ∩ F ↑ F .
By the continuity of measures we get

�(F ) = sup
j
�(Kj ∩ F ) ⩽ sup

K⊂F ,K cpt
�(K) ⩽ �(F ).

Thus,

�(F ) = sup
K⊂F ,K cpt

�(K) ∀F ∈ ℱ . (*)

Combining (iv) and (*) we get

�(B)
(iv)
= sup

F⊂B, F∈ℱ
�(F )

(*)
= sup

F⊂B, F∈ℱ
sup

K⊂F ,K cpt
�(K)

⩽ sup
F⊂B, F∈ℱ

sup
K⊂B,K cpt

�(K)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
note: independent of F⊂B

= sup
K⊂B,K cpt

�(K)

and since �(K) ⩽ �(B) for K ⊂ B and supK⊂B,K cpt �(K) ⩽ �(B) are obvious, we are
finished.

(vi) Assume now that � is �-finite. Let (Bn)n∈N ⊂ ℬ be an exhausting sequence for X such
that �(Bn) < ∞. Then the measures �n(B) ∶= �(B ∩ Bn) defined on ℬ are finite and
regular according to part (iv). Since we may interchange any two suprema (cf. the solution
of Problem 4.7) we get

�(B) = sup
n
�n(B) = sup

n
sup

F⊂B, F∈ℱ
�n(F )

= sup
F⊂B, F∈ℱ

sup
n
�n(F )

= sup
F⊂B, F∈ℱ

�(F ).

■■

Problem 4.21 Solution: First of all, Problem 4.21(iv) shows that

�(B) = sup
F⊂B,F closed

�(F ). (*)
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Let (dk)k be an enumeration of the dense setD ⊂ X and write � for the metric inX and Kr(x) ∶=
{y ∈ X ∶ �(x, y) ⩽ r} for the closed ball with centre x and radius r.
Since, for any fixed n ∈ N the sets

K1∕n(d1) ∪⋯ ∪K1∕n(dm) ↑ X for m→∞

we get from (*)

∀ � > 0 ∃ k(n) ∈ N ∶ �(Fn) +
�
2n

⩾ �(X)

if Fn ∶= K1∕n(d1) ∪⋯ ∪K1∕n(dk(n)). Setting

K ∶= K� ∶=
⋂

n
Fn

it is clear that K is closed. Moreover, since K is, for every 1∕n, covered by finitely many balls of
radius 1∕n, to wit,

K ⊂ K1∕n(d1) ∪⋯ ∪K1∕n(dk(n)),

we see that K is compact. Indeed, if (xj)j ⊂ K is a sequence, there is a subsequence (xnj )j which
is completely contained in one of the balls K1∕n(d1),… , K1∕n(dk(n)). Passing iteratively to sub-
sub-etc. sequences we find a subsequence (yj)j ⊂ (xj)j which is contained in a sequence of closed
balls K1∕n(cn) (cn is a suitable element from D). Thus (yj)j is a Cauchy sequence and converges,
because of completeness, to an element x∗ which is, as the Fn are closed, in every Fn, hence in K .
Thus K is (sequentially) compact.
Since

�(X ⧵K) = �
(

⋃

n
X ⧵ Fn

)

⩽
∑

n
�(X ⧵ Fn) ⩽

∑

n

�
2n
= �,

we have found a sequence of compact sets Kn such that �(Kn)→ �(X) (note that the Kn need not
‘converge’X as a set!). Obviously,Kn∩F is compact for every closed F and we have �(Kn∩F )→
�(F ), hence

�(F ) = sup
K⊂F ,K cpt

�(K) ∀F ∈ ℱ .

Now we can use the argument from the proof of Problem 4.22(v).
■■
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5 Uniqueness of measures.

Solutions to Problems 5.1�5.13

Problem 5.1 Solution: Since X ∈ D and since complements are again in D , we have ∅ = Xc ∈ D .
If A,B ∈ D are disjoint, we set A1 ∶= A,A2 ∶= B,Aj ∶= ∅ ∀j ⩾ 3. Then (Aj)j∈N ⊂ D is a
sequence of pairwise disjoint sets, and by (D3) we find that

A ⊍ B =
⨃

j∈N
Aj ∈ D .

Since (Σ1) = (D3), (Σ2) = (D2) and since (Σ3) ⇐⇒ (D3), it is clear that every �-algebra is also a
Dynkin system; that the converse is, in general, wrong is seen in Problem 5.2.

■■

Problem 5.2 Solution: Consider (D3) only, as the other two conditions coincide: (Σj) = (Δj), j =
1, 2. We show that (Σ3) breaks down even for finite unions. IfA,B ∈ D are disjoint, it is clear that
A,B and also A⊍B contain an even number of elements. But if A,B have non-void intersection,
and if this intersection contains an odd number of elements, then A ∪ B contains an odd number
of elements. Here is a trivial example:

A = {1, 2} ∈ D , B = {2, 3, 4, 5} ∈ D ,

whereas
A ∪ B = {1, 2, 3, 4, 5} ∉ D .

This means that (D3) holds, but (Σ3) fails.
■■

Problem 5.3 Solution: We verify the hint first. Using de Morgan’s laws we get
R ⧵Q = R ⧵ (R ∩Q) = R ∩ (R ∩Q)c = (Rc ∪ (R ∩Q))c = (Rc ⊍ (R ∩Q))c

where the last equality follows since Rc ∩ (R ∩Q) = ∅.
Now we take A,B ∈ D such that A ⊂ B. In particular A ∩ B = A. Taking this into account and
setting Q = A,R = B we get from the above relation

B ⧵ A =
(

Bc
⏟⏟⏟
∈D

⊍A

⏟⏞⏞⏞⏟⏞⏞⏞⏟
∈D

)c ∈ D
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where we repeatedly use (D2) and (D2).
■■

Problem 5.4 Solution:

(i) Since the �-algebra A is also a Dynkin system, it is enough to prove �(D ) = D for any
Dynkin system D . By definition, �(D ) is the smallest Dynkin system containing D , thus
D ⊂ �(D ). On the other hand, D is itself a Dynkin system, thus, because of minimality,
D ⊃ �(D ).

(ii) Clearly, G ⊂ ℋ ⊂ �(ℋ ). Since �(ℋ ) is a Dynkin system containing G , the minimality of
�(G ) implies that �(G ) ⊂ �(ℋ ).

(iii) Since �(G ) is a �-algebra, it is also a Dynkin system. Since G ⊂ �(G ) we conclude (again,
by minimality) that �(G ) ⊂ �(G ).

Combining both definitions, i.e. (D1)–(D′3) and (D1)–(D3), we see that X ∈ D . Stability under
incrasing limits follows from (D′3) and ifDn ↓ Dwe getDc

n ↑ D
c , i.e. the stability under decreasing

limits follows from (D2), (D′3) and deMorgan’s laws.
■■

Problem 5.5 Solution: Clearly, �({A,B}) ⊂ �({A,B}) is always true.
By Theorem 5.5, �({A,B}) = �({A,B}) if {A,B} is ∩-stable, i.e. if A = B or A = Bc or if at
least one of A,B is X or ∅.
Let us exclude these cases. If A ∩ B = ∅, then

�({A,B}) = �({A,B}) =
{

∅, A, Ac , B, Bc , A ⊍ B,Ac ∩ Bc , X
}

.

If A ∩ B ≠ ∅, then
�({A,B}) =

{

∅, A, Ac , B, Bc , X}

while �({A,B}) is much larger containing, for example, A ∩ B.
■■

Problem 5.6 Solution: Some authors call families of sets satisfying (D1), (D′2), (D′3) monotone classes
(this is not the standard definition!). We will use this convention locally for this solution only.
Clearly, such a monotone class ℱ is a Dynkin system:

C,D ∈ ℱ , C ∩D = ∅
(D1)
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒
(D′2)

C ⊍ D = E ⧵
[

(E ⧵ C) ⧵D
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

E⧵C⊃D as C∩D=∅

]

∈ ℱ ,

i.e., ℱ is ⊍-stable. This and (D′3) yield (D3); (D2) is a special case of (D′2).
Conversely every Dynkin system D is a monotone class in the sese of this problem:

M,N ∈ D , M ⊂ N
(D2)
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒(D3)

Nc ∩M =M ⧵N = ∅ and N ⧵M = (Nc ⊍M)c ∈ D ,
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i.e. (D′2) holds. Thus, (D3) immediately implies (D′3).
■■

Problem 5.7 Solution: We prove the hint first. Let (Gj)j∈N ⊂ G as stated in the problem, i.e.
satisfying (1) and (2), and define the sets FN ∶= G1 ∪ … ∪ GN . As G ⊂ A , it is clear that
FN ∈ A (but not necessarily in G ...). Moreover, it is clear that FN ↑ X.

We begin with a more general assertion: For any finite union of G -sets A1 ∪ … ∪ AN we have
�(A1 ∪… ∪ AN ) = �(A1 ∪… ∪ AN ).

Proof. Induction Hypothesis: �(A1 ∪ … ∪ AN ) = �(A1 ∪ … ∪ AN ) for some N ∈ N and any
choice of A1,… , AN ∈ G .
Induction Start (N = 1): is obvious.
Induction StepN ⇝ N + 1: By the induction assumption we know that

�
(

(A1 ∪⋯ ∪ AN ) ∩ AN+1
)

= �
(

(A1 ∩ AN ) ∪⋯ ∪ (AN ∩ AN+1)
)

= �
(

(A1 ∩ AN ) ∪⋯ ∪ (AN ∩ AN+1)
)

= �
(

(A1 ∪⋯ ∪ AN ) ∩ AN+1
)

.

If �((A1 ∪⋯∪AN ) ∩AN+1
)

<∞, hence �((A1 ∪⋯∪AN ) ∩AN+1
)

<∞, we have by the strong
additivity of measures and the ∩-stability of G that

�
(

A1 ∪… ∪ AN ∪ AN+1
)

= �
(

(A1 ∪… ∪ AN ) ∪ AN+1
)

= �
(

A1 ∪… ∪ AN
)

+ �(AN+1) − �
(

(A1 ∪… ∪ AN ) ∩ AN+1
)

= �
(

A1 ∪… ∪ AN
)

+ �(AN+1) − �
(

(A1 ∩ AN+1
⏟⏞⏞⏞⏟⏞⏞⏞⏟

∈G

) ∪ … ∪ (AN ∩ AN+1
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

∈G

)
)

= �
(

A1 ∪… ∪ AN
)

+ �(AN+1) − �
(

(A1 ∩ AN+1) ∪ … ∪ (AN ∩ AN+1)
)

⋮

= �
(

A1 ∪… ∪ AN ∪ AN+1
)

where we use the induction hypothesis twice, namely for the union of theN G -sets A1,… , AN as
well as for theN G -sets A1 ∩ AN+1,… , AN ∩ AN+1. The induction is complete.
If �((A1 ∪⋯ ∪ AN ) ∩ AN+1

)

= ∞, hence �((A1 ∪⋯ ∪ AN ) ∩ AN+1
)

= ∞, there is nothing to
show since the monotinicity of measures entails

(A1 ∪⋯ ∪ AN ) ∩ AN+1 ⊂ (A1 ∪⋯ ∪ AN ) ∪ AN+1
⇐⇒ �

(

(A1 ∪⋯ ∪ AN ) ∪ AN+1
)

= ∞ = �
(

(A1 ∪⋯ ∪ AN ) ∪ AN+1
)

.

In particular we see that �(FN ) = �(FN ), �(FN ) ⩽ �(G1) + … + �(GN ) < ∞ by subadditivity,
and that (think!) �(G ∩ FN ) = �(G ∩ FN ) for any G ∈ G (just work out the intersection, similar
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to the step in the induction....). This shows that on the ∩-stable system

G̃ ∶= {all finite unions of sets in G }

� and � coincide. Moreover, G ⊂ G̃ ⊂ A so that, by assumptionA = �(G ) ⊂ �(G̃ ) ⊂ �(A ) ⊂ A ,
so that equality prevails in this chain of inclusions. This means that G̃ is a generator ofA satisfying
all the assumptions of Theorem 5.7, and we have reduced everything to this situation.

Remark. The last step shows that we only need the induction for sets from G with finite �-, hence
�-measure. Therefore, the extended discussion on finiteness is actually not needed, if the induction
is only used for the sequences (Gi)i and (Fn)n.

■■

Problem 5.8 Solution: Intuition: in two dimensions we have rectangles. Take I, I ′ ∈ J . Call the
lower left corner of I a = (a1, a2), the upper right corner b = (b1, b2), and do the same for I ′ using
a′, b′. This defines a rectangle uniquely. We are done, if I ∩ I ′ = ∅. If not (draw a picture!) then
we get an overlap which can be described by taking the right-and-upper-most of the two lower left
corners a, a′ and the left-and-lower-most of the two upper right corners b, b′. That does the trick.

Now rigorously: since I, I ′ ∈ J , we have for suitable aj , bj , a′j , b′j’s:

I =
n
×
j=1

[

aj , bj
) and I ′ =

n
×
j=1

[

a′j , b
′
j
)

.

We want to find I ∩ I ′, or, equivalently the condition under which x ∈ I ∩ I ′. Now

x = (x1,… , xn) ∈ I ⇐⇒ xj ∈ [aj , bj) ∀j = 1, 2,… , n

⇐⇒ aj ⩽ xj < bj ∀j = 1, 2,… , n

and the same holds for x ∈ I ′ (same x, but I ′—no typo). Clearly aj ⩽ xj < bj , and, at the same
time a′j ⩽ xj < b′j holds exactly if

max(aj , a′j) ⩽ xj < min(bj , b′j) ∀j = 1, 2,… , n

⇐⇒ x ∈
n
×
j=1

[

max(aj , a′j),min(bj , b
′
j)
)

.

This shows that I ∩I ′ is indeed a ‘rectangle’, i.e. in J . This could be an empty set (which happens
if I and I ′ do not meet).

■■

Problem 5.9 Solution: First we must make sure that t ⋅ B is a Borel set if B ∈ ℬ. We consider first
rectangles I = [[a, b)) ∈ J where a, b ∈ Rn. Clearly, t ⋅I = [[ta, tb))where ta, tb are just the scaled
vectors. So, scaled rectangles are again rectangles, and therefore Borel sets. Now fix t > 0 and set

ℬt ∶= {B ∈ℬ(Rn) ∶ t ⋅ B ∈ℬ(Rn)}.
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It is not hard to see thatℬt is itself a �-algebra and that J ⊂ℬt ⊂ℬ(Rn). But then we get

ℬ(Rn) = �(J ) ⊂ �(ℬt) =ℬt ⊂ℬ(Rn),

showing thatℬt =ℬ(Rn), i.e. scaled Borel sets are again Borel sets.
Now define a new measure �(B) ∶= �n(t ⋅B) for Borel sets B ∈ℬ(Rn) (which is, because of the
above, well-defined). For rectangles [[a, b)) we get, in particular,

�[[a, b)) = �n
(

(t ⋅ [[a, b))
)

= �n[[ta, tb))

=
n
∏

j=1

(

(tbj) − (taj)
)

=
n
∏

j=1
t ⋅
(

bj − aj
)

= tn ⋅
n
∏

j=1

(

bj − aj
)

= tn�n[[a, b))

which shows that � and tn�n coincide on the ∩-stable generator J of ℬ(Rn), hence they’re the
same everywhere. (Mind the small gap: we should make the mental step that for any measure
� a positive multiple, say, c ⋅ �, is again a measure—this ensures that tn�n is a measure, and we
need this in order to apply Theorem 5.7. Mind also that we need that � is finite on all rectangles
(obvious!) and that we find rectangles increasing to Rn, e.g. [−k, k) ×…× [−k, k) as in the proof
of Theorem 5.8(ii).)

■■

Problem 5.10 Solution: Define �(A) ∶= �◦�−1(A). Obviously, � is again a finitemeasure. Moreover,
since �−1(X) = X, we have

�(X) = �(X) <∞ and, by assumption, �(G) = �(G) ∀G ∈ G .

Thus, � = � on G ′ ∶= G ∪ {X}. Since G ′ is a ∩-stable generator of A containing the (trivial)
exhausting sequenceX,X,X,…, the assertion follows from the uniqueness theorem for measures,
Theorem 5.7.

■■

Problem 5.11 Solution: The necessity of the condition is trivial since G ⊂ �(G ) = ℬ, resp., ℋ ⊂
�(ℋ ) = C .
FixH ∈ ℋ and define

�(B) ∶= P (B ∩H) and �(B) ∶= P (B)P (H).

Obviously, � and � are finite measures on ℬ having mass P (H) such that � and � coincide on
the ∩-stable generator G ∪ {X} ofℬ. Note that this generator contains the exhausting sequence
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X,X,X,…. By the uniqueness theorem for measures, Theorem 5.7, we conclude

� = � on the whole of ℬ.

Now fix B ∈ℬ and define

�(C) ∶= P (B ∩ C) and �(C) ∶= P (B)P (C).

Then the same argument as before shows that � = � on C and, since B ∈ ℬ was arbitrary, the
claim follows.

■■

Problem 5.12 Solution:

(i) Following the hint we check that

D ∶= {A ∈ A ∶ ∀ � > 0 ∃G ∈ G ∶ �(A▵G) ⩽ �}

is a Dynkin system.
(D1) By assumption, G ∶= X ∈ G and so �(X ▵G) = �(∅) = 0, hence X ∈ D .
(D2) Assume that A ∈ D . For every � > 0 there is some G ∈ G such that �(A▵G) ⩽ �.

From

Ac ▵Gc = (Gc ⧵ Ac) ∪ (Ac ⧵ Gc)

= (Gc ∩ A) ∪ (Ac ∩ G)

= (A ⧵ G) ∪ (G ⧵ A)

= A▵G

we conclude that �(Ac ▵Gc) ⩽ �; consequently, Ac ∈ D (observe that Gc ∈ G !).
(D3) Let (Aj)j∈N ⊂ D be a sequence of mutually disjoint sets and � > 0. Since � is a finite

measure, we get
∑

j∈N
�(Aj) = �

(

⨃

j∈N
Aj

)

<∞,

and, in particular, we can pickN ∈ N so large, that
∞
∑

j=N+1
�(Aj) ⩽ �.

For j ∈ {1,… , N} there is some Gj ∈ G such that �(Aj ▵Gj) ⩽ �. Thus, G ∶=
⋃N
j=1Gj ∈ G satisfies

(

⨃

j∈N
Aj

)

⧵ G =

(

⨃

j∈N
Aj

)

∩ Gc

=

(

⨃

j∈N
Aj

)

∩

( N
⋂

j=1
Gcj

)
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=
⨃

j∈N

(

Aj ∩
N
⋂

k=1
Gck

)

⊂
N
⨃

j=1
(Aj ∩ Gcj ) ∪

∞
⨃

j=N+1
Aj .

In the same way we get

G ⧵

(

⋃

j∈N
Aj

)

⊂ G ⧵

( N
⨃

j=1
Aj

)

= G ∩
N
⋂

j=1
Acj

⊂
N
⋃

j=1
(Gj ∩ Acj ).

Thus,

�

((

⨃

j∈N
Aj

)

▵G

)

⩽ �

( N
⋃

j=1
(Aj ▵Gj) ∪

∞
⨃

j=N+1
Aj

)

⩽
N
∑

j=1
�(Aj ▵Gj) + �

( ∞
∑

j=N+1
Aj

)

⩽ N� + �.

Since � > 0 is arbitrary, we conclude that⨃j∈NAj ∈ D .
Obviously, G ⊂ D (take G = A ∈ G ). Since G is ∩-stable, we get

A = �(G ) = �(G ) ⊂ D .

(ii) Using the family

D ′ ∶= {A ∈ A ∶ ∀ � > 0 ∃G ∈ G ∶ �(A▵G) ⩽ �, �(A▵G) ⩽ �},

we find, just as in (i), that D ′ is a Dynkin system. The rest of the proof is as before.
(iii) “⇐”: LetA ∈ A such thatA ⊂

⋃

n∈N In and �
(
⋃

n∈N In
)

⩽ �. Because of themonotonicity
of measures we get

�(A) ⩽ �

(

⋃

n∈N
In

)

⩽ �,

and so �(A) = 0.
“⇒”: SetK ∶= {A ⊂ Rn ∶ ∃(Ik)k∈N ⊂ J ∶ A =

⋃

k Ik or Ac =
⋃

k Ik} and observe that
I ∈K ⇒ Ic ∈K . Define, furthermore,

D ∶= {A ⊂ Rn ∶ ∀ �∃ J ,K ∈K , J ⊂ A ⊂ K, �(K ⧵ J ) ⩽ �}.

We claim that D is a Dynkin system.
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(D1) Clearly, X = Rn ∈ D (take J = K = Rn).
(D2) Pick A ∈ D and � > 0. Then there are J ,K ∈ K such that J ⊂ A ⊂ K and

�(K ⧵ J ) ⩽ �. From J c , Kc ∈ K , �(Kc ⧵ J c) = �(J ⧵K) ⩽ � and J c ⊃ Ac ⊃ Kc we
get immediately Ac ∈ D .

(D3) Let (Aj)j∈N ⊂ D be a sequence of mutually disjoint sets and � > 0. Pick Jj ∈ K and
Kj ∈K such that Jj ⊂ Aj ⊂ Kj , �(Kj ⧵ Jj) ⩽ �2−j and set

J ∶=
⋃

j∈N
Aj K ∶=

⋃

j∈N
Kj .

Since K is stable under countable unions, we get J ∈ K , K ∈ K . Moreover, J ⊂
⨃

j Aj ⊂ K and

�(K ⧵ J ) = �

((

⋃

j∈N
Kj

)

∩

(

⋃

j∈N
Jj

)c)

= �

((

⋃

j∈N
Kj

)

∩

(

⋂

j∈N
J cj

))

= �

([

⋃

j∈N

(

Kj ∩
⋂

k∈N
J ck

)])

⩽ �

(

⋃

j∈N
(Kj ∩ J cj )

)

⩽
∑

j∈N
�(Kj ∩ J cj )
⏟⏞⏞⏞⏟⏞⏞⏞⏟
�(Kj⧵Jj )⩽�2−j

⩽ �.

Thus,⨃j Aj ∈ D .
Finally, J ⊂ D entails thatℬ(Rn) = �(J ) ⊂ D .

Now let A be a set satisfying �(A) = 0. Therefore, for every � > 0 there is a set K� = K ∈ K

such that A ⊂ K and �(K) < �. If K =
⋃

i Ii, we are done. If Kc =
⋃

i Ii we have to argue like
this: Let J ∶= JR ∶= [−R,R)d ∈ J . Then

K =
⋂

i
Ici and J ∩K =

⋂

i
Ici ∩ J =

⋂

i
J ⧵ Ii =

⋂

k

k
⋂

i=1
J ⧵ Ii

and each set J ⧵ Ii is a finite union of sets from J (since J is a semiring), hence⋂k
i=1 J ⧵ Ii is a

finite union of sets from J . Since �(J ∩K) ⩽ �(K) ⩽ �, a continuity-of-measure argument shows
that there exists some k such that J ∩K ⊂

⋂k
i=1 J ⧵ Ii and �(⋂k

i=1 J ⧵ Ii) ⩽ 2�.
If we pick � = �∕2R, we see that we can cover A ∩ [−R,R)d by a countable union of J -sets, call
their union UR, such that �(UR) ⩽ �∕2R. Finally,

�(A) ⩽
∑

R∈N
�(UR) ⩽ �
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and we can combine all covers which make up the UR, R ∈ N.
■■

Problem 5.13 Solution:

(i) mind the misprint: we also need stability ofℳ under finite intersections. Clearly, any
�-algebra is also a monotone class. Conversely, if ℳ is a monotone class such that M ∈
ℳ ⇐⇒ Mc ∈ℳ, then the condition (Σ2) holds, while (Σ1) is satisfied by the very definition
of a monotone class. Ifℳ is also stable under finite intersections, we getM,N ∈ ℳ ⇐⇒

M ∪N = (Mc ∩Nc)c ∈ℳ, so (Σ3) follows from the stability under finite unions and the
stability of monotone classes under increasing limits of sets.

(ii) Since �(G ) is a monotone class containing G , we have – by minimality – thatm(G ) ⊂ �(G ).
On the other hand, by the monotone class theorem, we get G ⊂ m(G ) ⇐⇒ �(G ) ⊂ m(G )
which means thatm(G ) = �(G ).

■■
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6 Existence of measures.

Solutions to Problems 6.1�6.14

Problem 6.1 Solution:

(i) Monotonicity: If x ⩽ 0 ⩽ y, then F�(x) ⩽ 0 ⩽ F�(y).
If 0 < x ⩽ y, we have [0, x) ⊂ [0, y) and so 0 ⩽ F�(x) = �[0, x) ⩽ �[0, y) = F�(y).
If x ⩽ y < 0, we have [y, 0) ⊂ [x, 0) and so 0 ⩽ −F�(y) = �[y, 0) ⩽ �[x, 0) = −F�(x), i.e.
F�(x) ⩽ F�(y) ⩽ 0.
Left-continuity: Let us deal with the case x ⩾ 0 only, the case x < 0 is analogous (and
even easier). Assume first that x > 0. Take any sequence xk < x and xk ↑ x as k → ∞.
Without loss of generality we can assume that 0 < xk < x. Then [0, xk) ↑ [0, x) and using
Proposition 4.3 (continuity of measures) implies

lim
k→∞

F�(xk) = lim
k→∞

�[0, xk) = �[0, x) = F�(x).

If x = 0 we must take a sequence xk < 0 and we have then [xk, 0) ↓ [0, 0) = ∅. Again by
Proposition 4.3, now (iii′), we get

lim
k→∞

F�(xk) = − lim
k→∞

�[xk, 0) = �(∅) = 0 = F�(0).

which shows left-continuity at this point, too.
We remark that, since for a sequence yk ↓ y, yk > y we have [0, yk) ↓ [0, y], and not [0, y),
we cannot expect right-continuity in general.

(ii) Since J = {[a, b), a ⩽ b} is a semi-ring (cf. the remark preceding Proposition 6.3 or Propos-
ition 6.5) it is enough to check that �F is a premeasure on J . This again amounts to showing
(M1) and (M2) relative to J (mind you: �F is not a measure as J is not a �-algebra....).
(i) �F (∅) = �F [a, a) = F (a) − F (a) = 0 for any a.
(ii) Let a ⩽ b ⩽ c so that [a, b), [b, c) ∈ J are disjoint sets and [a, c) = [a, b) ⊍ [b, c) ∈ J

(the latter is crucial). Then we have

�F [a, b) + �F [b, c) = F (b) − F (a) + F (c) − F (b)

= F (c) − F (a)

= �F [a, c)

= �F
(

[a, b) ⊍ [b, c)
)

.
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(iii) We mimick the proof of existence of Lebesgue measure. Let In = [an, bn) ∈ J be
disjoint such that I = [a, b) =

⨃∞
n=1[an, bn) ∈ J . Fix �n, � > 0 (these values will be

chosen later) and observe that
∞
⋃

n=1
(an − �n, bn) ⊃ [a, b − �]

is an open cover of the compact interval [a, b − �]. Thus, there exists a finite open
subcover, hence someN ∈ N such that

N
⋃

n=1
(an − �n, bn) ⊃ [a, b − �] ⇐⇒

N
⋃

n=1
[an − �n, bn) ⊃ [a, b − �).

We have to show that
�F [a, b) −

N
∑

n=1
�F [an, bn) ←←←←←←←←←←←←←←←←←←←←←←←←→N→∞

0.

First note that we can de- and increase an ⩾ a′n and bn ⩽ b′n such that
N
⨃

n=1
[an, bn) ⊂

N
⨃

n=1
[a′n, b

′
n) = [a, b)

so that by the finite additivity of �F we get

0 = �F [a, b) −
N
∑

n=1
�F [a′n, b

′
n) ⩽ �F [a, b) −

N
∑

n=1
�F [an, bn).

Thus, using only the finite additivity and sub-additivity of �F

0 ⩽ �F [a, b) −
N
∑

n=1
�F [an, bn)

= �F [a, b − �) −
N
∑

n=1
�F [an − �n, bn)

⩽0 finite covering & subadditivity

+�F [b − �, b) +
N
∑

n=1
�F [an − �n, an)

⩽ �F [b − �, b) +
N
∑

n=1
�F [an − �n, an).

Now we choose � and �n. For any given � > 0 we can find � > 0 and �n > 0 such that

�F [b − �, b) = F (b) − F (b − �) ⩽
�
2

and �F [an − �n, an) = F (an) − F (an − �n) ⩽ 2−n
�
2

here we use the left-continuity of F . Thus,

0 ⩽ �F [a, b) −
N
∑

n=1
�F [an, bn) ⩽

�
2
+

N
∑

n=1
2−n �

2
⩽ �.

Letting firstN →∞ and then � → 0 proves the claim.

60



Solution Manual. Last update 18th July 2019

Note that �F takes on only positive values because F increases.
This means that we find at least one extension. Uniqueness follows since

�F [−k, k) = F (k) − F (−k) <∞ and [−k, k) ↑ R.

(iii) Now let � be a measure with �[−n, n) < ∞. The latter means that the function F�(x),
as defined in part (i), is finite for every x ∈ R. Now take this F� and define, as in (ii) a
(uniquely defined) measure �F� . Let us see that � = �F� . For this, it is enough to show
equality on the sets of type [a, b) (since such sets generate the Borel sets and the uniqueness
theorem applies....)
If 0 ⩽ a ⩽ b,

�F� [a, b) = F�(b) − F�(a) = �[0, b) − �[0, a)

= �
(

[0, b) ⧵ [0, a)
)

= �[a, b) ✓

If a ⩽ b ⩽ 0,

�F� [a, b) = F�(b) − F�(a) = −�[b, 0) − (−�[a, 0))

= �[a, 0) − �[b, 0)

= �
(

[a, 0) ⧵ [b, 0)
)

= �[a, b) ✓

If a ⩽ 0 ⩽ b,

�F� [a, b) = F�(b) − F�(a) = �[0, b)) − (−�[a, 0))

= �[a, 0)) + �[0, b)

= �
(

[a, 0) ⊍ [0, b)
)

= �[a, b) ✓

(iv) F ∶ R→ R with F (x) = x, since �[a, b) = b − a = F (b) − F (a).

(v) F ∶ R → R, with, say, F (x) =
⎧

⎪

⎨

⎪

⎩

0, x ⩽ 0

1, x > 0
= 1(0,∞)(x) since �0[a, b) = 0 whenever

a, b < 0 or a, b > 0. This means that F must be constant on (−∞, 0) and (0,∞) If a ⩽ 0 < b
we have, however, �0[a, b) = 1 which indicates that F (x) must jump by 1 at the point 0.
Given the fact that F must be left-continuous, it is clear that it has, in principle, the above
form. The only ambiguity is, that if F (x) does the job, so does c + F (x) for any constant
c ∈ R.
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(vi) Assume that F is continuous at the point x. Then
�({x}) = �

(

⋂

k∈N

[

x, x + 1
k

)

)

4.3
= lim

k→∞
�
([

x, x + 1
k

))

def
= lim

k→∞

(

F
(

x + 1
k

)

− F (x)
)

= lim
k→∞

F
(

x + 1
k

)

− F (x)

(∗)
= F (x) − F (x) = 0

where we use (right-)continuity of F at x in the step marked (∗).
Now, let conversely �({x}) = 0. A similar calculation as above shows, that for every se-
quence �k > 0 with �k →∞

F (x+) − F (x) = lim
k→∞

F
(

x + �k
)

− F (x)
def
= lim

k→∞
�[x, x + �k)

4.3
= �

(

⋂

k∈N
[x, x + �k)

)

= �({x}) = 0

which means that F (x) = F (x+) (x+ indicates the right limit), i.e. F is right-continuous at
x, hence continuous, as F is left-continuous anyway.

■■

Problem 6.2 Solution: Using the notion of measurability we get

�∗
(

Q ∩
∞
⋃

i=1
Ai

)

= �∗
((

Q ∩
∞
⋃

i=1
Ai

)

∩ A1

)

+ �∗
((

Q ∩
∞
⋃

i=1
Ai

)

∩ Ac1

)

= �∗(Q ∩ A1) + �∗
(

Q ∩
∞
⋃

i=2
Ai

)

= …

=
n−1
∑

i=1
�∗(Q ∩ Ai) + �∗(Q ∩ (∪∞i=nAi))

(6.1)

for any n ∈ N. Thus, �∗(Q ∩⋃∞
i=1Ai) ⩾

∑n−1
i=1 �

∗(Q ∩ Ai) for all n ∈ N. If n→∞ we obtain

�∗
(

Q ∩
∞
⋃

i=1
Ai

)

⩾
∞
∑

i=1
�∗(Q ∩ Ai).

Case 1: ∑∞
i=1 �

∗(Q ∩ Ai) = ∞. Nothing to show.
Case 2: ∑∞

i=1 �
∗(Q ∩ Ai) <∞. Using the sub-additivity of outer measures we get

�∗
(

Q ∩
∞
⋃

i=n
Ai

)

⩽
∞
∑

i=n
�∗(Q ∩ Ai)

n→∞
←←←←←←←←←←←←←←←←←←←←→ 0
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and the claim follows from (6.1) as n →∞.
■■

Problem 6.3 Solution: We know already thatℬ[0,∞) is a �-algebra (it is a trace �-algebra) and, by
definition,

Σ =
{

B ∪ (−B) ∶ B ∈ℬ[0,∞)
}

if we write −B ∶= {−b ∶ b ∈ℬ[0,∞)}.
Since the structure B ∪ (−B) is stable under complementation and countable unions it is clear that
Σ is indeed a �-algebra.
One possibility to extend � defined on Σwould be to takeB ∈ℬ(R) and define B+ ∶= B∩[0,∞)
and B− ∶= B ∩ (−∞, 0) and to set

�(B) ∶= �(B+ ∪ (−B+)) + �((−B−) ∪ B−)

which is obviously a measure. We cannot expect uniqueness of this extension since Σ does not
generateℬ(R)—not all Borel sets are symmetric.

■■

Problem 6.4 Solution: By definition we have

�∗(Q) = inf
{

∑

j
�(Bj) ∶ (Bj)j∈N ⊂ A , ∪

j∈N
Bj ⊃ Q

}

.

(i) Assume first that �∗(Q) < ∞. By the definition of the infimum we find for every � > 0 a
sequence (B�j )j∈N ⊂ A such that B� ∶= ⋃

j B
�
j ⊃ Q and, because of �-subadditivity,

�(B�) − �∗(Q) ⩽
∑

j
�(B�j ) − �

∗(Q) ⩽ �.

Set B ∶= ⋂

k B
1∕k ∈ A . Then B ⊃ Q and �(B) = �∗(B) = �∗(Q).

Now letN ∈ A andN ⊂ B ⧵Q. Then

B ⧵N ⊃ B ⧵ (B ⧵Q) = B ∩ [(B ∩Qc)c] = B ∩ [Bc ∪Q]

= B ∩Q

= Q.

So,

�∗(Q) − �(N) = �(B) − �(N) = �(B ⧵N) = �∗(B ⧵N) ⩾ �∗(Q)

which means that �(N) = 0.

If �∗(Q) = ∞, we take the exhausting sequence (Ak)k∈N ⊂ A with Ak ↑ X and �(Ak) <∞
and set Qk ∶= Ak ∩ Q for every k ∈ N. By the first part we can find sets Bk ∈ A with

63



R.L. Schilling: Measures, Integrals & Martingales

Bk ⊃ Qk, �(Bk) = �∗(Qk) and �(N) = 0 for all N ∈ A with N ⊂ Bk ⧵ Qk. Without loss
of generality we can assume that Bk ⊂ Ak, otherwise we replace Bk by Ak ∩ Bk. Indeed,
Bk ∩ Ak ⊃ Qk, Bk ∩ Ak ∈ A ,

�∗(Qk) = �(Bk) ⩾ �(Ak ∩ Bk) ⩾ �∗(Qk)

and Bk ⧵Qk ⊃ (Bk ∩ Ak) ⧵Qk, i.e. we have again that all measurableN ⊂ (Bk ∩ Ak) ⧵Qk

satisfy �(N) = 0.
Assume now that N ⊂ B ⧵Q, B =

⋃

k Bk and N ∈ A . Then Nk ∶= N ∩ Bk ∈ A and we
haveN =

⋃

kNk as well as

Nk = N ∩ Bk ⊂ (B ⧵Q) ∩ Bk = Bk ⧵Q = Bk ⧵Qk.

Thus �(Nk) = 0 and, by �-subadditivity, �(N) ⩽ ∑∞
k=1 �(Nk) = 0.

(ii) Define �̄ ∶= �∗||
|A ∗

. We know from Theorem 6.1 that �̄ is a measure on A ∗ and, because of
the monotonicity of �∗, we know that for allN∗ ∈ A ∗ with �̄(N∗) we have

∀M ⊂ N∗ ∶ �∗(M) ⩽ �∗(N∗) = �̄(N∗) = 0.

It remains to show thatM ∈ A ∗. Because of (6.2) we have to show that

∀Q ⊂ X ∶ �∗(Q) = �∗(Q ∩M) + �∗(Q ⧵M).

Since �∗ is subadditive we find for all Q ⊂ X

�∗(Q) = �∗
(

(Q ∩M) ∪ (Q ⧵M)
)

⩽ �∗(Q ∩M) + �∗(Q ⧵M)

= �∗(Q ⧵M)

⩽ �∗(Q),

which means thatM ∈ A ∗.
(iii) Obviously, (X,A ∗, �̄) extends (X,A , �) since A ⊂ A ∗ and �̄||

|A
= �. In view of Problem

4.15 we have to show that

A ∗ = {A ∪N ∶ A ∈ A , N ∈ N} (*)

with N = {N ⊂ X ∶ N is subset of an A -measurable null set or, alternatively,

A ∗ = {A∗ ⊂ X ∶ ∃A,B ∈ A , A ⊂ A∗ ⊂ B, �(B ⧵ A) = 0}. (**)

We are going to use both equalities and show ‘⊃’ in (∗) and ‘⊂’ in (∗∗) (which is enough
since, cf. Problem 4.15 asserts the equality of the right-hand sides of (∗), (∗∗)!).

‘⊃’: By part (ii), subsets of A -null sets are in A ∗ so that every set of the form A ∪N with
A ∈ A andN being a subset of an A null set is in A ∗.
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‘⊂’: By part (i) we find for everyA∗ ∈ A ∗ someA ∈ A such thatA ⊃ A∗ andA⧵A∗ is anA ∗

null set. By the same argument we get B ∈ A , B ⊃ (A∗)c and B ⧵ (A∗)c = B∩A∗ = A∗ ⧵Bc

is an A ∗ null set. Thus,

Bc ⊂ A∗ ⊂ A

and

A ⧵ Bc ⊂
(

A ⧵ A∗
)

∪
(

A∗ ⧵ Bc
)

=
(

A ⧵ A∗
)

∪
(

B ⧵ (A∗)c
)

which is the union of two A ∗ null sets, i.e. A ⧵ Bc is an A null set.
■■

Problem 6.5 Solution: Since, by assumption, m is an additive set function such that 0 ⩽ m(X) ⩽
�(X) <∞, it is enough to show (cf. Lemma 4.9) that m is continuous at ∅ and m(∅) = 0.

• m(∅) = 0: This follows immediately from m(∅) ⩽ �(∅) = 0. (Note: ∅ = Xc ∈ℬ.)
• m is continuous at ∅: Let (Bk)k∈N ⊂ℬ, Bk ↓ ∅. Since �(Bk)→ 0 we get

m(Bk) ⩽ �(Bk)
k→∞
←←←←←←←←←←←←←←←←←←←←→ 0.

This shows that m is continuous at ∅.
Remark. In order to be self-contained, let us check that any additive set function m on a Boolean
algebraℬ is a pre-measure (i.e. sigma-additive) if it is continuous at ∅:
Let (Bn)n∈N ⊂ ℬ be a sequence of mutually disjoint sets and B ∶=

⋃

n∈N Bn ∈ ℬ. From
B1 ⊍… ⊍ Bn ∈ℬ we get

An ∶= B ⧵ (B1 ⊍… ⊍ Bn) = B ∩ (B1 ⊍… ⊍ Bn)c
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

∈ℬ

∈ℬ.

Since An ↓ ∅, continuity at ∅ proves m(An)→ 0. Since m is additive,

m(B) = m(B ⧵ (B1 ⊍… ⊍ Bn)) + m(B1 ⊍… ⊍ Bn)

= m(An) +
n
∑

j=1
m(Bj)

n→∞
←←←←←←←←←←←←←←←←←←←←→ 0 +

∞
∑

j=1
m(Bj).

■■

Problem 6.6 Solution:

(i) A little geometry first: a solid, open disk of radius r, centre 0 is the set Br(0) ∶= {(x, y) ∈
R2 ∶ x2+y2 < r2}. The n-dimensional analogue is clearly {x ∈ Rn ∶ x21+x22+…+x2n < r

2}
(including n = 1 where it reduces to an interval). We want to inscribe a box into a ball.
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Claim: Q�(0) ∶=
n
×××
j=1

[

− �
√

n
, �
√

n

)

⊂ B2�(0). Indeed,

x ∈ Q�(0) ⇐⇒ x21 + x
2
2 +…+ x2n ⩽

�2

n
+ �2

n
+…+ �2

n
< (2�)2

⇐⇒ x ∈ B2�(0),

and the claim follows.
Observe that �n(Q�(0)) =

∏n
j=1

2�
√

n
> 0. Now take some open set U . By translating it we

can achieve that 0 ∈ U and, as we know, this movement does not affect �n(U ). As 0 ∈ U we
find some � > 0 such that B�(0) ⊂ U , hence

�n(U ) ⩾ �n(B�(0)) ⩾ �(Q�(0)) > 0.

(ii) For closed sets this is, in general, wrong. Trivial counterexample: the singleton {0} is closed,
it is Borel (take a countable sequence of nested rectangles, centered at 0 and going down to
{0}) and the Lebesgue measure is zero.
To get strictly positive Lebesgue measure, one possibility is to have interior points, i.e. closed
sets which have non-empty interior do have positive Lebesgue measure.

■■

Problem 6.7 Solution:

(i) Without loss of generality we can assume that a < b. We have [a + 1
k
, b) ↑ (a, b) as k → ∞.

Thus, by the continuity of measures, Proposition 4.3, we find (write � = �1, for short)
�(a, b) = lim

k→∞
�
[

a + 1
k
, b
)

= lim
k→∞

(

b − a − 1
k

)

= b − a.

Since �[a, b) = b − a, too, this proves again that
�({a}) = �([a, b) ⧵ (a, b)) = �[a, b) − �(a, b) = 0.

(ii) The hint says it all: H is contained in the union y + ⋃

k∈NAk for some y and we have
�2(Ak) = (2� 2−k)⋅(2k) = 4⋅�⋅k2−k. Using the �-subadditivity andmonotonicity ofmeasures
(the Ak’s are clearly not disjoint) as well as the translational invariance of the Lebesgue
measure we get

0 ⩽ �2(H) ⩽ �2
(

∞
∪
k=1

Ak

)

⩽
∞
∑

k=1
�(Ak) =

∞
∑

k=1
4 ⋅ � ⋅ k2−k = C�

where C is the finite (!) constant 4∑∞
k=1 k2

−k (check convergence!). As � was arbitrary, we
can let it→ 0 and the claim follows.

(iii) n-dimensional version of (i): We have I = n
×××
j=1
(aj , bj). Set Ik ∶=

n
×××
j=1
[aj +

1
k
, bj). Then Ik ↑ I

as k→∞ and we have (write � = �n, for short)

�(I) = lim
k→∞

�(Ik) = lim
k→∞

n
∏

j=1

(

bj − aj −
1
k

)

=
n
∏

j=1

(

bj − aj
)

.
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n-dimensional version of (ii): The changes are obvious: Ak = [−�2−k, �2−k) × [−k, k)n−1

and �n(Ak) = 2n ⋅ � ⋅ 2−k ⋅ kn−1. The rest stays as before, since the sum ∑∞
k=1 k

n−12−k still
converges to a finite value.

■■

Problem 6.8 Solution:

(i) All we have to show is that �1({x}) = 0 for any x ∈ R. But this has been shown already in
problem 6.6(i).

(ii) Take the Dirac measure: �0. Then {0} is an atom as �0({0}) = 1.
(iii) Let C be countable and let {c1, c2, c3,…} be an enumeration (could be finite, if C is finite).

Since singletons are inA , so isC as a countable union of the sets {cj}. Using the �-additivity
of a measure we get

�(C) = �(∪j∈N{cj}) =
∑

j∈N
�({cj}) =

∑

j∈N
0 = 0.

(iv) If y1, y2,… , yN are atoms of mass P ({yj}) ⩾ 1
k
we find by the additivity and monotonicity

of measures
N
k

⩽
N
∑

j=1
P ({xj})

= P
(

N
∪
j=1
{yj}

)

= P ({y1,… , yN}) ⩽ P (R) = 1

so N
k
⩽ 1, i.e.N ⩽ k, and the claim in the hint (about the maximal number of atoms of given

size) is shown.
Now denote, as in the hint, the atoms with measure of size [ 1

k
, 1
k−1 ) by y(k)1 ,… y(k)N(k) where

N(k) ⩽ k is their number. Since
⋃

k∈N

[

1
k
, 1
k−1

)

= (0,∞)

we exhaust all possible sizes for atoms.
There are at most countably many (actually: finitely many) atoms in each size range. Since
the number of size ranges is countable and since countably many countable sets make up a
countable set, we can relabel the atoms as x1, x2, x3,… (could be finite) and, as we have seen
in exercise 4.7(ii), the set function

� ∶=
∑

j
P ({xj}) ⋅ �xj

(no matter whether the sum is over a finite or countably infinite set of j’s) is indeed a measure
on R. But more is true: for any Borel set A

�(A) =
∑

j
P ({xj}) ⋅ �xj (A)
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=
∑

j∶xj∈A
P ({xj})

= P (A ∩ {x1, x2,…}) ⩽ P (A)

showing that �(A) ∶= P (A) − �(A) is a positive number for each Borel set A ∈ ℬ. This
means that � ∶ℬ → [0,∞]. Let us checkM1 andM2. UsingM1,M2 for P and � (for them
they are clear, as P , � are measures!) we get

�(∅) = P (∅) − �(∅) = 0 − 0 = 0

and for a disjoint sequence (Aj)j∈N ⊂ℬ we have

�
(

⋃

j
Aj

)

= P
(

⋃

j
Aj

)

− �
(

⋃

j
Aj

)

=
∑

j
P (Aj) −

∑

j
�(Aj)

=
∑

j

(

P (Aj) − �(Aj)
)

=
∑

j
�(Aj)

which isM2 for �.
■■

Problem 6.9 Solution:

(i) Fix a sequence of numbers �k > 0, k ∈ N0 such that ∑k∈N0
�k < ∞. For example we

could take a geometric series with general term �k ∶= 2−k. Now define open intervals Ik ∶=
(k − �k, k + �k), k ∈ N0 (these are open sets!) and call their union I ∶= ⋃

k∈N0
Ik. As

countable union of open sets I is again open. Using the �-(sub-)additivity of � = �1 we find
�(I) = �

(

⋃

k∈N0

Ik

)

(∗)
⩽

∑

k∈N0

�(Ik) =
∑

k∈N0

2�k = 2
∑

k∈N0

�k <∞.

By 6.7(i), �(I) > 0.
Note that in step (∗) equality holds (i.e. wewould use �-additivity rather than �-subadditivity)
if the Ik are pairwise disjoint. This happens, if all �k < 1

2 (think!), but to be on the safe side
and in order not to have to worry about such details we use sub-additivity.

(ii) Take the open interior of the sets Ak, k ∈ N, from the hint to 6.7(ii). That is, take the
open rectangles Bk ∶= (−2−k, 2−k) × (−k, k), k ∈ N, (we choose � = 1 since we are after
finiteness and not necessarily smallness). That these are open sets will be seen below. Now set
B =

⋃

k∈N Bk and observe that the union of open sets is always open. B is also unbounded
and it is geometrically clear thatB is pathwise connected as it is some kind of lozenge-shaped
‘staircase’ (draw a picture!) around the y-axis. Finally, by �-subadditivity and using 6.7(ii)
we get

�2(B) = �2
(

⋃

k∈N
Bk

)

⩽
∑

k∈N
�2(Bk)
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=
∑

k∈N
2 ⋅ 2−k ⋅ 2 ⋅ k

= 4
∑

k∈N
k ⋅ 2−k <∞.

It remains to check that an open rectangle is an open set. For this take any open rectangle
R = (a, b) × (c, d) and pick (x, y) ∈ R. Then we know that a < x < b and c < y < d and
since we have strict inequalities, we have that the smallest distance of this point to any of the
four boundaries (draw a picture!) ℎ ∶= min{|a−x|, |b−x|, |c−y|, |d−y|} > 0. This means
that a square around (x, y) with side-length 2ℎ is inside R and what we’re going to do is to
inscribe into this virtual square an open disk with radius ℎ and centre (x, y). Since the circle
is again in R, we are done. The equation for this disk is

(x′, y′) ∈ Bℎ(x, y) ⇐⇒ (x − x′)2 + (y − y′)2 < ℎ2

Thus,

|x′ − x| ⩽
√

|x − x′|2 + |y − y′|2 < ℎ

and |y′ − y| ⩽
√

|x − x′|2 + |y − y′|2 < ℎ

i.e. x − ℎ < x′ < x + ℎ and y − ℎ < y′ < y + ℎ or (x′, y′) ∈ (x − ℎ, x + ℎ) × (y − ℎ, y + ℎ),
which means that (x′, y′) is in the rectangle of sidelength 2ℎ centered at (x, y). since (x′, y′)
was an arbitrary point of Bℎ(x, y), we are done.

(iii) No, this is impossible. Since we are in one dimension, pathwise connectedness forces us to
go between points in a straight, uninterrupted line. Since the set is unbounded, this means
that we must have a line of the sort (a,∞) or (−∞, b) in our set and in both cases Lebesgue
measure is infinite. In all dimensions n > 1, see part (ii) for two dimensions, we can, however,
construct pathwise connected, unbounded open sets with finite Lebesgue measure.

■■

Problem 6.10 Solution: Fix � > 0 and let {qj}j∈N be an enumeration of Q ∩ [0, 1]. Then

U ∶= U� ∶=
⋃

j∈N

(

qj − �2−j−1, qj + �2−j−1
)

∩ [0, 1]

is a dense open set in [0, 1] and, because of �-subadditivity,

�(U ) ⩽
∑

j∈N
�
(

qj − �2−j−1, qj + �2−j−1
)

=
∑

j∈N

�
2j
= �.

■■

Problem 6.11 Solution: Assume first that for every � > 0 there is some open set U� ⊃ N such that
�(U�) ⩽ �. Then

�(N) ⩽ �(U�) ⩽ � ∀� > 0,
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which means that �(N) = 0.

Conversely, let �∗(N) = inf
{

∑

j �(Uj) ∶ Uj ∈ O , ∪j∈N Uj ⊃ N
}

. Since for the Borel set N
we have �∗(N) = �(N) = 0, the definition of the infimum guarantees that for every � > 0 there is
a sequence of open sets (U �

j )j∈N coveringN , i.e. such that U � ∶=
⋃

j U
�
j ⊃ N . Since U � is again

open we find because of �-subadditivity

�(N) ⩽ �(U �) = �
(

⋃

j
U �
j

)

⩽
∑

j
�(U �

j ) ⩽ �.

Attention: A construction along the lines of Problem 3.15, hint to part (ii), using open sets U � ∶=
N + B�(0) is, in general not successful:

• it is not clear thatU � has finite Lebesgue measure (o.k. one can overcome this by considering
N ∩ [−k, k] and then letting k→∞...)

• U � ↓ N̄ and not N (unless N is closed, of course). If, say, N is a dense set of [0, 1], this
approach leads nowhere.

■■

Problem 6.12 Solution: Observe that the sets Ck ∶= ⋃∞
j=kAj , k ∈ N, decrease as k → ∞—we

admit less and less sets in the union, i.e. the union becomes smaller. Since P is a probability
measure, P (Ck) ⩽ 1 and therefore Lemma 4.9 applies and shows that

P
( ∞
⋂

k=1

∞
⋃

j=k
Aj

)

= P
( ∞
⋂

k=1
Ck

)

= lim
k→∞

P (Ck).

On the other hand, we can use �-subadditivity of the measure P to get

P (Ck) = P
( ∞
⋃

j=k
Aj

)

⩽
∑∞
j=k P (Aj)

but this is the tail of the convergent (!) sum ∑∞
j=1 P (Aj) and, as such, it goes to zero as k → ∞.

Putting these bits together, we see

P
( ∞
⋂

k=1

∞
⋃

j=k
Aj

)

= lim
k→∞

P (Ck) ⩽ lim
k→∞

∞
∑

j=k
P (Aj) = 0,

and the claim follows.
■■

Problem 6.13 Solution:

(i) We can work out the ‘optimal’ A -cover of (a, b):
Case 1: a, b ∈ [0, 1). Then [0, 1) is the best possible cover of (a, b), thus �∗(a, b) = �[0, 1) =
1
2 .
Case 2: a, b ∈ [1, 2). Then [1, 2) is the best possible cover of (a, b), thus �∗(a, b) = �[1, 2) =
1
2 .
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Case 3: a ∈ [0, 1), b ∈ [1, 2). Then [0, 1) ⊍ [1, 2) is the best possible cover of (a, b), thus
�∗(a, b) = �[0, 1) + �[1, 2) = 1.
And in the case of a singleton {a} the best possible cover is always either [0, 1) or [1, 2) so
that �∗({a}) = 1

2 for all a.
(ii) Assume that (0, 1) ∈ A ∗. Since A ⊂ A ∗, we have [0, 1) ∈ A ∗, hence {0} = [0, 1) ⧵ (0, 1) ∈

A ∗. Since �∗(0, 1) = �∗({0}) = 1
2 , and since �∗ is a measure on A ∗ (cf. Step 4 in the proof

of Theorem 6.1), we get
1
2
= �[0, 1) = �∗[0, 1) = �∗(0, 1) + �∗{0} = 1

2
+ 1
2
= 1

leading to a contradiction. Thus neither (0, 1) nor {0} are elements of A ∗.
■■

Problem 6.14 Solution: Since A ⊂ A ∗, the only interesting sets (to which one could extend �) are
those B ⊂ R where both B and Bc are uncountable. By definition,

∗(B) = inf
{

∑

j
(Aj) ∶ Aj ∈ A ,

⋃

j
Aj ⊃ B

}

.

The infimum is obviously attained for Aj = R, so that ∗(B) = ∗(Bc) = 1. On the other hand,
since ∗ is necessarily additive on A ∗, the assumption that B ∈ A ∗ leads to a contradiction:

1 = (R) = ∗(R) = ∗(B) + ∗(Bc) = 2.

Thus, A = A ∗.
■■

71





7 Measurable mappings.

Solutions to Problems 7.1�7.13

Problem 7.1 Solution: We have �−1x (z) = z + x. According to Lemma 7.2 we have to check that
�−1x ([a, b)) ∈ℬ(R

n) ∀ [a, b) ∈ J

since the rectangles J generateℬ(Rn). Clearly,
�−1x ([a, b)) = [a, b) + x = [a + x, b + x) ∈ J ⊂ℬ(Rn),

and the claim follows.
■■

Problem 7.2 Solution: We had Σ′ = {A′ ⊂ X′ ∶ T −1(A′) ∈ A}whereA was a �-algebra of subsets
of X. Let us check the properties (Σ1)–(Σ3).
(Σ1) Take ∅ ⊂ X′. Then T −1(∅) = ∅ ∈ A , hence ∅ ∈ Σ′.
(Σ2) Take any B ∈ Σ′. Then T −1(B) ∈ A and therefore T −1(Bc) = (

T −1(B)
)c ∈ A since all

set operations interchange with inverse maps and since A is a �-algebra. This shows that
Bc ∈ Σ′.

(Σ3) Take any sequence (Bj)j∈N ⊂ Σ′. Then, using again the fact thatA is a �-algebra, T −1(∪jBj) =
⋃

j T
−1(Bj) ∈ A which proves that⋃j Bj ∈ Σ′.

■■

Problem 7.3 Solution:

(i) (Σ1) ∅ ∈ A is clear.
(Σ2) Let A ∈ A . If 2n ∈ Ac , then 2n + 1 ∈ Ac – this follows straight from the definition

ofA : if 2n+1 ∈ A, then 2n ∈ A. In the same way we get 2n+1 ∈ Ac ⇐⇒ 2n ∈ Ac .
Consequently, Ac ∈ A .

(Σ3) Let (Aj)j∈N ⊂ A . If 2n ∈ ⋃

j Aj , then there is some index j0 such that 2n ∈ Aj0 .
Since Aj0 ∈ A , we get 2n + 1 ∈ Aj0 ⊆

⋃

j Aj . In the same way we find that
2n + 1 ∈

⋃

j Aj ⇐⇒ 2n ∈
⋃

Aj .
(ii) It is clear that the map T is bijective as T −1(n) = n − 2. Pick any set A ∈ A . In order to

verify the measurability of T , we have to show that T −1(A) ∈ A , i.e.
2n ∈ T −1(A)⇔ 2n + 1 ∈ T −1(A) for all n > 0.
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If 2n ∈ T −1(A), n > 0, then we see that 2n + 2 = 2(n + 1) ∈ A. As A ∈ A this yields
2n + 3 ∈ A and so 2n + 1 = T −1(2n + 3) ∈ T −1(A). Therefore, T is measurable.
On the other hand, T −1 is not measurable: the set A = {k; k ⩽ 0} is contained in A , but
T (A) = {k ∶ k ⩽ 2} ∉ A (use 2 = 2 ⋅ 1 ∈ A, but 2 ⋅ 1 + 1 = 3 ∉ A).

■■

Problem 7.4 Solution:

(i) First of all we remark that T −1i (Ai) is itself a �-algebra, cf. Example 3.3(vii).
If C is a �-algebra of subsets of X such that Ti ∶ (X,C ) → (Xi,Ai) becomes measurable,
we know from the very definition that T −1(Ai) ⊂ C . From this, however, it is clear that
T −1(Ai) is the minimal �-algebra that renders T measurable.

(ii) From part (i) we know that �(Ti, i ∈ I) necessarily contains T −1i (Ai) for every i ∈ I . Since
⋃

i T
−1
i (Ai) is, in general, not a �-algebra, we have �

(

⋃

i T
−1
i (Ai)

)

⊂ �(Ti, i ∈ I). On the
other hand, each Ti is, because of T −1i (Ai) ⊂

⋃

i T
−1
i (Ai) ⊂ �(Ti, i ∈ I) measurable w.r.t.

�
(

⋃

i T
−1
i (Ai)

)

and this proves the claim.
■■

Problem 7.5 Solution:

(i), (ii)
1T −1(A′)(x) = 1 ⇔ x ∈ T −1(A′) ⇔ T (x) ∈ A′

⇔ 1A′(T (x)) = 1 ⇔ (1A′◦T )(x) = 1

Since an indicatior function can only assume the values 0 and 1, the claimed equality
follows for the value 0 by negating the previously shown equivalence.

(iii) “⇒”: Assume that T is measurable. We have T −1(A′) ∈ A ∀A′ ∈ A ′ and since A is
a �-algebra, we conclude

�(T ) = �({T −1(A′) | A′ ∈ A ′}) ⊂ �(A ) = A .

“⇐”: �(T ) ⊂ A implies, in particular,

T −1(A′) ∈ A ∀A′ ∈ A ′,

i.e., T is measurable.
(iii) Theorem 7.6 shows that image measures are measures. By the definition of T , we have

T −1(E′) = E and �◦T −1(E′) < ∞, resp., �◦T −1(E′) = 1 follows from the definition
of image measures.
The image measure obtained from a �-finite measure need not be �-finite!
Counterexemple: Let � be the counting measure on Z2 and define T ((x, y)) = x.
While � is �-finite, the image measure T (�) isn’t.
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■■

Problem 7.6 Solution: We have

T −1(G ) ⊂ T −1(�(G ))
⏟⏞⏞⏞⏟⏞⏞⏞⏟

is itself a �-algebra

⇐⇒ �(T −1(G )) ⊂ T −1(�(G )).

For the converse consider T ∶ (X, �(T −1(G ))) → (Y , �(G )). By the very choice of the �-algebras
and since T −1(G ) ⊂ �(T −1(G )) we find that T is �(T −1(G ))∕�(G ) measurable—mind that we
only have to check measurability at a generator (here: G ) in the image region. Thus,

T −1(�(G )) ⊂ �(T −1(G )).

Alternative: We have

T −1(G ) ⊂ T −1(�(G ))
⏟⏞⏞⏞⏟⏞⏞⏞⏟

is itself a �-algebra

⇐⇒ �(T −1(G )) ⊂ T −1(�(G )).

For the converse, set Σ ∶= {G ∈ �(G ) ∶ T −1(G) ∈ �(T −1(G ))}. It is not hard to see that Σ is
itself a �-algebra and that G ⊂ Σ ⊂ �(G ). Thus, �(G ) = Σ and so T −1(�(G )) ⊂ �(T −1(G )).

■■

Problem 7.7 Solution: We have to show that

f ∶ (F ,ℱ )→ (X, �(Ti, i ∈ I)) measurable
⇐⇒ ∀ i ∈ I ∶ Ti◦f ∶ (F ,ℱ )→ (Xi,Ai) measurable.

Now

∀ i ∈ I ∶ (Ti◦f )−1(Ai) ⊂ ℱ ⇐⇒ ∀ i ∈ I ∶ f−1
(

T −1i (Ai)
)

⊂ ℱ

⇐⇒ f−1
(

⋃

i∈I
T −1i (Ai)

)

⊂ ℱ

(∗)
⇐⇒ �

[

f−1
(

⋃

i∈I
T −1i (Ai)

)

]

⊂ ℱ

(∗∗)
⇐⇒ f−1

(

�
[

⋃

i∈I
T −1i (Ai)

])

⊂ ℱ .

Only (*) and (**) are not immediately clear. The direction ‘⇐⇐’ in (*) is trivial, while ‘ ⇐⇒ ’ follows
if we observe that the right-hand side, ℱ , is a �-algebra. The equivalence (**) is another case of
Problem 7.6 (see there for the solution!).

■■

Problem 7.8 Solution: Using the notation of the foregoing Problem 7.7 we put

I = {1, 2,… , m} and Tj ∶= �j ∶ Rm → R, �j(x1,… , xm) ∶= xj

i.e. �j is the coordinate projection, Aj ∶=ℬ(R).
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Since each �j is continuous, we have �(�1,… , �m) ⊂ ℬ(Rm) so that Problem 7.7 applies and
proves

f isℬ(Rm)-measurable ⇐⇒

fj = �j◦f isℬ(R)-measurable for all j = 1, 2,… , m.

Remark. We will see, in fact, in Chapter 14 (in particular in Theorem 14.17) that we have the
equality �(�1,… , �m) =ℬ(Rm).

■■

Problem 7.9 Solution: In general the direct image T (A ) of a �-algebra is not any longer a �-algebra.
(Σ1) and (Σ3) hold, but (Σ2) will, in general, fail. Here is an example: Take X = X′ = N, take
any �-algebraA other than {∅,N} inN, and let T ∶ N → N, T (j) = 1 be the constant map. Then
T (∅) = ∅ but T (A) = {1} whenever A ≠ ∅. Thus, {1} = T (Ac) ≠ [T (A)]c = N⧵ {1} but equality
would be needed if T (A ) were a �-algebra. This means that Σ2 fails.
Necessary and sufficient for T (A ) to be a �-algebra is, clearly, that T −1 is a measurable map
T −1 ∶ X′ → X.
Warning. Direct images of measurable sets behave badly – even if the mapping is good. For
example, the continuous (direct) image of a Borel set need not be Borel! (It is, however, analytic
or Souslin).

■■

Problem 7.10 Solution: Consider for t > 0 the dilation mt ∶ Rn → Rn, x → t ⋅ x. Since mt is
continuous, it is Borel measurable. Moreover, m−1t = m1∕t and so

t ⋅ B = m−11∕t(B)

which shows that �n(t ⋅ B) = �n◦m−11∕t(B) = m1∕t(�n)(B) is actually an image measure of �n. Now
show the formula first for rectangles B = n

×××
j=1
[aj , bj) (as in Problem 5.9) and deduce the statement

from the uniqueness theorem for measures.
■■

Problem 7.11 Solution:

(i) The hint is indeed already the proof. Almost, that is... Let � be some measure as specified
in the problem. From Problam 6.1(iii) we know that the Stieltjes function F ∶= F� then
satisfies

�[a, b) = F (b) − F (a) = �1[F (a), F (b))
(#)
= �1(F ([a, b)))
(##)
= �1◦F ([a, b)).

The crunching points in this argument are the steps (#) and (##).
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(#) This is o.k. since F was continuous, and the intermediate value theorem for continuous
functions tells us that intervals are mapped to intervals. So, no problem here, just a little
thinking needed.

(##) This is more subtle. We have defined image measures only for inverse maps, i.e. for
expressions of the type �1◦G−1 whereG was measurable. So our job is to see that F can
be obtained in the form F = G−1 where G is measurable. In other words, we have to
invert F . The problem is that we need to understand that, if F (x) is flat on some interval
(a, b) inversion becomes a problem (since then F−1 has a jump—horizontals become
verticals in inversions, as inverting is somehow the mirror-image w.r.t. the 45-degree
line in the coordinate system.).
So, if there are no flat bits, then this means that F is strictly increasing, and it is clear
that G exists and is even continuous there.
If we have a flat bit, let’s say exactly if x ∈ [a, b] and call F (x) = F (a) = F (b) = C
for those x; clearly, F−1 jumps at C and we must see to it that we take a version of F−1,
say one which makes F−1 left-continuous at C—note that we could assign any value
from [a, b] to F−1(C)—which is accomplished by setting F−1(C) = a. (Draw a graph
to illustrate this!)
There is A canonical expression for such a ‘generalized’ left-continuous inverse of an
increasing function (which may have jumps and flat bits—jumps of F become just flat
bits in the graph of F−1, think!) and this is:

G(y) = inf{x ∶ F (x) ⩾ y}

Let us check measurability:

y0 ∈ {G ⩾ �} ⇐⇒ G(y0) ⩾ �
def
⇐⇒ inf{F ⩾ y0} ⩾ �
(‡)
⇐⇒ F (�) ⩽ y0

⇐⇒ y0 ∈ [F (�),∞).

Since F is monotonically increasing, we find also ‘⇐⇐’ in step (‡), hence

{G ⩾ �} = [F (�),∞) ∈ℬ(R)

which shows that G is measurable. Even more: it shows that G−1(x) ∶= inf{G ⩾ �} =
F (x). Thus, �1◦F = �1◦G−1 = � is indeed an image measure of �1.

(ii) We have F (x) = F�0(x) = 1(0,∞)(x) and its left-continuous inverse G(y) in the sense of part
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(i) is given by

G(y) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

+∞, y > 1

0, 0 < y ⩽ 1

−∞, y ⩽ 0

.

This function is clearly measurable (use ℬ̄ to accommodate ±∞) and so the claim holds in
this case. Observe that in this case F is not any longer continuous but only left-continuous.

■■

Problem 7.12 Solution:

(i) See Figure 1.4 on page 4.
(ii) Each Cn is a finite union of 2n closed and bounded intervals. As such, Cn is itself a closed

and bounded set, hence compact. The intersection of closed and bounded sets is again closed
and bounded, so compact. This shows that C is compact. That C is non-empty follows from
the intersection principle: if one has a nested sequence of non-empty compact sets, their
intersection is not empty. (This is sometimes formulated in a somewhat stronger form and
called: finite intersection property. The general version is then: Let (Kn)n∈N be a sequence
of compact sets such that each finite sub-family has non-void intersection, then ⋂

nKn ≠
∅). This is an obvious generalization of the interval principle: nested non-void closed and
bounded intervals have a non-void intersection.

(iii) At step n we remove open middle-third intervals of length 3−n. To be precise, we partition
Cn−1 in pieces of length 3−n and remove every other interval. The same effect is obtained if
we partition [0,∞) in pieces of length 3−n and remove every other piece. Call the taken out
pieces Fn and set Cn = Cn−1 ⧵ Fn, i.e. we remove from Cn−1 even pieces which were already
removed in previous steps. It is clear that Fn exactly consists of sets of the form (3k+13n ,

3k+2
3n ),

k ∈ N0 which comprises exactly ‘every other’ set of length 3−n. Since we do this for every
n, the set C is disjoint to the union of these intervals over k ∈ N0 and n ∈ N.

(iv) Since Cn consists of 2n intervals J1 ⊍… ⊍ J2n , each of which has length 3−n (prove this by a
trivial induction argument!), we get

�(Cn) = �(J1) +… + �(J2n) = 2n ⋅ 3−n =
(2
3

)n

where we also use (somewhat pedantically) that
�[a, b] = �([a, b) ⊍ {b}) = �[a, b) + �{b} = b − a + 0 = b − a.

Now using Proposition 4.3 we conclude that �(C) = infn �(Cn) = 0.
(v) Fix � > 0 and choose n so big that 3−n < �. Then Cn consists of 2n disjoint intervals of length

3−n < � and cannot possibly contain a ball of radius �. Since C ⊂ Cn, the same applies to C .
Since � was arbitrary, we are done. (Remark: an open ball inR with centre x is obviously an
open interval with midpoint x, i.e. (x − �, x + �).)
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(vi) Fix n and let k = 0, 1, 2,… , 3n−1 − 1. We saw in (c) that at step n we remove the intervals
Fn, i.e. the intervals of the form

(

3k + 1
3n

, 3k + 2
3n

)

=
(

0. ∗∗∗ … ∗ 1
⏟⏞⏞⏞⏟⏞⏞⏞⏟

n

000… , 0. ∗∗∗ … ∗ 2
⏟⏞⏞⏞⏟⏞⏞⏞⏟

n

000…
)

where we use the ternary representation of x. These are exactly the numbers in [0, 1] whose
ternary expansion has a 1 at the nth digit. As 0. ∗∗∗ … ∗ 1 = 0. ∗∗∗ … ∗ 022222… has
two representations, the left endpoint stays in. Since we do this for every step n ∈ N, the
claim follows.

(vii) Take t ∈ C with ternary representation t = 0.t1t2t3… tj…, tj ∈ {0, 2} and map it to the
binary number b = 0. t12

t2
2
t3
2 …

tj
2 with digits bj = tj

2 ∈ {0, 1}. This gives a bijection between
C and [0, 1], i.e. both have ‘as infinitely many’ points, i.e. #C = #[0, 1]. Despite of that

�(C) = 0 ≠ 1 = �([0, 1])

which is, by the way, another proof for the fact that �-additivity for the Lebesgue measure
does not extend to general uncountable unions.

■■

Problem 7.13 Solution:

(i) Since ∅ ∈ ℰ and ∅ ∈ ℱ we get

∀E ∈ ℰ ∶ E ∪ ∅ ∈ ℰ ⋓ ℱ ⇐⇒ ℰ ⊂ ℰ ⋓ ℱ

and

∀F ∈ ℱ ∶ ∅ ∪ F ∈ ℰ ⋓ ℱ ⇐⇒ ℱ ⊂ ℰ ⋓ ℱ

so that ℰ ∪ ℱ ⊂ ℰ ⋓ ℱ . A similar argument, using that X ∈ ℰ and X ∈ ℱ , shows
ℰ ∪ℱ ⊂ ℰ ⋒ ℱ .

(ii) Let A,B ⊂ X such that A ∩ B ≠ ∅, A ∪ B ≠ X and that A ⊄ B, B ⊄ A. Then we find for
ℰ ∶= {∅, A, Ac , X} and ℱ ∶= {∅, B, Bc , X} that

ℰ ∪ℱ = {∅, A, B, Ac , Bc , X}

while

ℰ ⋓ ℱ = {∅, A, B, Ac , Bc , A ∪ B,Ac ∪ Bc , A ∪ Bc , Ac ∪ B,X}.

A similar example works for ℰ ⋒ ℱ .
(iii) Part (i) shows immediately that

�(ℰ ⋓ ℱ ) ⊃ �(ℰ ∪ℱ ) and �(ℰ ⋒ ℱ ) ⊃ �(ℰ ∪ℱ ).
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Conversely, it is obvious that

ℰ ⋓ ℱ ⊂ �(ℰ ∪ℱ ) and ℰ ⋒ ℱ ⊂ �(ℰ ∪ℱ )

so that

�(ℰ ⋓ ℱ ) ⊂ �(ℰ ∪ℱ ) and �(ℰ ⋒ ℱ ) ⊂ �(ℰ ∪ℱ )

which proves

�(ℰ ⋓ ℱ ) = �(ℰ ∪ℱ ) = �(ℰ ⋒ ℱ ).

■■
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8 Measurable functions.

Solutions to Problems 8.1�8.26

Problem 8.1 Solution: We remark, first of all, that {u ⩾ �} = u−1([x,∞)) and, similarly, for the
other sets. Now assume that {u ⩾ �} ∈ A for all �. Then

{u > �} = u−1((�,∞)) = u−1
(

⋃

k∈N

[

� + 1
k
,∞

)

)

=
⋃

k∈N
u−1

([

� + 1
k
,∞

))

=
⋃

k∈N
{u ⩾ � + 1

k
}

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
by assumption ∈A

∈ A

since A is a �-algebra.
Conversely, assume that {u > �} ∈ A for all �. Then

{u ⩾ �} = u−1([�,∞)) = u−1
(

⋂

k∈N

(

� − 1
k
,∞

)

)

=
⋂

k∈N
u−1

((

� − 1
k
,∞

))

=
⋂

k∈N
{u > � − 1

k
}

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
by assumption ∈A

∈ A .

since A is a �-algebra. Finally, as
{u > �}c = {u ⩽ �} and {u ⩾ �}c = {u < �}

we have that {u > �} ∈ A if, and only if, {u ⩽ �} ∈ A and the same holds for the sets {u ⩾
�}, {u < �}.

■■

Problem 8.2 Solution: Recall that B∗ ∈ℬ if, and only if B∗ = B∪C where B ∈ℬ and C is any of
the following sets: ∅, {−∞}, {∞}, {−∞,∞}. Using the fact thatℬ is a �-algebra and using this
notation (that is: ℬ-sets carry an asterisk ∗) we see
(Σ1) Take B = ∅ ∈ℬ, C = ∅ to see that ∅∗ = ∅ ∪ ∅ ∈ℬ;
(Σ2) Let B∗ ∈ℬ. Then (complements are to be taken inℬ

(B∗)c = (B ∪ C)c
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= Bc ∩ Cc

= (R ⧵ B) ∩ (R ⧵ C)

= (R ⧵ B ∪ {−∞,+∞}) ∩ (R ⧵ C)

= ((R ⧵ B) ∩ (R ⧵ C)) ∪ ({−∞,+∞} ∩ (R ⧵ C))

= (R ⧵ B) ∪ ({−∞,+∞} ∩ (R ⧵ C))

which is again of the typeℬ-set union a set of the list ∅, {−∞}, {∞}, {−∞,∞}, hence it is
inℬ.

(Σ3) Let B∗n ∈ℬ and B∗n = Bn ∪ Cn. Then
B∗ =

⋃

n∈N
B∗n =

⋃

n∈N
(Bn ∪ Cn) =

⋃

n∈N
Bn ∪

⋃

n∈N
Cn = B ∪ C

with B ∈ℬ and C from the list ∅, {−∞}, {∞}, {−∞,∞}, hence B∗ ∈ℬ.
A problem is the notation ℬ = ℬ(R). While the left-hand side can easily be defined by (8.5),
ℬ(R) has a well-defined meaning as the (topological) Borel �-algebra over the set R, i.e. the �-
algebra in R which is defined via the open sets in R. To describe the open sets O(R) of R we
use require, that each point x ∈ U∗ ∈ O(R) admits an open neighbourhood B(x) inside U∗. If
x ≠ ±∞, we take B(x) as the usual open �-interval around x with � > 0 sufficiently small. If
x = ±∞ we take half-lines [−∞, a) or (b,+∞] respectively with |a|, |b| sufficiently large. Thus,
O(R) adds to O(R) a few extra sets and open sets are therefore of the form U∗ = U ∪ C with
U ∈ O(R) and C being of the form [−∞, a) or (b,+∞] or ∅ or R or unions thereof.
Thus, O(R) = R ∩ O(R) and therefore

ℬ(R) = R ∩ℬ(R)

(this time in the proper topological sense).
■■

Problem 8.3 Solution:

(i) Notice that the indicator functions 1A and 1Ac are measurable. By Corollary 8.11 sums and
products of measurable functions are again measurable. Since ℎ(x) can be written in the form
ℎ(x) = 1A(x)f (x) + 1Ac (x)g(x), the claim follows.

(ii) The condition fj|Aj∩Ak = fk|Aj∩Ak just guarantees that f (x) is well-defined if we set f (x) =
fj(x) for x ∈ Aj . Using⋃j Aj = X we find for B ∈ℬ(R)

f−1(B) =
⋃

j∈N
Aj ∩ f−1(B) =

⋃

j∈N
Aj ∩ f−1j (B)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

∈A

∈ A .

An alternative solutionwould be to make theAj’s disjoint, e.g. by setting C1 ∶= A1, Ck ∶=
Ak ⧵ (A1 ∪⋯ ∪ Ak−1). Then

f =
∑

j
1Cjf =

∑

j
1Cjfj
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and the claim follows from Corollaries 8.11 and 8.10.
■■

Problem 8.4 Solution: Since 1B isℬ-measurable if, and only if, B ∈ℬ the claim follows by taking
B ∈ℬ such that B ∉ A (this is possible asℬ ⊊ A .

■■

Problem 8.5 Solution: By definition, f ∈  if it is a step-function of the form f =
∑N
j=0 aj1Aj with

some aj ∈ R and Aj ∈ A . Since

f+ =
∑

0⩽j⩽N
aj⩾0

aj1Aj and f− =
∑

0⩽j⩽N
aj⩽0

aj1Aj ,

f± are again of this form and therefore simple functions.
The converse is also true since f+f −f−—see (8.8) or Problem 8.6—and since sums and differences
of simple functions are again simple.

■■

Problem 8.6 Solution: By definition

u+(x) = max{u(x), 0} and u−(x) = −min{u(x), 0}.

Now the claim follows from the elementary identities that for any two numbers a, b ∈ R

a + 0 = max{a, 0} + min{a, 0} and |a| = max{a, 0} − min{a, 0}

which are easily verified by considering all possible cases a ⩽ 0 resp. a ⩾ 0.
■■

Problem 8.7 Solution: If we show that {u > �} is an open set, it is also a Borel set, hence u is
measurable.
Let us first understand what openness means: {u > �} is open means that for x ∈ {u > �} we find
some (symmetric) neighbourhood (a ‘ball’) of the type (x − ℎ, x + ℎ) ⊂ {u > �}. What does this
mean? Obviously, that u(y) > � for any y ∈ (x−ℎ, x+ℎ) and, in other words, u(y) > � whenever
y is such that |x − y| < ℎ. And this is the hint of how to use continuity: we use it in order to find
the value of ℎ.
u being continuous at x means that

∀ � > 0 ∃ � > 0 ∀y ∶ |x − y| < � ∶ |u(x) − u(y)| < �.

Since u(x) > � we know that for a sufficiently small � we still have u(x) ⩾ � + �. Take this � and
find the corresponding �. Then

u(x) − u(y) ⩽ |u(x) − u(y)| < � ∀ |x − y| < �
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and since � + � ⩽ u(x) we get

� + � − u(y) < � ∀ |x − y| < �

i.e. u(y) > � for y such that |x − y| < �. This means, however, that ℎ = � does the job.
■■

Problem 8.8 Solution: The minimum/maximum of two numbers a, b ∈ R can be written in the form

min{a, b} = 1
2
(

a + b − |a − b|
)

max{a, b} = 1
2
(

a + b + |a − b|
)

which shows that we can writemin{x, 0} andmax{x, 0} as a combination of continuous functions.
As such they are again continuous, hence measurable. Thus,

u+ = max{u, 0}, u− = −min{u, 0}

are compositions of measurable functions, hence measurable.
■■

Problem 8.9 Solution:

(i) From the definition of the supremum we get

sup
i
fi(x) > � ⇐⇒ ∃i0 ∈ I ∶ fi0(x) > �

⇐⇒ ∃i0 ∈ Ifi0(x) > �

⇐⇒ x ∈
⋃

i
{fi > �}.

(ii) Let x ∈ {supi fi < �}. Then we have fj(x) ⩽ supi∈I fi(x) < � for all j ∈ I ; this
means x ∈ {fj < �} for all j ∈ I and so x ∈ ⋂

j∈I{fj < �}.
(Note: ‘⊃’ is, in general, wrong. To see this, use e.g. fi(x) ∶= −1

i
, i ∈ N, and

� = 0. Then we have {supi fi < 0} = ∅ ≠ E =
⋂

i{fi < 0}.)
(iii) Let x ∈ ⋃

i{fi ⩾ �}. Then there is some i0 ∈ I such that x ∈ {fi0 ⩾ �}, hence

sup
i∈I

f (x) ⩾ fi0(x) ⩾ �.

(iv) This follows from

sup
i∈I

fi(x) ⩽ � ⇐⇒ ∀i ∈ I ∶ fi(x) ⩽ �

⇐⇒ ∀i ∈ I ∶ x ∈ {fi ⩽ �}

⇐⇒ x ∈
⋂

i∈I
{fi ⩽ �}.

(v)–(viii) can be proved like parts (i)–(iv).
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■■

Problem 8.10 Solution: The fj are step-functions where the bases of the steps are the sets Ajk and
Aj . Since they are of the form, e.g. {k2−j ⩽ u < (k + 1)2−j

}

=
{

k2−j ⩽ u
}

∩
{

u < (k + 1)2−j
},

it is clear that they are not only in A but in �(u).
■■

Problem 8.11 Solution:

Corollary 8.12 If u± are measurable, it is clear that u = u+ − u− is measurable since differences
of measurable functions are measurable.
(For the converse we could use the previous Problem 8.10, but we give an alternative proof...)
Conversely, let u be measurable. Then sn ↑ u (this is short for: limn→∞ sn(x) = u(x) and this
is an increasing limit) for some sequence of simple functions sn. Now it is clear that s+n ↑ u+,
and s+n is simple, i.e. u+ is measurable. As u = u+−u− we conclude that u− = u+−u is again
measurable as difference of two measurable functions. (Notice that in no case ‘∞−∞’ can
occur!)

Corollary 8.13 This is trivial if the difference u − v is defined. In this case it is measurable as
difference of measurable functions, so

{u < v} = {0 < u − v}

etc. is measurable.
Let us be a bit more careful and consider the case where we could encounter expressions of
the type ‘∞−∞’. Since sn ↑ u for simple functions (they are always R-valued...) we get

{u ⩽ v} = {sup
n
sn ⩽ u}

(∗)
=

⋂

n
{sn ⩽ u} =

⋂

n
{0 ⩽ u − sn}

and the latter is a union of measurable sets, hence measurable. Now {u < v} = {u ⩾ v}c and
we get measurability after switching the roles of u and v. Finally {u = v} = {u ⩽ v}∩{u ⩾ v}
and {u ≠ v} = {u = v}c .
Let me stress the importance of ‘⩽’ in (∗) above: we use here

x ∈ {sup
n
sn ⩽ u} ⇐⇒ sup

n
sn(x) ⩽ u(x)

(∗∗)
⇐⇒ sn(x) ⩽ u(x) ∀ n

⇐⇒ x ∈
⋂

{sn ⩽ u}

and this would be incorrect if we had had ‘<’, since the argument would break down at (∗∗)
(only one implication would be valid: ‘ ⇐⇒ ’).

■■

Problem 8.12 Solution: SinceX is �-finite, there is an exhausting sequenceAn ↑ X with�(An) <∞.
Let u ∈(A ).
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• It is clearly enough to consider u ⩾ 0, otherwise we consider positive and negative parts
separately. By the Sombrero lemma (Theorem 8.8) there is a sequence (un)n ⊂ (A ) with
0 ⩽ un(x) ↑ u(x) for all x ∈ X. Since An ↑ X, we also get un1An ↑ u, i.e. we can without
loss of generality assume that the standard representation of each un is of the form

un =
M(n)
∑

m=1
�n,m1An,m , �n,m ⩾ 0, An,m ∈ A , �(An,m) <∞.

• From (an obvious variant of) Problem 5.12 we know that we can approximate An,m having
finite measure by some Gn,m ∈ G in such a way that �{1Gn,m ≠ 1An,m} ⩽ 2−n∕M(n) (note:
|1A − 1B| = 1A▵B).
Moreover,

fn(x) ∶=
M(n)
∑

m=1
�n,m1Gn,m(x)

and since {fn ≠ un} ⊂
⋃

mGn,m ▵An,m, we get �{fn ≠ un} ⩽ 2−n.
As limn→∞ un(x) = u(x) for all x, we find from the continuity of the measure (from above)

�( lim
n→∞

fn ≠ u) ⩽ �

(

⋂

k∈N

⋃

n⩾k
{fn ≠ un}

)

⩽ lim
k→∞

∞
∑

n=k
�{fn ≠ un}

⩽ lim
k→∞

∞
∑

n=k
2−n = 0.

This shows that (G ) ∋ fn(x)→ u(x) for all x ∉ N with �(N) = 0.
An alternative proof can be based on the monotone class theorem. We sketch the steps below
(notation as above and in Theorem 8.15):

• Setn ∶=
{

u ∈(An ∩A ) ∶ ∃(fi)i ⊂ (An ∩ G ), ∃Nn ∈ A , �(Nn) = 0, ∀x ∉ Nn ∶ fi(x)→ u(x)
}.

Obviously n is a vector space which is stable under bounded suprema (use a diagonal argu-
ment and the fact that the union of countably many null sets is again a null set).

• Observe that 1An ,1An∩A ∈ n for all A ∈ A by the result of Problem 5.12.
• Use the monotone class theorem.
• Glue together the setsn by considering u = limn u1An . This leads again to a countable union

of null sets.
■■

Problem 8.13 Solution: If u is differentiable, it is continuous, hence measurable. Moreover, since u′
exists, we can write it in the form

u′(x) = lim
k→∞

u
(

x + 1
k

)

− u(x)
1
k
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i.e. as limit of measurable functions. Thus, u′ is also measurable.
■■

Problem 8.14 Solution: It is sometimes necessary to distinguish between domain and range. We use
the subscript x to signal the domain, the subscript y for the range.
(i) Since f ∶ Rx → Ry is f (x) = x, the inverse function is clearly f−1(y) = y. So if we

take any Borel set B ∈ ℬ(Ry) we get B = f−1(B) ⊂ Rx. Since, as we have seen, �(f ) =
f−1(ℬ(Ry)), the above argument shows that f−1(ℬ(Ry)) =ℬ(Rx), hence �(f ) =ℬ(Rx).

(ii) The inverse map of g(x) = x2 is multi-valued, i.e. if y = x2, then y = ±
√

x. So g−1 ∶
[0,∞) → R, g−1(y) = ±

√

y. Let us take some B ∈ ℬ(Ry). Since g−1 is only defined
for positive numbers (squares yield positive numbers only!) we have that g−1(B) = g−1(B ∩
[0,∞)) =

√

B ∩ [0,∞)∪(−
√

B ∩ [0,∞)) (where we use the obvious notation√A = {√a ∶
a ∈ A} and −A = {−a ∶ a ∈ A} whenever A is a set). This shows that

�(g) = {
√

B ∪ (−
√

B) ∶ B ∈ℬ, B ⊂ [0,∞)}

= {
√

B ∪ (−
√

B) ∶ B ∈ [0,∞) ∩ℬ}

where we use the notation of trace �-algebras in the latter identity.
(It is an instructive exercise to check that �(g) is indeed a �-algebra. This is, of course, clear
from the general theory since �(g) = g−1([0,∞) ∩ℬ), i.e. it is the pre-image of the trace
�-algebra and pre-images of �-algebras are always �-algebras.

(iii) A very similar calculation as in part (ii) shows that

�(ℎ) = {B ∪ (−B) ∶ B ∈ℬ, B ⊂ [0,∞)}

= {B ∪ (−B) ∶ B ∈ [0,∞) ∩ℬ}.

(iv) As warm-up we follow the hint. The set {(x, y) ∶ x + y = �} is the line y = � − x in the
x-y-plane, i.e. a line with slope −1 and shift �. So {(x, y) ∶ x + y ⩾ �} would be the points
above this line and {(x, y) ∶ � ⩾ x + y ⩾ �} = {(x, y) ∶ x + y ∈ [�, �]} would be the points
in the strip which has the lines y = � − x and y = � − x as boundaries.
More general, take a Borel set B ∈ℬ(R) and observe that

F−1(B) = {(x, y) ∶ x + y ∈ B}.

This set is, in an abuse of notation, y = B − x, i.e. these are all lines with slope −1 (135
degrees) and every possible shift from the set B—it gives a kind of stripe-pattern. To sum
up:

�(F ) = {all 135-degree diagonal stripes in R2 with ‘base’ B ∈ℬ(R)}.
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(v) Again follow the hint to see that {(x, y) ∶ x2 + y2 = r} is a circle, radius r, centre (0, 0). So
{(x, y) ∶ x2 + y2 ⩽ r} is the solid disk, radius r, centre (0, 0) and {(x, y) ∶ R ⩾ x2 + y2 ⩾
r} = {(x, y) ∶ x2 + y2 ∈ [r, R]} is the annulus with exterior radius R and interior radius r
about (0, 0).
More general, take a Borel set B ⊂ [0,∞), B ∈ ℬ(R), i.e. B ∈ [0,∞) ∩ℬ(R) (negative
radii don’t make sense!) and observe that the set {(x, y) ∶ x2 + y2 ∈ B} gives a ring-pattern
which is ‘supported’ by the set B (i.e. we take all circles passing through B...). To sum up:

�(G) ={a set consists of all circles in R2 about (0, 0)
passing through B ∈ℬ[0,∞) ∩ B(R)}.

■■

Problem 8.15 Solution: Assume first that u is injective. This means that every point in the range
u(R) comes exactly from one uniquely defined x ∈ R. This can be expressed by saying that
{x} = u−1({u(x)}) — but the singleton {u(x)} is a Borel set in the range, so {x} ∈ �(u) as
�(u) = u−1(u(R) ∩ℬ).
Conversely, assume that for each x we have {x} ∈ �(u). Fix an x0 and call u(x0) = �. Since u
is measurable, the set {u = �} = {x ∶ u(x) = �} is measurable and, clearly, {x0} ⊂ {u = �}.
But if we had another x0 ≠ x1 ∈ {u = �} this would mean that we could never ‘produce’ {x0} on
its own as a pre-image of some set, but we must be able to do so as {x0} ∈ �(u), by assumption.
Thus, x1 = x0. To sum up, we have shown that {u = �} consists of one point only, i.e. we have
shown that u(x0) = u(x1) implies x0 = x1 which is just injectivity.

■■

Problem 8.16 Solution: Clearly u ∶ R → [0,∞). So let’s take I = (a, b) ⊂ [0,∞). Then
u−1((a, b)) = (−b,−a) ∪ (a, b). This shows that for � ∶= �◦u−1

�(a, b) = �◦u−1((a, b)) = �
(

(−b,−a) ∪ (a, b)
)

= �(−b,−a) + �(a, b)

= (−a − (−b)) + (b − a) = 2(b − a) = 2�((a, b)).

This shows that � = 2� if we allow only intervals from [0,∞), i.e.

�(I) = 2�
(

I ∩ [0,∞)
) for any interval I ⊂ R.

Since a measure on the Borel sets is completely described by (either: open or closed or half-open
or half-closed) intervals (the intervals generate the Borel sets!), we can invoke the uniqueness
theorem to guarantee that the above equality holds for all Borel sets.

■■

Problem 8.17 Solution:
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(i) Because of Lemma 7.2 it is enough to check measurability for some generator. Let B =
[a, b) ∈ J , a < b. We have

Q−1(B) = E ∩

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∅if a, b ⩽ 0
(−
√

b,+
√

b)if a ⩽ 0, b > 0
(

−
√

b,−
√

a
]

∪
[

√

a,
√

b
)

if a, b > 0

These sets are inℬ(E), therefore Q isℬ(E)∕ℬ(R)-measurable.
(ii) Denote by T the embedding of E into R, i.e. T ∶ x → x. Formally, we get

�(T 2 ∈ B) = �(±T ∈
√

B).

More precisely: we have already seen that �◦Q−1 is a measure (Theorem 7.6). Since J
is ∩-stable and �◦Q−1 a finite measure (� comes from a finite Lebesgue measure), we get
uniqueness from Theorem 5.7, and it enough to consider sets of the form B = [a, b) ∈ J ,
a ⩽ b.

• Part (i) gives

�(Q−1(B)) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, b ⩽ 0 or a > 1
�([0,

√

b)), a < 0, b > 0

�([
√

a,
√

b ∧ 1)), 0 < a < 1

=
⎧

⎪

⎨

⎪

⎩

0, b ⩽ 0 or a > 1
√

b ∧ 1 −
√

0 ∨ a ∧ 1, otherwise.

• Again by part (i)

�(Q−1(B)) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, b ⩽ 0 or a > 1
�([(−

√

b) ∨ (−1),
√

b ∧ 1)), a < 0, b > 0
1
2�([(−

√

b) ∨ (−1),
√

a) ∪ [
√

a,
√

b ∧ 1)), 0 < a < 1

=
⎧

⎪

⎨

⎪

⎩

0, b ⩽ 0 or a > 1
212�([0 ∨

√

a ∧ 1,
√

b ∧ 1)), otherwise

=
⎧

⎪

⎨

⎪

⎩

0, b ⩽ 0 or a > 1
(
√

b ∧ 1)) − (0 ∧
√

a ∧ 1), otherwise

■■

Problem 8.18 Solution:

89



R.L. Schilling: Measures, Integrals & Martingales

• clear, since u(x− 2) is a combination of the measurable shift �2 and the measurable function
u.

• this is trivial since u → eu is a continuous function, as such it is measurable and combinations
of measurable functions are again measurable.

• this is trivial since u → sin(u + 8) is a continuous function, as such it is measurable and
combinations of measurable functions are again measurable.

• iterate Problem 8.13
• obviously, sgn x = (−1) ⋅ 1(−∞,0)(x) + 0 ⋅ 1{0}(x) + 1 ⋅ 1(0,∞)(x), i.e. a measurable function.

Using the first example, we see now that sgn u(x − 7) is a combination of three measurable
functions.

■■

Problem 8.19 Solution: Betrachte zum Beispiel T ∶ [0, 1) → [0, 1)mit T (x) = x
2 undwn ∶ [0, 1) →

R mit wn(x) = (−1)n1[1∕2,1)(x).
■■

Problem 8.20 Solution: LetA ⊂ R be such thatA ∉ℬ. Then it is clear that u(x) = 1A(x)−1Ac (x) is
NOT measurable (take, e.g. A = {f = 1} which should be measurable for measurable functions),
but clearly, |f (x)| = 1 and as constant function this IS measurable.

■■

Problem 8.21 Solution: We want to show that the sets {u ⩽ �} are Borel sets. We will even show
that they are intervals, hence Borel sets. Imagine the graph of an increasing function and the line
y = � cutting through. Essentially we have three scenarios: the cut happens at a point where (a) u
is continuous and strictly increasing or (b) u is flat or (c) u jumps—i.e. has a gap; these three cases
are shown in the following pictures: From the three pictures it is clear that we get in any case an

✻

✲

�

�
ab

✻

✲

�

�
c b a

✻

✲

�

�
ab

1

interval for the sub-level sets {u ⩽ } where  is some level (in the pic’s  = � or = �), you can
read off the intervals on the abscissa where the dotted lines cross the abscissa.
Now let’s look at the additional conditions: First the intuition: From the first picture, the continuous
and strictly increasing case, it is clear that we can produce any interval (−∞, b] to (−∞, a] by
looking at {u ⩽ �} to {u ⩽ �} my moving up the �-line to level �. The point is here that we get
all intervals, so we get a generator of the Borel sets, so we should get all Borel sets.
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The second picture is bad: the level set {u ⩽ �} is (−∞, b] and all level sets below will only come
up to the point (−∞, c], so there is no chance to get any set contained in (c, b), i.e. we cannot get
all Borel sets.
The third picture is good again, because the vertical jump does not hurt. The only ‘problem’ is
whether {u ⩽ �} is (−∞, b] or (−∞, b) which essentially depends on the property of the graph
whether u(b) = � or not, but this is not so relevant here, we just must make sure that we can get
more or less all intervals. The reason, really, is that jumps as we described them here can only
happen countably often, so this problem occurs only countably often, and we can overcome it
therefore.
So the point is: we must disallow flat bits, i.e. �(u) is the Borel �-algebra if, and only, if u is strictly
increasing, i.e. if, and only if, u is injective. (Note that this would have been clear already from
Problem 8.15, but our approach here is much more intuitive.)

■■

Problem 8.22 Solution: For every n ∈ N the function

gn(x) ∶=
n
∑

i=1
2−i1Gi(x), x ∈ X,

is A∕ℬ(R)-measurable. Therefore, g = limn→∞ gn is A∕ℬ(R)-measurable (pointwise limit of
measurable functions), and so �(g) ⊂ A . For the inclusion A ⊂ �(g) we define

Σ ∶= {A ∈ A ∶ A ∈ �(g)}.

Σ ist a �-Algebra:
(Σ1) X ∈ Σ since X ∈ A and X ∈ �(g).
(Σ2) For A ∈ Σ we have A ∈ �(g); since �(g) is a �-algebra, we see that Ac ∈ �(g); hence,

Ac ∈ Σ.
(Σ3) For (An)n∈N ⊂ Σ we see⋃n∈NAn ∈ �(g), thus

⋃

nAn ∈ Σ.
Since Gi = {g = 2−i} ∈ �(g) we see that G ⊂ Σ. Consequently, A = �(G ) ⊂ �(g).

■■

Problem 8.23 Solution: Without loss of generality, assume that u is right-continuous (left-continuity
works analogously). Approximate u with simple functions:

un(x) ∶=
2n2
∑

i=1
u(xni+1)1[xni ,xni+1)(x)

where xni ∶= −n + i
n
. The functions un are obviously Borel measurabl. We claim:

u(x) = lim
n→∞

un(x).

91



R.L. Schilling: Measures, Integrals & Martingales

Indeed: For each x ∈ R there is some N ∈ N such that x ∈ [−N,N]. By definition, we find for
all n ⩾ N ,

un(x) = u
(

⌊nx⌋ + 1
n

)

( ⌊nx⌋+1
n

is the smallest number of the form k
n
, k ∈ Z, which exceeds x.) Because of the right-

continuity of u we get un(x) → u(x) as n → ∞. Therefore, u is Borel-measurable (pointwise limit
of measurable functions).

■■

Problem 8.24 Solution: Every linear map on a finite-dimensional vector space is continuous, hence
Borel measurable.
Note that f ∶ R → R2, f (x) ∶= (x, 0)⊤, is continuous, hence Borel measurable. This map is,
however, not measurable with respect to the completed Borel �-algebras:
To see this, let A ⊂ R, A ∉ ℬ(R), be a subset of a Lebesgue null set. For A × {0} we see
that A × {0} ∈ ℬ(R2); this follows from A × {0} ⊂ N ∶= R × {0} and �2(N) = 0 (cf.
Problem 4.15, Problem 6.7). On the other hand, f−1(A × {0}) = A ∉ ℬ(R) ⊂ ℬ(R), i.e.
f ∶ (R,ℬ(R))→ (R2,ℬ(R2)) is not measurable.

■■

Problem 8.25 Solution: Without loss of generality we consider the right-continuous situation. The
left-continuous counterpart is very similar.

• Fix ! ∈ Ω. Note that it is enough to show that t → �(t, !)1[a,b](t) =∶ �a,b(t, !) is measurable
for all a < b.
Indeed: Because of

�(t, !) = lim
R→∞

�−R,R(t, !)

the map t → �(t, !) is measurable (pointwise limit of measurable functions, cf. Corol-
lary 8.10.
In order to keep notation simple, we assume that a = 0 and b = 1; the general case is similar.
Define

�n(t, !) ∶=
2n−1
∑

i=0
�
(

i+1
2n , !

)

1[ i
2n ,

i+1
2n ∧1

)(t).

For any t ∈ [0, 1] we have ⌊2nt⌋+1
2n ↓ t, and because of right-continuity,

�n(t, !) = �
(

⌊2nt⌋ + 1
2n

, !
)

←←←←←←←←←←←←←←←←←←←←→
n→∞

�(t, !)
t ∈ [0, 1]
= �0,1(t, !).

For t ∉ [0, 1] we have �n(t, !) = 0 = �0,1(t, !) and, thus,

�0,1(t, !) = lim
n→∞

�n(t, !) ∀t ∈ R, ! ∈ Ω.
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Consequently, it is enough to show (by Corollary 8.10) that each t → �n(t, !) is measurable.
For � ∈ R we get

{t ∶ �n(t, !) ⩽ �} =
⋃

i∈I

[

i
2n
, i + 1
2n

)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
∈ℬ(R)

∈ℬ(R)

where
I ∶=

{

i ∈ {0,… , 2n − 1}; �
( i + 1
2n

, !
)

⩽ �
}

.

This proves that t → �n(t, !) is measurable.
• Since t → �(t, !) is right-continuous, we have

sup
t∈R

�(t, !) = sup
t∈Q

�(t, !). (⋆)

Indeed: The estimate ‘⩾’ is clear, i.e. we only have to show ‘⩽’. Using the definition of the
supremum, there is for each � > 0 some s ∈ R such that

�(s, !) ⩾ sup
t∈R

�(t, !) − �.

Because of right-continuity we find some r ∈ Q, r > s, such that |�(r, !) − �(s, !)| ⩽ �.
Therefore,

sup
t∈Q

�(t, !) ⩾ �(r, !) ⩾ �(s, !) − � ⩾ sup
t∈R

�(t, !) − 2�.

Since � > 0 is arbitrary, the claim follows.
From (⋆) we get that the map ! → supt∈R �(t, !) is measurable (as supremum of countably
many measurable functions, cf. Corollary 8.10).

■■

Problem 8.26 Solution: ‘⇐’: Assume that there are A∕ℬ(R)-measurable functions f, g ∶ X → R

satisfying f ⩽ � ⩽ g and �{f ≠ g} = 0. For any x ∈ R we get

{� ⩽ x} = {� ⩽ x, f = g} ∪ {� ⩽ x, f ≠ g}

= {g ⩽ x, f = g}
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

=∶A

∪ {� ⩽ x, f ≠ g}
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

=∶N

.

Since f and g are measurable, we see that A ∈ A . For N we only get N ⊂ {f ≠ g}, i.e. N is a
subset of a �-null set. By the definition of A (see Problem 4.15) we find {� ⩽ x} ∈ A .
‘⇒’: Assume, first, that � is a simple function, i.e.

�(x) =
N
∑

i=1
ci1Ai(x), x ∈ X,

with ci ∈ R, Ai ∈ A (i = 1,… , n). From the definition of A we get that the Ai are of the form

Ai = Bi +Ni
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with Bi ∈ A andNi being a subset of a �-null setMi ∈ A . Define

f (x) ∶=
n
∑

i=1
ci1Bi(x), g(x) ∶=

n
∑

i=1
ci1Bi∪Mi

(x), x ∈ X.

These are clearly A∕ℬ(R)-measurable functions and f ⩽ � ⩽ g. Moreover,

�(f ≠ g) ⩽ �

( n
⋃

i=1
Mi

)

⩽
n
∑

i=1
�(Mi) = 0.

This proves that the claim holds for simple functions.
Let � be any A∕ℬ(R)-measurable function. Using Corollary 8.9, we get a sequence (�n)n∈N of
A∕ℬ(R)-measurable simple functions such that �n(x) → �(x) for all x ∈ X. By the first part of
this proof, there are A∕ℬ(R)-messbare Funktionen fn, gn, n ∈ N, such that mit fn ⩽ �n ⩽ gn
and �(fn ≠ gn) = 0. Set

f (x) ∶= lim inf
n→∞

fn(x), g(x) ∶= lim inf
n→∞

gn(x), x ∈ X.

The functions f and g are again A∕ℬ(R)-measurable (Corollary 8.10) and we have f ⩽ � ⩽ g.
Moreover,

�(f ≠ g) ⩽ �

(

⋃

n∈N
{fn ≠ gn}

)

⩽
∑

n∈N
�(fn ≠ gn) = 0.

■■

94



9 Integration of positive functions.

Solutions to Problems 9.1�9.14

Problem 9.1 Solution: We know that for any two simple functions f, g ∈ + we have I�(f + g) =
I�(f ) + I�(g) (= additivity), and this is easily extended to finitely many, say, m different positive
simple functions. Observe now that each �n1An is a positive simple function, hence

I�

( m
∑

n=1
�n1An

)

=
m
∑

n=1
I�

(

�n1An
)

=
m
∑

n=1
�nI�

(

1An

)

=
m
∑

n=1
�n�

(

An
)

.

Put in other words: we have used the linearity of I�.
■■

Problem 9.2 Solution: We use indicator functions. Note that any fixed x can be contained in k ∈
{0, 1,… , N} of the sets An. Then x is contained in A1 ∪⋯ ∪ AN as well as in (k

2

) of the pairs
An ∪ Ak where n < k; as usual:

(m
n

)

= 0 if m < n. This gives
∑

n
1An = k ⩽ 1 +

(

k
2

)

= 1A1∪⋯∪AN +
∑

n<k
1An1Ak

= 1A1∪⋯∪AN +
∑

n<k
1An∩Ak .

Integrating this inequality w.r.t. � yields the result.
■■

Problem 9.3 Solution: We check Properties 9.8(i)–(iv).
(i) This follows from Properties 9.3 and Lemma 9.5 since ∫ 1A d� = I�(1A) = �(A).
(ii) This follows again from Properties 9.3 and Corollary 9.7 since for un ∈ + with u = supn un

(note: the sup’s are increasing limits!) we have

∫ �u d� = ∫ � sup
n
un d� = sup

n
I�(�un)

= sup
n
�I�(un)

= � sup
n
I�(un)

= � ∫ u d�.
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(iii) This follows again from Properties 9.3 and Corollary 9.7 since for un, vn ∈ + with u =
supn un, v = supn vn (note: the sup’s are increasing limits!) we have

∫ (u + v) d� = ∫ lim
n→∞

(un + vn) d� = lim
n→∞

I�(un + vn)

= lim
n→∞

(

I�(un) + I�(vn)
)

= lim
n→∞

I�(un) + lim
n→∞

I�(vn)

= ∫ u d� + ∫ v d�.

(iv) This was shown in Step 1 of the proof of the Beppo Levi theorem 9.6
■■

Problem 9.4 Solution: Consider on the space ([−1, 0], �), �(dx) = dx is Lebesgue measure on [0, 1],
the sequence of ‘tent-type’ functions

fk(x) =
⎧

⎪

⎨

⎪

⎩

0, −1 ⩽ x ⩽ − 1
k
,

k3
(

x + 1
k
), − 1

k
⩽ x ⩽ 0,

(k ∈ N),

(draw a picture!). These are clearly monotonically increasing functions but, as a sequence, we do
not have fk(x) ⩽ fk+1(x) for every x! Note also that each function is integrable (with integral 12k)
but the pointwise limit is not integrable.

■■

Problem 9.5 Solution: The first part is trivial since it just says that the sequence becomes increasing
only from index K onwards. This K does not depend on x but is uniform for the whole sequence.
Since we are anyway only interested in u = limn→∞ un = supn⩾K un, we can neglect the elements
u1,… , uK and consider only the then increasing sequence (un+K )n. Then we can directly apply
Beppo Levi’s theorem, Theorem 9.6.
The other condition says that the sequence un+K (x) is increasing for someK = K(x). But sinceK
may depend on x, we will never get some overall increasing behaviour of the sequence of functions.
Take, for example, on (R,ℬ(R), � ∶= �1),

un(x) = n2(x +
1
n
)1(−1∕n,0)(x) − n2(x −

1
n
)1(0,1∕n)(x).

This is a sequence of symmetric tent-like functions of tents with base (−1∕n, 1∕n) and tip at n2
(which we take out and replace by the value 0). Clearly:

un(x) ←←←←←←←←←←←←←←←←←←←←→n→∞
0 and ∫ un(x) dx = 1 ∀ n.

Moreover, if n ⩾ K = K(x) with K(x) defined to be the smallest integer > 1∕|x|, then un(x) = 0
so that the second condition is clearly satisfied, but ∫ un(x) dx = 1 cannot converge to ∫ 0 dx =
∫ u(x) dx = 0.

■■
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Problem 9.6 Solution: Following the hint we set sm = u1 + u2 +…+ um. As a finite sum of positive
measurable functions this is again positive and measurable. Moreover, sm increases to s = ∑∞

n=1 un
as m→∞. Using the additivity of the integral (9.8 (iii)) and the Beppo Levi theorem 9.6 we get

∫

∞
∑

n=1
un d� = ∫ sup

m
sm d� = sup

m ∫ sm d�

= sup
m ∫ (u1 +…+ um) d�

= sup
m

m
∑

n=1
∫ un d�

=
∞
∑

n=1
∫ un d�.

Conversely, assume that 9.9 is true. Wewant to deduce from it the validity of Beppo Levi’s theorem
9.6. So let (wn)n∈N be an increasing sequence of measurable functions with limit w = supnw.
For ease of notation we set w0 ≡ 0. Then we can write each wn as a partial sum

wn = (wn −wn−1) +⋯ + (w1 −w0)

of positive measurable summands of the form uk ∶= wk −wk−1. Thus,

wm =
m
∑

k=1
uk and w =

∞
∑

k=1
uk

and, using the additivity of the integral,

∫ wd�
9.9
=

∞
∑

k=1
∫ uk d� = sup

m ∫

m
∑

k=1
uk d� = sup

m ∫ wm d�.

■■

Problem 9.7 Solution: Set �(A) ∶= ∫ 1Au d�. Then � is a [0,∞]-valued set function defined for
A ∈ A .
(M1) Since 1∅ ≡ 0 we have clearly �(∅) = ∫ 0 ⋅ u d� = 0.
(M1) Let A = ⨃

n∈NAn a disjoint union of sets An ∈ A . Then
∞
∑

n=1
1An = 1A

and we get from Corollary 9.9

�(A) = ∫

( ∞
∑

n=1
1An

)

⋅ u d� = ∫

∞
∑

n=1

(

1An ⋅ u
)

d�

=
∞
∑

n=1
∫ 1An ⋅ u d�

=
∞
∑

n=1
�(An).
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■■

Problem 9.8 Solution: This is actually trivial: since our �-algebra is P (N), all subsets of N are
measurable. Now the sub-level sets {u ⩽ �} = {k ∈ N ∶ u(k) ⩽ �} are always ⊂ N and as such
they are ∈ P (N), hence u is always measurable.

■■

Problem 9.9 Solution: We have seen in Problem 4.7 that � is indeed a measure. We follow the
instructions. First, for A ∈ A we get

∫ 1A d� = �(A) =
∑

j∈N
�j(A) =

∑

j∈N
∫ 1A d�j .

By the linearity of the integral, this easily extends to functions of the form �1A + �1B where
A,B ∈ A and �, � ⩾ 0:

∫ (�1A + �1B) d� = � ∫ 1A d� + � ∫ 1B d�

= �
∑

j∈N
∫ 1A d�j + �

∑

j∈N
∫ 1B d�j

=
∑

j∈N
∫ (�1A + �1B) d�j

and this extends obviously to simple functions which are finite sums of the above type.

∫ f d� =
∑

j∈N
∫ f d�j ∀f ∈ +.

Finally, take u ∈+ and take an approximating sequence un ∈ + with supn un = u. Then we get
by Beppo Levi (indicated by an asterisk ∗)

∫ u d�
∗
= sup

n ∫ un d� = sup
n

∞
∑

j=1
∫ un d�j

= sup
n
sup
m

m
∑

j=1
∫ un d�j

= sup
m
sup
n

m
∑

j=1
∫ un d�j

= sup
m
lim
n

m
∑

j=1
∫ un d�j

= sup
m

m
∑

j=1
lim
n ∫ un d�j

∗
= sup

m

m
∑

j=1
∫ lim

n
un d�j

=
∞
∑

j=1
∫ u d�j
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where we repeatedly use that all sup’s are increasing limits and that we may swap any two sup’s
(this was the hint to the hint to Problem 4.7.)

■■

Problem 9.10 Solution: Set wn ∶= u − un. Then the wn are a sequence of positive measurable
functions. By Fatou’s lemma we get

∫ lim inf
n

wn d� ⩽ lim inf
n ∫ wn d�

= lim inf
n

(

∫ u d� − ∫ un d�
)

= ∫ u d� − lim sup
n ∫ un d�

(see, e.g. the rules for lim inf and lim sup in Appendix A). Thus,

∫ u d� − lim sup
n ∫ un d� ⩾ ∫ lim inf

n
wn d�

= ∫ lim inf
n

(u − un) d�

= ∫
(

u − lim sup
n

un
)

d�

and the claim follows by subtracting the finite value ∫ u d� on both sides.
Remark. The uniform domination of un by an integrable function u is really important. Have a look
at the following situation: (R,ℬ(R), �), �(dx) = dx denotes Lebesgue measure, and consider the
positive measurable functions un(x) = 1[n,2n](x). Then lim supn un(x) = 0 but lim supn ∫ un d� =
lim supn n = ∞ ≠ ∫ 0 d�.

■■

Problem 9.11 Solution:

(i) Have a look at Appendix A, Lemma A.2.
(ii) You have two possibilities: the set-theoretic version:

�
(

lim inf
n

An
)

= �
(

⋃

k

⋂

n⩾k
An

)

∗
= sup

k
�
(

⋂

n⩾k
An

)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
⩽�(An) ∀ n⩾khence, ⩽ infn⩾k �(An)

⩽ sup
k
inf
n⩾k

�(An)

= lim inf
n

�(An)
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which uses at the point ∗ the continuity of measures, Proposition 4.3.
The alternative would be (i) combined with Fatou’s lemma:

�
(

lim inf
n

An
)

= ∫ 1lim infn An d�

= ∫ lim inf
n

1An d�

⩽ lim inf
n ∫ 1An d�

(iii) Again, you have two possibilities: the set-theoretic version:

�
(

lim sup
n

An
)

= �
(

⋂

k

⋃

n⩾k
An

)

#
= inf

k
�
(

⋃

n⩾k
An

)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
⩾�(An) ∀ n⩾khence, ⩾ supn⩾k �(An)

⩾ inf
k
sup
n⩾k

�(An)

= lim sup
n

�(An)

which uses at the point # the continuity of measures, Proposition 4.3. This step uses the
finiteness of �.
The alternative would be (i) combined with the reversed Fatou lemma of Problem 9.10:

�
(

lim sup
n

An
)

= ∫ 1lim supn An d�

= ∫ lim sup
n

1An d�

⩾ lim sup
n ∫ 1An d�

(iv) Take the example in the remark to the solution for Problem 9.10. We will discuss it here in its
set-theoretic form: take (R,ℬ(R), �) with � denoting Lebesgue measure �(dx) = dx. Put
An = [n, 2n] ∈ℬ(R). Then

lim sup
n

An =
⋂

k

⋃

n⩾k
[n, 2n] =

⋂

k
[k,∞) = ∅

But 0 = �(∅) ⩾ lim supn �(An) = lim supn n = ∞ is a contradiction. (The problem is that
�[k,∞) = ∞!)

■■

Problem 9.12 Solution: We use the fact that, because of disjointness,

1 = 1X =
∞
∑

n=1
1An

100



Solution Manual. Last update 18th July 2019

so that, because of Corollary 9.9,

∫ u d� = ∫

( ∞
∑

n=1
1An

)

⋅ u d� = ∫

∞
∑

n=1

(

1An ⋅ u
)

d�

=
∞
∑

n=1
∫ 1An ⋅ u d�.

Assume now that (X,A , �) is �-finite with an exhausting sequence of sets (Bn)n ⊂ A such that
Bn ↑ X and �(Bn) <∞. Then we make the Bn’s pairwise disjoint by setting

A1 ∶= B1, Ak ∶= Bk ⧵ (B1 ∪⋯ ∪ Bk−1) = Bk ⧵ Bk−1.

Now take any sequence (ak)k ⊂ (0,∞)with∑k ak�(Ak) <∞—e.g. ak ∶= 2−k∕(�(Ak)+1)—and
put

w(x) ∶=
∞
∑

n=1
ak1Ak .

Then w is integrable and, obviously, w(x) > 0 everywhere.
■■

Problem 9.13 Solution:

(i) We check (M1), (M2). Using the fact thatN(x, ⋅) is a measure, we find

�N(∅) = ∫ N(x, ∅)�(dx) = ∫ 0�(dx) = 0.

Further, let (An)n∈N ⊂ A be a sequence of disjoint sets and set A = ⨃

nAn. Then

�N(A) = ∫ N
(

x,
⨃

n
An

)

�(dx) = ∫
∑

n
N(x,An)�(dx)

9.9
=

∑

n ∫ N(x,An)�(dx)

=
∑

n
�N(An).

(ii) We have for A,B ∈ A and �, � ⩾ 0,

N(�1A + �1B)(x) = ∫
(

�1A(y) + �1B(y)
)

N(x, dy)

= � ∫ 1A(y)N(x, dy) + � ∫ 1B(y)N(x, dy)

= �N1A(x) + �N1B(x).

ThusN(f + g)(x) = Nf (x) +Ng(x) for positive simple f, g ∈ +(A ). Moreover, since by
Beppo Levi (marked by an asterisk ∗) for an increasing sequence fk ↑ u

sup
k
Nfk(x) = sup

k ∫ fk(y)N(x, dy)
∗
= ∫ sup

k
fk(y)N(x, dy)
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= ∫ u(y)N(x, dy)

= Nu(x)

and since the sup is actually an increasing limit, we see for positivemeasurable u, v ∈+(A )
and the corresponding increasing approximations via positive simple functions fk, gk:

N(u + v)(x) = sup
k
N(fk + gk)(x)

= sup
k
Nfk(x) + sup

k
Ngk(x)

= Nu(x) +Nv(x).

Moreover, x → N1A(x) = N(x,A) is a measurable function, thus Nf (x) is a measurable
function for all simple f ∈ +(A ) and, by Beppo Levi (see above) Nu(x), u ∈ +(A ), is
for every x an increasing limit of measurable functionsNfk(x). Therefore,Nu ∈+(A ).

(iii) If u = 1A, A ∈ A , we have

∫ 1A(y)�N(dy) = �N(A) = ∫ N(x,A)�(dx)

= ∫ N1A(x)�(dx).

By linearity this carries over to f ∈ +(A ) and, by a Beppo Levi-argument, to u ∈+(A ).
■■

Problem 9.14 Solution: Put
�(A) ∶= ∫ u ⋅ 1A+� d� + ∫ (1 − u) ⋅ 1A−� d�.

If A is symmetric w.r.t. the origin, A+ = −A− and A±� = A. Therefore,

�(A) = ∫ u ⋅ 1A d� + ∫ (1 − u) ⋅ 1A d� = ∫ 1A d� = �(A).

This means that � extends �. It also shows that �(∅) = 0. Since � is defined for all sets fromℬ(R)
and since � has values in [0,∞], it is enough to check �-additivity.
For this, let (An)n ⊂ℬ(R) be a sequence of pairwise disjoint sets. From the definitions it is clear
that the sets (An)±� are again pairwise disjoint and that ⨃n(An)±� =

(
⨃

nAn
)±
� . Since each of the

set functions
B → ∫ u ⋅ 1B d�, C → ∫ (1 − u) ⋅ 1C d�

is �-additive, it is clear that their sum � will be �-additive, too.

The obvious non-uniqueness of the extension does not contradict the uniqueness theorem for ex-
tensions, since Σ does not generateℬ(R)!

■■
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10 Integrals of measurable functions.

Solutions to Problems 10.1�10.9

Problem 10.1 Solution: Let u, v be integrable functions and a, b ∈ R. Assume that either u, v are
real-valued or that au + bv makes sense (i.e. avoiding the case ‘∞−∞’). Then we have

|au + bv| ⩽ |au| + |bv| = |a| ⋅ |u| + |b| ⋅ |v| ⩽ K(|u| + |v|)

with K = max{|a|, |b|}. Since the RHS is integrable (because of Theorem 10.3 and Properties
9.8) we have that au + bv is integrable by Theorem 10.3. So we get from Theorem 10.4 that

∫ (au + bv) d� = ∫ au d� + ∫ bv d� = a∫ u d� + b∫ v d�

and this is what was claimed.
■■

Problem 10.2 Solution: Without loss of generality we consider u on (0, 1] (otherwise we have to
single out the point x = 1, and this is just awkward in the notation...) We follow the hint and
show first that u(x) ∶= x−1∕2, 0 < x ⩽ 1, is Lebesgue integrable. The idea here is to construct a
sequence of simple functions approximating u from below. Set xi =

(

i
n

)2, i = 0, 1,… , n and

un(x) ∶=
n−1
∑

i=0
u(xi+1)1(xi,xi+1](x) =

n−1
∑

i=0

n
i + 1

1(xi,xi+1](x)

This is clearly a simple function. Also un ⩽ u and limn→∞ un(x) = supn un(x) = u(x) for all x.
Since P (A) is just �(A ∩ (0, 1]), the integral of un is given by

∫ un dP = IP (un) =
n−1
∑

i=0

n
i + 1

[

( i + 1
n

)2
−
( i
n

)2]

= 1
n

n−1
∑

i=0

1
i + 1

[

(i + 1)2 − i2
]

= 1
n

n−1
∑

i=0

1
i + 1

[2i + 1]

⩽ 1
n

n−1
∑

i=0

1
i + 1

[2i + 2] = 1
n
⋅ 2n = 2

and is thus finite, even uniformly in n. So, Beppo Levi’s theorem tells us that

∫ u dP = sup
n ∫ un dP ⩽ sup

n
2 = 2 <∞

103



R.L. Schilling: Measures, Integrals & Martingales

showing integrability.
Now u is clearly not bounded but integrable.

■■

Problem 10.3 Solution: Clearly, � is defined on A and takes values in [0,∞]. Since 1∅ ≡ 0 we have

�(∅) = ∫ 1∅ ⋅ u d� = ∫ 0 d� = 0.

If (An)n∈N ⊂ A are mutually disjoint measurable sets, we get

�
(

∞
⨃

n=1
An

)

= ∫ 1⨃∞
n=1 An

⋅ u d�

= ∫

∞
∑

n=1
1An ⋅ u d�

=
∞
∑

n=1
∫ 1An ⋅ u d� =

∞
∑

n=1
�(An)

which proves �-additivity.
■■

Problem 10.4 Solution: ‘⇐⇒’: since the Aj are disjoint we get the identities

1⨃
j Aj =

∞
∑

k=1
1Aj and so u ⋅ 1⨃

j Aj =
∞
∑

k=1
u ⋅ 1Aj ,

hence |u1An| = |u|1An ⩽ |u|1⨃
j Aj = |u1⨃

j Aj | showing the integrability of each u1An by Theorem
10.3. By a Beppo Levi argument (Theorem 9.6) or, directly, by Corollary 9.9 we get

∞
∑

j=1
∫Aj

|u| d� =
∞
∑

j=1
∫ |u|1Aj d� = ∫

∞
∑

j=1
|u|1Aj d�

= ∫ |u|1⨃
j Aj d� < ∞.

The converse direction ‘⇐⇐’ follows again from Corollary 9.9, now just the other way round:

∫ |u|1⨃
j Aj d� = ∫

∞
∑

j=1
|u|1Aj d� =

∞
∑

j=1
∫ |u|1Aj d�

=
∞
∑

j=1
∫Aj

|u| d� < ∞

showing that u1⨃
j Aj is integrable.

■■

Problem 10.5 Solution: For any measurable function u we have u ∈ 1(�) ⇐⇒ |u| ∈ 1(�). This
means that we may assume that u ⩾ 0. Since

k
∑

n=−k
1{2n⩽u<2n+1}u ↑ u1{u>0}
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we can use Beppo Levi’s theorem to conclude

∫ u d� = ∫{u>0}
u d� =

∑

n∈Z
∫{2n⩽u<2n+1}

u d�.

Because of the monotonicity of the integral,

C ∶=
∑

n∈Z
∫{2n⩽u<2n+1}

2n d� ⩽
∑

n∈Z
∫{2n⩽u<2n+1}

u d� ⩽
∑

n∈Z
∫{2n⩽u<2n+1}

2n+1 d�,

i.e.
C ⩽

∑

n∈Z
∫{2n⩽u<2n+1}

u d� ⩽ 2C.

Therefore the following assertions are equivalent:

u ∈ 1(�) ⇐⇒
∑

n∈Z
∫{2n⩽u<2n+1}

u d� < ∞

⇐⇒ C =
∑

n∈Z
2n�{2n ⩽ u < 2n+1} <∞.

■■

Problem 10.6 Solution: Let us show the following inequalities:
∞
∑

i=1
1{|u|⩾i}(x) ⩽ |u(x)| ⩽

∞
∑

i=0
1{|u|⩾i}(x) ∀x ∈ X.

First proof:

∞
∑

i=1
1{|u|⩾i} =

∞
∑

i=1

∞
∑

k=i
1{k+1>|u|⩾k} =

∞
∑

k=1

k
∑

i=1
1{k+1>|u|⩾k} =

∞
∑

k=1
k1{k+1>|u|⩾k}

and
∞
∑

k=1
k1{k+1>|u|⩾k} ⩽

∞
∑

k=1
|u|1{k+1>|u|⩾k} = |u|1{|u|⩾1}

and
∞
∑

k=1
k1{k+1>|u|⩾k} ⩾

∞
∑

k=1
(|u| − 1)1{k+1>|u|⩾k} = (|u| − 1)1{|u|⩾1} ⩾ |u|1{|u|⩾1} − 1{|u|⩾0}.

So,
∞
∑

i=1
1{|u|⩾i} ⩽ |u|1{|u|⩾1} ⩽ |u| ⩽ 1 +

∞
∑

i=1
1{|u|⩾i} =

∞
∑

i=0
1{|u|⩾i}.

Second proof: For x ∈ X, there is some k ∈ N0 such that k ⩽ |u(x)| < k + 1. Therefore,

x ∈ {|u| ⩾ i} ∀i ∈ {0,… , k}

and
x ∉ {|u| ⩾ i} ∀i ⩾ k + 1.
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Thus,
∑

i∈N0

1{|u|⩾i}(x) = k + 1.

Since k ⩽ |u(x)| ⩽ k + 1 we get
∑

i∈N0

1{|u|⩾i}(x) = k + 1 ⩾ |u(x)| ⩾ k = (k + 1) − 1 =

(

∑

i∈N0

1{|u|⩾i}(x)

)

− 1.

As 1 = 1{|u|⩾0} (u ⩾ 0, by assumption) we get the claimed estimates.

Integrating these inequalities we get
∞
∑

i=1
�{|u| ⩾ i} ⩽ ∫ |u| d� ⩽

∞
∑

i=0
�{|u| ⩾ i},

and (ii) follows. If u ∈ 1(�), then we get ∑i⩾1 �(|u| ⩾ 1) < ∞. On the other hand, if u is
measurable, and∑i �(|u| ⩾ i) <∞, then we get ∫ |u| d� <∞, i.e. u ∈ 1(�) and (i) follows.
The finiteness of the measure � was only used for ∫ 1 d� <∞ or �{|u| ⩾ 0} <∞ – which is only
needed for the second estimate in (ii). Hence, the lower estimate in (ii) holds for all measures!

■■

Problem 10.7 Solution: One possibility to solve the problem is to follow the hint. We provide an
alternative (and shorter) solution.
(i) Observe that uj − v ⩾ 0 is a sequence of positive and integrable functions. Applying Fatou’s

lemma (in the usual form) yields (observing the rules for lim inf , lim sup from Appendix A,
compare also Problem 9.10):

∫ lim inf
j

uj d� − ∫ v d� = ∫ lim inf
j

(uj − v) d�

⩽ lim inf
j ∫ (uj − v) d�

= lim inf
j ∫ uj d� − ∫ v d�

and the claim follows upon subtraction of the finite (!) number ∫ v d�.
(ii) Very similar to (i) by applying Fatou’s lemma to the positive, integrable functionsw−uj ⩾ 0:

∫ wd� − ∫ lim sup
j

uj d� = ∫ lim inf
j

(w − uj) d�

⩽ lim inf
j ∫ (w − uj) d�

= ∫ wd� − lim sup
j ∫ uj d�

Now subtract the finite number ∫ wd� on both sides.
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(iii) We had the counterexample, in principle, already in Problem 9.10. Nevertheless...
Consider Lebesgue measure on R. Put fj(x) = −1[−2j,−j](x) and gj(x) = 1[j,2j](x).
Then lim inf fj(x) = 0 and lim sup gj(x) = 0 for every x and neither admits an integrable
minorant resp. majorant.

Remark. Here is an even stronger version of Fatou’s Lemma. For this we introduced the extended
integrable functions

1(�) ∶=
{

u ∈(A ) ∶ ∫ u+ d� <∞,∫ u− d� <∞
}

1,e(�) ∶=
{

u ∈(A ) ∶ ∫ u+ d� ∈ [0,∞],∫ u− d� <∞
}

.

For u ∈ 1(�) or u ∈ 1,e(�) we may define ∫ u d� = ∫ u+ d� − ∫ u− d� in R or R ∪ {+∞},
respectively. Note that 1,e(�) is not a vector space, but it is still additive and positively homogen-
eous. Then we have
Let (un)n∈N ⊂(A ) such that un ⩾ u for some u ∈ 1,e(�).

i) lim infn→∞ un ∈ 1,e(�);

ii) lim infn→∞ ∫ un d� ⩾ ∫ lim infn→∞ un d�;

iii) if lim infn→∞ ∫ un d� <∞, then lim infn→∞ un ∈ 1(�).

Proof. i) We have

un ⩾ u ⇐⇒ lim inf
n

un ⩾ u ⇐⇒

⎧

⎪

⎨

⎪

⎩

(

lim infn un
)+ ⩾ u+

(

lim infn un
)− ⩽ u−

and so ∫ (

lim infn un
)− d� ⩽ ∫ u− d� <∞, i.e. lim infn un ∈ 1,e(�).

ii) Note that un − u ⩾ 0. By (the ordinary) Fatou’s lemma,

lim inf
n ∫ (un − u) d� ⩾ ∫ lim inf

n
(un − u) d�.

Adding on both sides ∫ u d� – this is possible since we do not get an expression of type
“∞−∞”, we get

lim inf
n ∫ un d� ⩾ ∫ lim inf

n
un d�.

iii) We have

∫

(

lim inf
n

un
)+

d� = ∫ lim inf
n

un +
(

lim inf
n

un
)−

d�

⩽ ∫ lim inf
n

un + u− d�

= ∫ lim inf
n

un d� + ∫ u− d�

⩽ lim inf
n ∫ un d� + ∫ u− d� <∞.
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This proves the claim. (Note that in the inequality-step in the last formula we could have used
directly the ordinary Fatou lemma, and not step ii), as un + u− ⩾ 0).

■■

Problem 10.8 Solution: For u = 1B and v = 1C we have, because of independence,

∫ uv dP = P (A ∩ B) = P (A)P (B) = ∫ u dP ∫ v dP .

For positive, simple functions u = ∑

j �j1Bj and v =
∑

k �k1Ck we find

∫ uv dP =
∑

j,k
�j�k ∫ 1Aj1Bk dP

=
∑

j,k
�j�kP (Aj ∩ Bk)

=
∑

j,k
�j�kP (Aj)P (Bk)

=
(

∑

j
�jP (Aj)

)(

∑

k
�kP (Bk)

)

= ∫ u dP ∫ v dP .

For measurable u ∈ +(ℬ) and v ∈ +(C ) we use approximating simple functions uk ∈
+(ℬ), uk ↑ u, and vk ∈ +(C ), vk ↑ v. Then, by Beppo Levi,

∫ uv dP = lim
k ∫ ukvk dP = limk ∫ uk dP limj ∫ vj dP

= ∫ u dP ∫ v dP .

Integrable independent functions: If u ∈ 1(ℬ) and v ∈ 1(C ), the above calculation when
applied to |u|, |v| shows that u ⋅ v is integrable since

∫ |uv| dP ⩽ ∫ |u| dP ∫ |v| dP <∞.

Considering positive and negative parts finally also gives

∫ uv dP = ∫ u dP ∫ v dP .

Counterexample: Just take u = v which are integrable but not square integrable, e.g. u(x) =
v(x) = x−1∕2. Then ∫(0,1) x−1∕2 dx <∞ but ∫(0,1) x−1 dx = ∞, compare also Problem 10.2.

■■

Problem 10.8 Solution:

(i) Since the map g ∶ C→ R2 is continuous, we have g−1(ℬ(R2)) ⊂ℬ(C).
On the other hand, for z ∈ C and � > 0 we have B�(z) = g−1(Bg(z)(�)) ∈ g−1(ℬ(R2));
thus, �(OC) ⊂ g−1(ℬ(R2)) (Note that the �-algebra �(OC) is generated by the open
balls B�(z), z ∈ C, � > 0, cf. the proof of Problem 3.12.)
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(ii) Part (i) shows that amap ℎ ∶ E → C isA∕C -measurable if, and only if, g◦ℎ ∶ E → R2

is A∕ℬ(R2)-measurable.
Indeed: Themap ℎ ∶ (E,A )→ (C,C ) is, by definition, measureable if ℎ−1(A) ∈ A for
allA ∈ C . SinceC = g−1(ℬ(R2)), this is the same as ℎ−1(g−1(B)) = (g◦ℎ)−1(B) ∈ A
for all B ∈ℬ(R2), hence it is the same as the measurability of g◦ℎ.
"⇒": Assume that ℎ ∶ E → C is A∕C -measurable. Then we have that

(g◦ℎ) =

(

Reℎ
Imℎ

)

is A∕ℬ(R2)-measurable. Since the projections �j ∶ R2 ∋ (x1, x2) → xj ∈ R are
Borel measurable (due to continuity!), we get that Reℎ = �1(g◦ℎ) and Imℎ = �2(g◦ℎ)
are measurable (composition of measurable functions).
"⇐": Assume that Reℎ and Imℎ are A∕ℬ(R)-measurable. Then the map (g◦ℎ) =
(Reℎ, Imℎ) is A∕ℬ(R2)-measurable. With the above arguments we conclude that
ℎ ∶ (E,A )→ (C,C ) is measurable.

(iii) We show first additivity: let g, ℎ ∈ 1
C
(�). From

|Re(g+ℎ)| ⩽ |Re g|+|Reℎ| ∈ 1(�), | Im(g+ℎ)| ⩽ | Im(g)|+| Im(ℎ)| ∈ 1(�)

we conclude that g + ℎ ∈ 1(�). Since Re(g + ℎ) = Re(g) + Re(ℎ) and Im(g + ℎ) =
Im(g) + Im(ℎ), we get from the definition of the integral

∫ (g + ℎ) d� = ∫ Re(g + ℎ) d� + i∫ Im(g + ℎ) d�

= ∫ (Re(g) + Re(ℎ)) d� + i(Im(g) + Im(ℎ)) d�

= ∫ Re(g) d� + ∫ Re(ℎ) d� + i∫ Im(g) d� + i∫ Im(ℎ) d�

=
(

∫ Re(g) d� + i∫ Im(g) d�
)

+
(

∫ Re(ℎ) d� + i∫ Im(ℎ) d�
)

= ∫ g d� + ∫ ℎ d�.

Note that we have used the R-linearity of the integral for real-valued functions. The
homogeneity of the complex integral is shown in a very similar way.

(iv) Since Reℎ and Imℎ are real, we get ∫ Reℎ d� ∈ R and ∫ Imℎ d� ∈ R. Therefore,

Re
(

∫ ℎ d�
)

= Re
(

∫ Reℎ d� + i∫ Imℎ d�
)

= ∫ Reℎ d�.

Similarly, we see
Im

(

∫ ℎ d�
)

= Im
(

∫ Reℎ d� + i∫ Imℎ d�
)

= ∫ Imℎ d�.

109



R.L. Schilling: Measures, Integrals & Martingales

(v) We follow the hint: as ∫ ℎ d� ∈ Cwe can pick some � ∈ (−�, �] such that ei� ∫ ℎ d� ⩾
0. Thus, (iii) and (iv) entail

|

|

|

|

∫ ℎ d�
|

|

|

|

= ei� ∫ ℎ d�

= Re
(

ei� ∫ ℎ d�
)

= ∫ Re(ei�ℎ) d�

⩽ ∫ |ei�ℎ| d�

= ∫ |ℎ| d�.

(vi) We know from (ii) that ℎ ∶ (E,A ) → (C,C ) is measurable if, and only if, Reℎ and
Imℎ are A∕ℬ(R2)-measurable. If Reℎ and Imℎ are �-integrable, then so is

|ℎ| =
√

(Reℎ)2 + (Imℎ)2 ⩽ |Reℎ| + | Imℎ|.

If |ℎ| ∈ 1
R
(�), then we conclude from |Reℎ| ⩽ |ℎ| and | Imℎ| ⩽ |ℎ|, that Reℎ and

Imℎ are �-integrable.
■■
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11 Null sets and the `almost everywhere'.

Solutions to Problems 11.1�11.12

Problem 11.1 Solution: True, we can change an integrable function on a null set, even by setting it to
the value +∞ or −∞ on the null set. This is just the assertion of Theorem 11.2 and its Corollaries
11.3, 11.4.

■■

Problem 11.2 Solution: We have seen that a single point is a Lebesgue null set: {x} ∈ ℬ(R) for
all x ∈ R and �({x}) = 0, see e.g. Problems 4.13 and 6.7. If N is countable, we know that
N = {xj ∶ j ∈ N} =

⨃

j∈N{xj} and by the �-additivity of measures

�(N) = �

(

⨃

j∈N
{xj}

)

=
∑

j∈N
�
(

{xj}
)

=
∑

j∈N
0 = 0.

The Cantor set C from Problem 7.12 is, as we have seen, uncountable but has measure �(C) = 0.
This means that there are uncountable sets with measure zero.
In R2 and for two-dimensional Lebesgue measure �2 the situation is even easier: every line L in
the plane has zero Lebesgue measure and L contains certainly uncountably many points. That
�2(L) = 0 is seen from the fact that L differs from the ordinate {(x, y) ∈ R2 ∶ x = 0} only
by a rigid motion T which leaves Lebesgue measure invariant (see Chapter 4, Theorem 4.7) and
�2({x = 0}) = 0 as seen in Problem 6.7.

■■

Problem 11.3 Solution:

(i) Since {|u| > c} ⊂ {|u| ⩾ c} and, therefore, �({|u| > c}) ⩽ �({|u| ⩾ c}), this follows
immediately from Proposition 11.5. Alternatively, one could also mimic the proof of this
Proposition or use part (iii) of the present problem with �(t) = t, t ⩾ 0.

(ii) This will follow from (iii) with �(t) = tp, t ⩾ 0, since �({|u| > c}) ⩽ �({|u| ⩾ c}) as
{|u| > c} ⊂ {|u| ⩾ c}.

(iii) We have, since � is increasing,

�({|u| ⩾ c}) = �({�(|u|) ⩾ �(c)})

= ∫ 1{x∶�(|u(x)|)⩾�(c)}(x)�(dx)
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= ∫
�(|u(x)|)
�(|u(x)|)

1{x∶�(|u(x)|)⩾�(c)}(x)�(dx)

⩽ ∫
�(|u(x)|)
�(c)

1{x∶�(|u(x)|)⩾�(c)}(x)�(dx)

⩽ ∫
�(|u(x)|)
�(c)

�(dx)

= 1
�(c) ∫

�(|u(x)|)�(dx)

(iv) Let us set b = � ∫ u d�. Then we follow the argument of (iii), where we use that u and b are
strictly positive.

�({u ⩾ b}) = ∫ 1{x∶u(x)⩾b}(x)�(dx)

= ∫
u(x)
u(x)

1{x∶u(x)⩾b}(x)�(dx)

⩽ ∫
u(x)
b
1{x∶u(x)⩾b}(x)�(dx)

⩽ ∫
u
b
d�

= 1
b ∫

u d�

and substituting � ∫ u d� for b shows the inequality.
(v) Using the fact that  is decreasing we get {|u| < c} = { (|u|) >  (c)}—mind the change

of the inequality sign—and going through the proof of part (iii) again we use there that �
increases only in the first step in a similar role as we used the decrease of  here! This means
that the argument of (iii) is valid after this step and we get, altogether,

�({|u| < c}) = �({ (|u|) >  (c)})

= ∫ 1{x∶ (|u(x)|)> (c)}(x)�(dx)

= ∫
 (|u(x)|)
 (|u(x)|)

1{x∶ (|u(x)|)>�(c)}(x)�(dx)

⩽ ∫
 (|u(x)|)
 (c)

1{x∶ (|u(x)|)> (c)}(x)�(dx)

⩽ ∫
 (|u(x)|)
 (c)

�(dx)

= 1
 (c) ∫

 (|u(x)|)�(dx)

(vi) This follows immediately from (ii) by taking � = P, c = �
√

V�, u = � − E� and p = 2.
Then

P(|� − E�| ⩾ �E�) ⩽ 1
(�
√

V�)2 ∫
|� − E�|2 dP

= 1
�2V�

V� = 1
�2
.
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■■

Problem 11.4 Solution: We mimic the proof of Corollary 11.6. SetN = {|u| = ∞} = {|u|p = ∞}.
ThenN =

⋂

k∈N{|u|p ⩾ k} and using Markov’s inequality (MI) and the ‘continuity’ of measures,
Proposition 4.3(vii), we find

�(N) = �

(

⋂

k∈N
{|u|p ⩾ k}

)

4.3(vii)
= lim

k→∞
�({|u|p ⩾ k})

MI
⩽ lim

k→∞
1
k ∫ |u|p d�

⏟⏞⏞⏟⏞⏞⏟
<∞

= 0.

For arctan this is not any longer true for several reasons:
• ... arctan is odd and changes sign, so there could be cancelations under the integral.
• ... even if we had no cancelations we have the problem that the points where u(x) = ∞ are

now transformed to points where arctan(u(x)) = �
2 and we do not know how the measure

� acts under this transformation. A simple example: Take � to be a measure of total finite
mass (that is: �(X) < ∞), e.g. a probability measure, and take the function u(x) which is
constantly u ≡ +∞. Then arctan(u(x)) = �

2 throughout, and we get

∫ arctan u(x)�(dx) = ∫
�
2
d� = �

2 ∫ d� = �
2
�(X) <∞,

but u is nowhere finite!
■■

Problem 11.5 Solution:

(i) Assume that f ∗ is A -measurable. The problem at hand is to construct A -measurable up-
per and lower functions g and f . For positive simple functions this is clear: if f ∗(x) =
∑N
j=0 �j1B∗j (x) with �j ⩾ 0 and B∗j ∈ A , then we can use Problem 4.15(v) to find Bj , Cj ∈

A with �(Cj ⧵ Bj) = 0

Bj ⊂ B
∗
j ⊂ Cj ⇐⇒ �j1Bj ⩽ �j1B∗j ⩽ �j1Cj

and summing over j = 0, 1,… , N shows that f ⩽ f ∗ ⩽ g where f, g are the appropriate
lower and upper sums which are clearly A measurable and satisfy

�({f ≠ g}) ⩽ �(C0 ⧵ B0 ∪⋯ ∪ CN ⧵ BN )

⩽ �(C0 ⧵ B0) +⋯ + �(CN ⧵ BN )

= 0 +⋯ + 0 = 0.

Moreover, since by Problem 4.15 �(Bj) = �(Cj) = �̄(B∗j ), we have
∑

j
�j�(Bj) =

∑

j
�j �̄(B∗j ) =

∑

j
�j�(Cj)
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which is the same as

∫ f d� = ∫ f ∗ d�̄ = ∫ g d�.

(ii), (iii) Assume that u∗ is A ∗-measurable; without loss of generality (otherwise consider pos-
itive and negative parts) we can assume that u∗ ⩾ 0. Because of Theorem 8.8 we know that
f ∗k ↑ u∗ for f ∗k ∈ +(A ∗). Now choose the corresponding A -measurable lower and upper
functions fk, gk constructed in part (i). By considering, if necessary, max{f1,… , fk} we
can assume that the fk are increasing.
Set u ∶= supk fk and v ∶= lim infk gk. Then u, v ∈ (A ), u ⩽ u∗ ⩽ v, and by Fatou’s
lemma

∫ v d� = ∫ lim inf
k

gk d� ⩽ lim inf
k ∫ gk d�

= lim inf
k ∫ f ∗k d�̄

= ∫ u∗ d�̄

⩽ ∫ v d�.

Since fk ↑ u we get by Beppo Levi and Fatou

∫ u d� = sup
k ∫ fk d� = lim infk ∫ fk d�

= lim inf
k ∫ gk d�

⩾ ∫ lim inf
k

gk d�

= ∫ v d�

⩾ ∫ u d�

This proves that ∫ u d� = ∫ v d� = ∫ u∗ d�. This answers part (iii) by considering positive
and negative parts.
It remains to show that {u ≠ v} is a �-null set. (This does not follow from the above integral
equality, cf. Problem 11.10!) Clearly, {u ≠ v} = {u < v}, i.e. if x ∈ {u < v} is fixed, we
deduce that, for sufficiently large values of k,

fk(x) < gk(x), k large

since u = supfk and v = lim infk gk. Thus,

{u ≠ v} ⊂
⋃

k
{fk ≠ gk}

but the RHS is a countable union of �-null sets, hence a null set itself.
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Conversely, assume first that u ⩽ u∗ ⩽ v for two A -measurable functions u, v with u = v
a.e. We have to show that {u∗ > �} ∈ A ∗. Using that u ⩽ u∗ ⩽ v we find that

{u > �} ⊂ {u∗ > �} ⊂ {v > �}

but {v > �}, {u > �} ∈ A and {u > �} ⧵ {v > �} ⊂ {u ≠ v} is a �-null set. Because of
Problem 4.15 we conclude that {u∗ > �} ∈ A ∗.

■■

Problem 11.6 Solution: Throughout the solution the letters A,B are reserved for sets from A .
(i) a) Let A ⊂ E ⊂ B. Then �(A) ⩽ �(B) and going to the supA⊂E and infE⊂B proves

�∗(E) ⩽ �∗(E).
b) By the definition of �∗ and �∗ we find some A ⊂ E such that

|�∗(E) − �(A)| ⩽ �.

Since Ac ⊃ Ec we can enlarge A, if needed, and achieve

|�∗(Ec) − �(Ac)| ⩽ �.

Thus,

|�(X) − �∗(E) − �∗(Ec)|

⩽ |�∗(E) − �(A)| + |�∗(Ec) − �(Ac)|

⩽ 2�,

and the claim follows as � → 0.
c) Let A ⊃ E and B ⊃ F be arbitrary majorizing A -sets. Then A ∪ B ⊃ E ∪ F and

�∗(E ∪ F ) ⩽ �(A ∪ B) ⩽ �(A) + �(B).

Now we pass on the right-hand side, separately, to the infA⊃E and infB⊃F , and obtain

�∗(E ∪ F ) ⩽ �∗(E) + �∗(F ).

d) Let A ⊂ E and B ⊂ F be arbitrary minorizing A -sets. Then A ⊍ B ⊂ E ⊍ F and

�∗(E ⊍ F ) ⩾ �(A ⊍ B) = �(A) + �(B).

Now we pass on the right-hand side, separately, to the supA⊂E and supB⊂F , where we
stipulate that A ∩ B = ∅, and obtain

�∗(E ⊍ F ) ⩾ �∗(E) + �∗(F ).
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(ii) By the definition of the infimum/supremum we find sets An ⊂ E ⊂ An such that
|�∗(A) − �(An)| + |�∗(A) − �(An)| ⩽ 1

n
.

Without loss of generality we can assume that theAn increase and that theAn decrease. Now
A∗ ∶=

⋃

nAn, A∗ ∶=
⋂

nA
n are A -sets with A∗ ⊂ A ⊂ A∗. Now, �(An) ↓ �(A∗) as well

as �(An) → �∗(E) which proves �(A∗) = �∗(E). Analogously, �(An) ↑ �(A∗) as well as
�(An)→ �∗(E) which proves �(A∗) = �∗(E).

(iii) In view of Problem 4.15 and (i), (ii), it is clear that
{

E ⊂ X ∶ �∗(E) = �∗(E)
}

=
{

E ⊂ X ∶ ∃A,B ∈ A , A ⊂ E ⊂ B, �(B ⧵ A) = 0
}

but the latter is the completed �-algebra A ∗. That �∗||
|A ∗

= �∗
|

|

|A ∗
= �̄ is now trivial since

�∗ and �∗ coincide on A ∗.
■■

Problem 11.7 Solution: Let A ∈ A and assume that there are non-measurable sets, i.e. P (X) ⊋ A .
Take some N ∉ A which is a �-null set. Assume also that N ∩ A = ∅. Then u = 1A and
w ∶= 1A + 2 ⋅ 1N are a.e. identical, but w is not measurable.
This means that w is only measurable if, e.g. all (subsets of) null sets are measurable, that is if
(X,A , �) is complete.

■■

Problem 11.8 Solution: The function 1Q is nowhere continuous but u = 0 Lebesgue almost every-
where. That is

{x ∶ 1Q(x) is discontinuous} = R
while

{x ∶ 1Q ≠ 0} = Q is a Lebesgue null set,
that is 1Q coincides a.e. with a continuous function but is itself at no point continuous!
The same analysis for 1[0,∞) yields that

{x ∶ 1[0,∞)(x) is discontinuous} = {0}
which is a Lebesgue null set, but 1[0,∞) cannot coincide a.e. with a continuous function! This,
namely, would be of the form w = 0 on (−∞,−�) and w = 1 on (�,∞) while it ‘interpolates’
somehow between 0 and 1 if −� < x < �. But this entails that

{x ∶ w(x) ≠ 1[0,∞)(x)}

cannot be a Lebesgue null set!
■■
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Problem 11.9 Solution: Let (Aj)j∈N ⊂ A be an exhausting sequence Aj ↑ X such that �(Aj) < ∞.
Set

f (x) ∶=
∞
∑

j=1

1
2j(�(Aj) + 1)

1Aj (x).

Then f is measurable, f (x) > 0 everywhere, and using Beppo Levi’s theorem

∫ f d� = ∫

( ∞
∑

j=1

1
2j(�(Aj) + 1)

1Aj

)

d�

=
∞
∑

j=1

1
2j(�(Aj) + 1) ∫

1Aj d�

=
∞
∑

j=1

�(Aj)
2j(�(Aj) + 1)

⩽
∞
∑

j=1
2−j = 1.

Thus, set P (A) ∶= ∫A f d�. We know from Problem 9.7 that P is indeed a measure.
IfN ∈ N�, then, by Theorem 11.2,

P (N) = ∫N
f d�

11.2
= 0

so that N� ⊂ NP .
Conversely, ifM ∈P , we see that

∫M
f d� = 0

but since f > 0 everywhere, it follows from Theorem 11.2 that 1M ⋅ f = 0 �-a.e., i.e. �(M) = 0.
Thus, NP ⊂ N�.
Remark. Wewill see later (cf. Chapter 20 or Chapter 25, Radon–Nikodým theorem) thatN� = NP
if and only if P = f ⋅ � (i.e., if P has a density w.r.t. �) such that f > 0.

■■

Problem 11.10 Solution: Well, the hint given in the text should be good enough.
■■

Problem 11.11 Solution: Observe that

∫C
u d� = ∫C

wd� ⇐⇒ ∫C
(u+ +w−) d� = ∫C

(u− +w+) d�

holds for all C ∈ C . The right-hand side can be read as the equality of two measures A →

∫A(u
+ + w−) d�,A → ∫A(u

− + w+) d�, A ∈ A which coincide on a generator C which satisfies
the conditions of the uniqueness theorem of measures (Theorem 5.7). This shows that

∫A
u d� = ∫A

wd� ∀A ∈ A .
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Now the direction ‘⇒’ follows from Corollary 11.7 whereℬ = A .
The converse implication ‘⇐’ follows directly from Corollary 11.6 applied to u1C and w1C .

■■

Problem 11.12 Solution:

(i) “⊂”: Let x ∈ Cf , i.e. f (x) = limn→∞ fn(x) exists; in particular, (fn(x))n∈N is Cauchy:
for all k ∈ N there is some l ∈ N such that

|fn(x) − fm(x)| ⩽
1
k

∀m, n ⩾ l.

This shows that x ∈ ⋂

k∈N
⋃

l∈N
⋂∞
n,m=l{|fn(x) − fm(x)| ⩽

1
k
}.

“⊃”: Assume that ⋂k∈N
⋃

l∈N
⋂∞
n,m=l{|fn(x) − fm(x)| ⩽ 1

k
}. This means that for

every k ∈ N there is some l ∈ N with

|fn(x) − fm(x)| ⩽
1
k

∀m, n ⩾ l.

This shows that (fn(x))n∈N is a Cauchy sequence in R. The claim follows since R is
complete.

(ii) From the definition of limits we get (as in part (i))

Cf =
⋂

k∈N

⋃

l∈N

∞
⋂

m=l
{|fm(x) − f (x)| ⩽

1
k
};

Observe that
Akn ↑

∞
⋃

l=1

∞
⋂

m=l
{|fm(x) − f (x)| ⩽

1
k
} ⊃ Cf

as n→∞. Using the continuity of measures, we get

�(Akn) ↑ �

( ∞
⋃

l=1

∞
⋂

m=l

{

|fm(x) − f (x)| ⩽
1
k

}

)

= �(X).

(Note: if A ⊂ B is measurable and �(A) = �(X), then we have �(B) = �(X).) In
particular we can pick n = n(k, �) in such a way that �(Akn) ⩾ �(X) − �2−k. Therefore,

�(X ⧵ Akn(k,�)) = �(X) − �(A
k
n(k,�)) ⩽ �2−k.

(iii) Fix � > 0, pick n = n(k, �) as in part (ii), and define

A� ∶=
⋂

k∈N
Akn(k,�) ∈ A .

Using the sub-additivity of � we get

�(X ⧵ A�) = �

(

⋃

k∈N

(

X ⧵ Akn(k,�)
)

)

⩽
∑

k∈N
�(X ⧵ Akn(k,�)) ⩽

∑

k∈N
�2−k ⩽ �.
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It remains to show that fn converges uniformly to f on the set A�. By definition,

A� =
⋂

k∈N

n(k,�)
⋃

l=1

∞
⋂

m=l
{|f − fm| ⩽

1
k
},

i.e. for all x ∈ A� and k ∈ N there is some l(x) ⩽ n(k, �) such that

|f (x) − fm(x)| ⩽
1
k

∀m ⩾ l(x).

Since l(x) ⩽ n(k, �) we get, in particular,

|f (x) − fm(x)| ⩽
1
k

∀x ∈ A�, m ⩾ n(k, �).

Since k ∈ N is arbitrary, the uniform convergence A� follows.
(iv) Consider one-dimensional Lebesgue measure, set f (x) ∶= |x| and fn(x) ∶= |x|1[−n,n].

Then we have fn(x) ↑ f (x) for every x, but the set {|fn − f | > �} = [−n, n]c has
infinite measure for any � > 0.

■■
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12 Convergence theorems and their

applications.

Solutions to Problems 12.1�12.37

Problem 12.1 Solution: We start with the simple remark that

|a − b|p ⩽ (|a| + |b|)p

⩽ (max{|a|, |b|} + max{|a|, |b|})p

= 2pmax{|a|, |b|}p

= 2pmax{|a|p, |b|p}

⩽ 2p(|a|p + |b|p).

Because of this we find that |uj − u|p ⩽ 2pgp and the right-hand side is an integrable dominating
function.

Proof alternative 1: Apply Theorem 12.2 on dominated convergence to the sequence �j ∶= |uj −
u|p of integrable functions. Note that�j(x)→ 0 and that 0 ⩽ �j ⩽ ΦwhereΦ = 2pgp is integrable
and independent of j. Thus,

lim
j→∞∫ |uj − u|p d� = lim

j→∞∫ �j d� = ∫ lim
j→∞

�j d�

= ∫ 0 d� = 0.

Proof alternative 2: Mimic the proof of Theorem 12.2 on dominated convergence. To do so we
remark that the sequence of functions

0 ⩽  j ∶= 2pgp − |uj − u|p ←←←←←←←←←←←←←←←←←←←←→j→∞
2pgp

Since the limit limj  j exists, it coincides with lim inf j  j , and so we can use Fatou’s Lemma to
get

∫ 2pgp d� = ∫ lim inf
j→∞

 j d�

⩽ lim inf
j→∞ ∫  j d�

= lim inf
j→∞ ∫

(

2pgp − |uj − u|p
)

d�
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= ∫ 2pgp d� + lim inf
j→∞

(

− ∫ |uj − u|p d�
)

= ∫ 2pgp d� − lim sup
j→∞ ∫ |uj − u|p d�

where we use that lim inf j(−�j) = − lim supj �j . This shows that lim supj ∫ |uj − u|p d� = 0,
hence

0 ⩽ lim inf
j→∞ ∫ |uj − u|p d� ⩽ lim sup

j→∞ ∫ |uj − u|p d� ⩽ 0

showing that lower and upper limit coincide and equal to 0, hence limj ∫ |uj − u|p d� = 0.
■■

Problem 12.2 Solution: Assume that, as in the statement of Theorem 12.2, uj → u and that |uj| ⩽
f ∈ 1(�). In particular,

−f ⩽ uj and uj ⩽ f

(j ∈ N) is an integrable minorant resp. majorant. Thus, using Problem 10.7 at ∗ below,

∫ u d� = ∫ lim inf
j→∞

uj d�

∗
⩽ lim inf

j→∞ ∫ uj d�

⩽ lim sup
j→∞ ∫ uj d�

∗
⩽ ∫ lim sup

j→∞
uj d� = ∫ u d�.

This proves ∫ u d� = limj ∫ uj d�.

Addition: since 0 ⩽ |u − uj| ⩽ | limj uj| + |uj| ⩽ 2f ∈ 1(�), the sequence |u − uj| has an
integrable majorant and using Problem 10.7 we get

0 ⩽ lim sup
j→∞ ∫ |uj − u| d� ⩽ ∫ lim sup

j→∞
|uj − u| d� = ∫ 0 d� = 0

and also (i) of Theorem 12.2 follows...
■■

Problem 12.3 Solution: By assumption we have

0 ⩽ fk − gk ←←←←←←←←←←←←←←←←←←←←→k→∞
f − g,

0 ⩽ Gk − fk ←←←←←←←←←←←←←←←←←←←←→k→∞
G − f.

Using Fatou’s Lemma we find

∫ (f − g) d� = ∫ lim
k
(fk − gk) d�
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= ∫ lim inf
k

(fk − gk) d�

⩽ lim inf
k ∫ (fk − gk) d�

= lim inf
k ∫ fk d� − ∫ g d�,

and

∫ (G − f ) d� = ∫ lim
k
(Gk − fk) d�

= ∫ lim inf
k

(Gk − fk) d�

⩽ lim inf
k ∫ (Gk − fk) d�

= ∫ Gd� − lim sup
k ∫ fk d�.

Adding resp. subtracting ∫ g d� resp. ∫ Gd� therefore yields

lim sup
k ∫ fk d� ⩽ ∫ f d� ⩽ lim inf

k ∫ fk d�

and the claim follows.
■■

Problem 12.4 Solution: Using Beppo Levi’s theorem in the form of Corollary 9.9 we find

∫

∞
∑

j=1
|uj| d� =

∞
∑

j=1
∫ |uj| d� <∞, (*)

which means that the positive function∑∞
j=1 |uj| is finite almost everywhere, i.e. the series∑∞

j=1 uj
converges (absolutely) almost everywhere.
In order to show the second part, we want to apply dominated convergence. Set vk ∶= ∑k

n=1 un
and notte that

|vk| =
|

|

|

|

|

|

k
∑

n=1
un
|

|

|

|

|

|

⩽
k
∑

n=1
|un| ⩽

∞
∑

n=1
|un| ⩽ w ∈ ℒ 1(�).

Clearly, vk → u =
∑∞
n=1 un as k→∞. Thus, we get with dominated convergence

∫

∞
∑

n=1
un d� = ∫ u d� = ∫ lim

k→∞
vk d� = lim

k→∞∫ vk d� = lim
k→∞

k
∑

n=1
∫ un d�

=
∞
∑

n=1
∫ un d�.

■■

Problem 12.5 Solution: Since 1(�) ∋ uj ↓ 0 we find by monotone convergence, Theorem 12.1,
that ∫ uj d� ↓ 0. Therefore,

� =
∞
∑

j=1
(−1)juj and S =

∞
∑

j=1
(−1)j ∫ uj d� converge
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(conditionally, in general). Moreover, for everyN ∈ N,

∫

N
∑

j=1
(−1)juj d� =

N
∑

j=1
∫ (−1)juj d� ←←←←←←←←←←←←←←←←←←←←←←←←→

N→∞
S.

All that remains is to show that the right-hand side converges to ∫ � d�. Observe that for SN ∶=
∑N
j=1(−1)

juj we have

S2N ⩽ S2N+2 ⩽… ⩽ S

and we find, as Sj ∈ 1(�), by monotone convergence that

lim
N→∞∫ S2N d� = ∫ � d�.

■■

Problem 12.6 Solution: Consider uj(x) ∶= j ⋅1(0,1∕j)(x), j ∈ N. It is clear that uj is measurable and
Lebesgue integrable with integral

∫ uj d� = j
1
j
= 1 ∀ j ∈ N.

Thus, limj ∫ uj d� = 1. On the other hand, the pointwise limit is

u(x) ∶= lim
j
uj(x) ≡ 0

so that 0 = ∫ u d� = ∫ limj uj d� ≠ 1.
The example does not contradict dominated convergence as there is no uniform dominating integ-
rable function.
Alternative: a similar situation can be found for vk(x) ∶= 1

k
1[0,k](x) and the pointwise limit v ≡ 0.

Note that in this case the limit is even uniform and still limk ∫ vk d� = 1 ≠ 0 = ∫ v d�. Again
there is no contradiction to dominated convergence as there does not exist a uniform dominating
integrable function.

■■

Problem 12.7 Solution: Using the majorant (e−rx ⩽ 1 ∈ 1(�), r, x ⩾ 0) we find with dominated
convergence

lim
r→∞∫[0,∞)

e−rx �(dx) = ∫[0,∞)
lim
r→∞

e−rx �(dx) = ∫[0,∞)
1{0} �(dx) = �{0}.

■■

Problem 12.8 Solution:
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(i) Let � > 0. As u ∈ 1(�), monotone convergence shows that

lim
R→∞∫BR(0)c

|u| d� = 0.

In particular, we can pick an R > 0 such that

∫BR(0)c
|u| d� ⩽ �.

Since K is compact (in fact: bounded), there is some r = r(R) > 0, such that x + K ⊂
BR(0)c for all x satisfying |x| ⩾ r. Thus, we have

∫x+K
|u| d� ⩽ ∫BR(0)c

|u| d� ⩽ � ∀ x ∈ Rn, |x| ⩾ r.

(ii) Fix � > 0. By assumption, u is uniformly continuous. Therefore, there is some � > 0 such
that

|u(y) − u(x)| ⩽ � ∀ x ∈ Rn, y ∈ x +K ∶= x + B�(0) = B�(x).

Hence,

|u(x)|p = 1
�(K + x) ∫K+x

|u(x)|pd�(y)

⩽ 1
�(K) ∫K+x

(

|u(y) − u(x)|
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

⩽�

+|u(y)|
)p d�(y).

Using the elementary inequality

(a + b)p ⩽ (2max{a, b})p ⩽ 2p(ap + bp), a, b ⩾ 0 (⋆)

we get for C = 2p

|u(x)|p ⩽ C
�(K)

(

∫K+x
�p d�(y) + ∫K+x

|u(y)| d�(y)
)

⩽ C�p
�(K + x)
�(K)

⏟⏞⏞⏟⏞⏞⏟
1

+ C
�(K) ∫K+x

|u(y)| d�(y).

Part (i) now implies

lim sup
|x|→∞

|u(x)|p ⩽ C�p
�→0
←←←←←←←←←←←←←←←←←→ 0

and this is the same as to say lim
|x|→∞ |u(x)| = 0.

■■

Problem 12.9 Solution:
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(i) Fix � > 0, R > 0 and consider B ∶= {|u| ⩽ R}. By definition, supx∈B |u(x)| < ∞. On
the other hand, dominated convergence and Corollary 11.6 show that

lim
R→∞∫

|u|>R
|u(x)| dx = ∫

|u|=∞
|u(x)| dx = 0.

In particular, we can choose R so large, that ∫B |u(x)| dx < �. Using Markov’s inequality
(Proposition 11.5) yields

�(B) = �{|u| ⩾ R} ⩽ 1
R ∫ |u(x)| dx <∞.

(ii) Fix � > 0 and let B ∈ ℬ(Rn) be as in (i). Further, let A ∈ ℬ(Rn) with �(A) < �. Then
we have

∫A
|u| d� = ∫A∩B

|u| d� + ∫A∩Bc
|u| d�

⩽ sup
x∈B

|u(x)| ⋅ �(A ∩ B)
⏟⏞⏟⏞⏟

⩽�(A)

+∫Bc
|u| d�

⩽ sup
x∈B

|u(x)| ⋅ � + �.

(Observe that supx∈B |u(x)| <∞.) This proves

lim
�(A)→0∫A

|u| d� = 0.

■■

Problem 12.10 Solution:

(i) From un ∈ 1(�) and ‖un − u‖∞ ⩽ 1 (for all sufficiently large n) we infer

∫ |u| d� ⩽ ∫ |un − u| d� + ∫ |un| d� ⩽ ‖un − u‖∞�(X) + ∫ |un| d� <∞,

i.e. u ∈ 1(�). A very similar argument gives
|

|

|

|

∫ un d� − ∫ u d�
|

|

|

|

=
|

|

|

|

∫ (un − u) d�
|

|

|

|

⩽ ∫ |un − u| d� ⩽ ‖un − u‖∞�(X).

Since �(X) <∞, uniform convergence ‖un − u‖∞ → 0 implies that

lim
n→∞

|

|

|

|

∫ un d� − ∫ u d�
|

|

|

|

= 0.

(ii) False. Counterexample: (R,ℬ(R), �1) and un(x) ∶= 1
2n1[−n,n](x), x ∈ R. Clearly, un → 0

uniformly, un ∈ 1(�1), but

lim
n→∞∫ un d� = 1 ≠ 0 = ∫ u d�.

■■
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Problem 12.11 Solution: Without loss of generality we assume that u is increasing. Because of the
monotonicity of u, we find for every sequence (an)n∈N ⊂ (0, 1) such that an ↓ 0, that

u(an)→ u(0+) ∶= inf
t>0
u(t).

If an ∶= tn, t ∈ (0, 1), we get u(tn) ↓ 0 and by monotone convergence

lim
n→∞∫

1

0
u(tn) dt = inf

n∈N∫

1

0
u(tn) dt = ∫

1

0
inf
n∈N

u(tn) dt = ∫

1

0
u(0+) dt = u(0+).

■■

Problem 12.12 Solution: Set un(t) ∶= tnu(t), t ∈ (0, 1). Since |tn| ⩽ 1 for t ∈ (0, 1), we have

|un(t)| = |tn| ⋅ |f (t)| ⩽ |f (t)| ∈ 1(0, 1).

Since tn ←←←←←←←←←←←←←←←←←←←←→
n→∞

0 for all t ∈ (0, 1) and |f (t)| < ∞ a.e. (Corollary 11.6), we have |un(t)| → 0 a.e.
An application of dominated convergence (Theorem 12.2 and Remark 12.3) yields

lim
n→∞∫

1

0
tnu(t) dt = lim

n→∞∫

1

0
un(t) dt = ∫

1

0
lim
n→∞

un(t)
⏟⏞⏟⏞⏟

0

dt = 0.

■■

Problem 12.13 Solution: From the geometric series we know that 1
1−x =

∑

n⩾0 x
n for x ∈ [0, 1).

This implies that for all t > 0
1

et − 1
= 1
et

1
1 − e−t

= e−t
∑

n⩾0
(e−t)n =

∑

n⩾1
e−nt

(observe that e−t < 1 for t > 0!). Set uk(t) ∶= sin(t) ⋅∑k
n=1 e

−nt, then we get the estimate

|uk(t)| ⩽ | sin t| ⋅
|

|

|

|

|

|

k
∑

n=1
e−nt

|

|

|

|

|

|

= | sin t|
k
∑

n=1
e−nt ⩽ | sin t|

∑

n⩾1
e−nt = | sin t|

et − 1
(∗)

for all k ∈ N und t > 0. Using the elementary inequalities et − 1 ⩾ t (t ⩾ 0) and et − 1 ⩾ et∕2

(t ⩾ 1) we see
|uk(t)| ⩽ 1[0,1](t) + e−t∕21(1,∞)(t) =∶ w(t).

Let us now show that w ∈ 1(0,∞). This can be done with Beppo Levi’s theorem:

∫

∞

0
w(t) dt = ∫

1

0
w(t)
⏟⏟⏟

1

dt + ∫

∞

1
w(t)
⏟⏟⏟
e−t∕2

dt

= 1 + sup
n∈N∫

n

1
e−t∕2 dt = 1 + sup

n∈N

[

− 2e−t∕2
]n
t=1 <∞.
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We use here that every Riemann-integrable function f ∶ [a, b] → C, −∞ < a < b < ∞,
is Lebesgue integrable and that Riemann and Lebesgue intgrals coincide (in this case, see The-
orem 12.8). By dominated convergence,

∫

∞

0

sin(t)
et − 1

dt = lim
k→∞∫

∞

0
uk(t) dt = lim

k→∞

k
∑

n=1
∫

∞

0
sin(t)e−nt dt.

With Im ei t = sin t we get

∫

∞

0
sin(t)e−nt dt = Im

(

∫

∞

0
et(i−n) dt

)

,

(cf. Problem 10.9). Again by dominated convergence,

∫

∞

0
sin(t)e−nt dt = Im

(

lim
R→∞∫

R

1∕R
et(i−n) dt

)

= Im

(

lim
R→∞

[

et(i−n)

i − n

]R

t=1∕R

)

= Im
( 1
n − i

)

= 1
n2 + 1

.

■■

Problem 12.14 Solution: We know that the exponential function is given by ezx = ∑

n⩾0
(zx)n
n! . Thus,

uk(x) ∶= u(x)
k
∑

n=0

(zx)n

n!
←←←←←←←←←←←←←←←←←←←←→
k→∞

u(x)ezx.

By the triangle inequality,

|uk(x)| ⩽ |u(x)|
k
∑

n=0

|

|

|

|

(zx)n

n!
|

|

|

|

⩽ |u(x)|
∑

n⩾0

|zx|n

n!
= |u(x)|e|z||x|.

As x → e�xu(x) is integrable for fixed � = ±|z|, we get

|uk(x)| ⩽ |u(x)|e−|z|x1(−∞,0)(x) + |u(x)|e|z|x1[0,∞)(x) ∈ 1(R).

An application of dominated convergence and the linearity of the integral give

∫ u(x)ezx dx = ∫ lim
k→∞

uk(x) dx

= lim
k→∞∫ uk(x) dx

= lim
k→∞

k
∑

n=0

1
n! ∫

(zx)nu(x) dx

=
∞
∑

n=0

zn

n! ∫
xnu(x) dx.

■■
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Problem 12.15 Solution: We get |
|

∫A u d�|| ⩽ ∫A |u| d� straight from the triangle inequality. There-
fore, it is enough to prove the second estimate. Fix � > 0.
Solution 1: The Sombrero lemma ensures that there is a sequence (un)n∈N ⊂ (A )with |un| ⩽ |u|
and limn→∞ un = u (Corollary 8.9). From dominated convergence we get ∫ |un − u| d� ←←←←←←←←←←←←←←←←←←←←→

n→∞
0;

in particular, we can choose n ∈ N such that ∫ |un − u| d� ⩽ �. Since each un is bounded (b/o the
definition of a simple function) we get

∫A
|un| d� ⩽ ‖un‖∞ ⋅ �(A) < �

for any A ∈ A with �(A) < � ∶= �∕‖un‖∞. Using the triangle inequality we get

∫A
|u| d� ⩽ ∫A

|un − u| d� + ∫A
|un| d� ⩽ ∫ |un − u| d� + ∫A

|un| d� ⩽ 2�

for any A ∈ A with �(A) < �.
Solution 2: Obviously,

∫A
|u| d� = ∫A∩{|u|⩾R}

|u| d� + ∫A∩{|u|<R}
|u| d� (⋆)

We estimate each term by itself. For the first expression on the RHS we use Beppo Levi:

∫A∩{|u|⩾R}
|u| d� ←←←←←←←←←←←←←←←←←←←←←←→

R→∞ ∫A∩{|u|=∞}
|u| d�.

By assumption, u ∈ 1(�), we get �(|u| = ∞) = 0 (see the proof of Corollaryr 11.6) and we get
with Theorem 11.2,

∫A∩{|u|=∞}
|u| d� = 0.

Therefore, we can pick some R > 0 with

∫A∩{|u|⩾R}
|u| d� ⩽ �.

For the second expression in (⋆) we have

∫A∩{|u|<R}
|u| d� ⩽ R∫A∩{|u|<R}

1 d� ⩽ R�(A).

If A ∈ A satisfies �(A) ⩽ � ∶= �∕R, then

∫A
|u| d� = ∫A∩{|u|⩾R}

|u| d� + ∫A∩{|u|<R}
|u| d� ⩽ � + R�(A) ⩽ 2�.

■■

Problem 12.16 Solution: Let � be an arbitrary Borel measure on the line R and define the integral
function for some u ∈ 1(�) through

I(x) ∶= Iu�(x) ∶= ∫(0,x)
u(t)�(dt) = ∫ 1(0,x)(t)u(t)�(dt).
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For any sequence 0 < lj → x, lj < x from the left and rk → x, rk > x from the right we find

1(0,lj )(t) ←←←←←←←←←←←←←←←←←←←←→j→∞
1(0,x)(t) and 1(0,rk)(t) ←←←←←←←←←←←←←←←←←←←←→k→∞

1(0,x](t).

Since |1(0,x)u| ⩽ |u| ∈ 1 is a uniform dominating function, Lebesgue’s dominated convergence
theorem yields

I(x+) − I(x−) = lim
k
I(rk) − limj I(lj)

= ∫ 1(0,x](t)u(t)�(dt) − ∫ 1(0,x)(t)u(t)�(dt)

= ∫
(

1(0,x](t) − 1(0,x)(t)
)

u(t)�(dt)

= ∫ 1{x}(t)u(t)�(dt)

= u(x)�({x}).

Thus I(x) is continuous at x if, and only if, x is not an atom of �.
Remark: the proof shows, by the way, that Iu�(x) is always left-continuous at every x, no matter
what � or u look like.

■■

Problem 12.17 Solution:

(i) We have

∫
1
x
1[1,∞)(x) dx

= lim
n→∞∫

1
x
1[1,n)(x) dx by Beppo Levi’s thm.

= lim
n→∞∫[1,n)

1
x
dx usual shorthand

= lim
n→∞

(R)∫

n

1

1
x
dx Riemann-∫

n

1
exists

= lim
n→∞

[

log x
]n
1

= lim
n→∞

[log(n) − log(1)] = ∞

which means that 1
x
is not Lebesgue-integrable over [1,∞).

(ii) We have

∫
1
x2
1[1,∞)(x) dx

= lim
n→∞∫

1
x2
1[1,n)(x) dx by Beppo Levi’s thm.

= lim
n→∞∫[1,n)

1
x2
dx usual shorthand

= lim
n→∞

(R)∫

n

1

1
x2
dx Riemann-∫

n

1
exists
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= lim
n→∞

[

− 1
x

]n

1

= lim
n→∞

[1 − 1
n
] = 1 <∞

which means that 1
x2

is Lebesgue-integrable over [1,∞).
(iii) We have

∫
1
√

x
1(0,1](x) dx

= lim
n→∞∫

1
√

x
1(1∕n,1](x) dx by Beppo Levi’s thm.

= lim
n→∞∫(1∕n,1]

1
√

x
dx usual shorthand

= lim
n→∞

(R)∫

1

1∕n

1
√

x
dx Riemann-∫

1

1∕n
exists

= lim
n→∞

[

2
√

x
]1

1∕n

= lim
n→∞

[

2 − 2
√

1
n

]

= 2 <∞

which means that 1
√

x
is Lebesgue-integrable over (0, 1].

(iv) We have

∫
1
x
1(0,1](x) dx

= lim
n→∞∫

1
x
1(1∕n,1](x) dx by Beppo Levi’s thm.

= lim
n→∞∫(1∕n,1]

1
x
dx usual shorthand

= lim
n→∞

(R)∫

1

1∕n

1
x
dx Riemann-∫

1

1∕n
exists

= lim
n→∞

[

log x
]1
1∕n

= lim
n→∞

[

log(1) − log 1
n

]

= ∞

which means that 1
x
is not Lebesgue-integrable over (0, 1].

■■

Problem 12.18 Solution: We construct a dominating integrable function.
If x ⩽ 1, we have clearly exp(−x�) ⩽ 1, and ∫(0,1] 1 dx = 1 <∞ is integrable.
If x ⩾ 1, we have exp(−x�) ⩽ Mx−2 for some suitable constantM = M� < ∞. This function
is integrable in [1,∞), see e.g. Problem 12.17. The estimate is easily seen from the fact that
x → x2 exp(−x�) is continuous in [1,∞) with limx→∞ x2 exp(−x�) = 0.
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This shows that exp(−x�) ⩽ 1(0,1) +Mx−21[1,∞) with the right-hand side being integrable.
■■

Problem 12.19 Solution: Take � ∈ (a, b) where 0 < a < b < ∞ are fixed (but arbitrary). We show
that the function is continuous for these �. This shows the general case since continuity is a local
property and we can ‘catch’ any given �0 by some choice of a and b’s.
We use the Continuity lemma (Theorem 12.4) and have to find uniform (for � ∈ (a, b)) dominating
bounds on the integrand function f (�, x) ∶=

(

sin x
x

)3
e−�x. First of all, we remark that ||

|

sin x
x
|

|

|

⩽M

which follows from the fact that sin x
x

is a continuous function such that limx→∞
sin x
x

= 0 and
limx↓0

sin x
x
= 1. (Actually, we could chooseM = 1...). Moreover, exp(−�x) ⩽ 1 for x ∈ (0, 1)

and exp(−�x) ⩽ Ca,bx−2 for x ⩾ 1—use for this the continuity of x2 exp(−�x) and the fact that
limx→∞ x2 exp(−�x) = 0. This shows that

|f (�, x)| ⩽M
(

1(0,1)(x) + Ca,bx−21[1,∞)(x)
)

and the right-hand side is an integrable dominating function which does not depend on �—as long
as � ∈ (a, b). But since � → f (�, x) is obviously continuous, the Continuity lemma applies and
proves that ∫(0,∞) f (�, x) dx is continuous.

■■

Problem 12.20 Solution: Fix some number N > 0 and take x ∈ (−N,N). We show that G(x) is
continuous on this set. SinceN was arbitrary, we find that G is continuous for every x ∈ R.
Set g(t, x) ∶= sin(tx)

t(1+t2) = x
sin(tx)
(tx)

1
1+t2 . Then, using that

|

|

|

sin u
u
|

|

|

⩽M , we have

|g(t, x)| ⩽ x ⋅M ⋅
1

1 + t2
⩽M ⋅N ⋅

(

1(0,1)(t) +
1
t2
1[1,∞)(t)

)

and the right-hand side is a uniformly dominating function, i.e. G(x) makes sense and we find
G(0) = ∫t≠0 g(t, 0) dt = 0. To see differentiability, we use the Differentiability lemma (Theorem
12.5) and need to prove that |)xg(t, x)| exists (this is clear) and is uniformly dominated for x ∈
(−N,N). We have

|)xg(t, x)| =
|

|

|

|

)x
sin(tx)
t(1 + t2)

|

|

|

|

=
|

|

|

|

cos(tx)
(1 + t2)

|

|

|

|

⩽ 1
1 + t2

⩽
(

1(0,1)(t) +
1
t2
1[1,∞)(t)

)

and this allows us to apply the Differentiability lemma, so

G′(x) = )x ∫t≠0
g(t, x) dt = ∫t≠0

)xg(t, x) dt

= ∫t≠0
cos(tx)
1 + t2

dt

= ∫R
cos(tx)
1 + t2

dt
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(use in the last equality that {0} is a Lebesgue null set). Thus, by a Beppo Levi-argument (and
using that Riemann=Lebesgue whenever the Riemann integral over a compact interval exists...)

G′(0) = ∫R
1

1 + t2
dt = lim

n→∞
(R)∫

n

−n

1
1 + t2

dt

= lim
n→∞

[tan−1(t)]n−n

= �.

Now observe that

)x sin(tx) = t cos(tx) =
t
x
x cos(tx) = t

x
)t sin(tx).

Since the integral defining G′(x) exists we can use a Beppo Levi-argument, Riemann=Lebesgue
(whenever the Riemann integral over an interval exists) and integration by parts (for the Riemann
integral) to find

xG′(x) = ∫R
x cos(tx)
1 + t2

dt

= lim
n→∞

(R)∫

n

−n

x)x sin(tx)
t(1 + t2)

dt

= lim
n→∞

(R)∫

n

−n

t)t sin(tx)
t(1 + t2)

dt

= lim
n→∞

(R)∫

n

−n

)t sin(tx)
1 + t2

dt

= lim
n→∞

(R)∫

n

−n
)t sin(tx) ⋅

1
1 + t2

dt

= lim
n→∞

[

sin(tx)
1 + t2

]n

t=−n
− lim
n→∞

(R)∫

n

−n
sin(tx) ⋅ )t

1
1 + t2

dt

= lim
n→∞

(R)∫

n

−n
sin(tx) ⋅ 2t

(1 + t2)2
dt

= ∫R
2t sin(tx)
(1 + t2)2

dt.

■■

Problem 12.21 Solution:

(i) Note that for 0 ⩽ a, b ⩽ 1

1 − (1 − a)b = ∫

1

1−a
btb−1 dt ⩾ ∫

1

1−a
b dt = ba

so that we get for 0 ⩽ x ⩽ k and a ∶= x∕k, b ∶= k∕(k + 1)
(

1 − x
k

)
k
k+1 ⩽ 1 − x

k + 1
, 0 ⩽ x ⩽ k

or,
(

1 − x
k

)k
1[0,k](x) ⩽

(

1 − x
k + 1

)k+1
1[0,k+1](x).
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Therefore we can appeal to Beppo Levi’s theorem to get

lim
k→∞∫(1,k)

(

1 − x
k

)k
ln x �1(dx) = sup

k∈N∫ 1(1,k)(x)
(

1 − x
k

)k
ln x �1(dx)

= ∫ sup
k∈N

[

1(1,k)(x)
(

1 − x
k

)k]
ln x �1(dx)

= ∫ 1(1,∞)(x)e−x ln x �1(dx).

That e−x ln x is integrable in (1,∞) follows easily from the estimates

e−x ⩽ CNx
−N and ln x ⩽ x

which hold for all x ⩾ 1 andN ∈ N.
(ii) Note that x → ln x is continuous and bounded in [�, 1], thus Riemann integrable. It is easy

to see that x ln x − x is a primitive for ln x. The improper Riemann integral

∫

1

0
ln x dx = lim

�→0
[x ln x − x]1� = −1

exists and, since ln x is negative throughout (0, 1), improper Riemann and Lebesgue integrals
coincide. Thus, ln x ∈ L1(dx, (0, 1)).
Therefore,

|

|

|

|

(

1 − x
k

)k
ln x

|

|

|

|

⩽ | ln x|, ∀ x ∈ (0, 1)

is uniformly dominated by an integrable function and we can use dominated convergence to
get

lim
k ∫(0,1)

(

1 − x
k

)k
ln x dx = ∫(0,1)

lim
k

(

1 − x
k

)k
ln x dx

= ∫(0,1)
e−x ln x dx

■■

Problem 12.22 Solution: Since the integrand of F (t) is continuous and bounded by the integrable
function e−x, x > 0, it is clear that F (t) exists. With the usual approximation argument,

∫(0,∞)
e−x t

t2 + x2
�(dx) = lim

n→∞∫

n

1∕n
e−x t

t2 + x2
dx

(the right-hand side is a Riemann integral) we can use the classical (Riemann) rules to evaluate
the integral. Thus, a change of variables x = t ⋅ y ⇐⇒ dx = t dy yields

F (t) = ∫(0,∞)
e−x t

t2 + x2
�(dx)

= ∫(0,∞)
e−ty t

t2 + (ty)2
t �(dy)
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= ∫(0,∞)
e−ty 1

1 + y2
�(dy).

Observe that
|

|

|

|

e−ty 1
1 + y2

|

|

|

|

⩽ 1
1 + y2

uniformly for all t > 0,
and that the right-hand side is Lebesgue integrable (the primitive is the arctan). Therfore, we can
use dominated convergence to conclude

F (0+) = lim
t↓0 ∫(0,∞)

e−ty 1
1 + y2

�(dy)

= ∫(0,∞)
lim
t↓0
e−ty 1

1 + y2
�(dy)

= ∫(0,∞)
1

1 + y2
�(dy)

= lim
n→∞∫

n

1∕n

1
1 + y2

dy

= lim
n→∞

[

arctan y
]n
1∕n =

�
2
.

■■

Problem 12.23 Solution: For the existence of the integrals we need |e−i⋅�| ∈ 1(�) and |e−i⋅�| ⋅
|u(⋅)| ∈ 1(dx). Since |e−i⋅�| = 1, it is reasonable to require that � is a finite measure (such that
the constant 1 is integrable) or u ∈ 1(dx). Under these assumptions, the continuity of the Fourier
transform follows directly from the continuity lemma: set

f (�, x) ∶= 1
2�
e−i x� , � ∈ R, x ∈ R.

By assumption, |f (x, �)| ⩽ (2�)−1 ∈ 1(�) and � → f (�, x) is continuous. Using Theorem 12.4,
we get the continuity of the map

� → ∫ f (�, x)�(dx) = �̂(�).

The argument for û is similar.
Sufficient conditions for n-fold differentiability can be obtained from the differentiability lemma.
Since

d
d�
f (�, x) = (−ix)

2�
e−i x�

we get
|

|

|

|

d
d�
f (�, x)

|

|

|

|

⩽ |x|
2�
.

By the differentiabiliy lemma the derivative d
d�
�̂(�) exists, if ∫ |x|�(dx) < ∞. Iterating this

argument, we get that �̂ is n times differentiable, if

∫ |x|n �(dx) <∞.

Similarly one shows that û is n times differentiable, if ∫ |x|n |u(x)| dx <∞.
■■
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Problem 12.24 Solution:

(i) Let t ∈ (−R,R) for some R > 0. Since |�(x) − t| ⩽ |�(x)| + |t| ⩽ |�(x)| + R ∈
1([0, 1], dx) and since t → |�(x)−t| is continuous, the continuity lemma, Theorem 12.4,
shows that the mapping

(−R,R) ∋ t → f (t) = ∫[0,1]
|�(x) − t| dx

is continuous. Since R > 0 is arbitrary, the claim follows.
Alternative solution: Using the lower triangle inequality we get that

|f (t) − f (s)| ⩽ ∫[0,1]
|

|

|

|�(x) − t| − |�(x) − s|||
|

dx ⩽ ∫[0,1]
|s − t| dx = |s − t|,

i.e. f is Lipschitz continuous.
(ii) ‘⇐’: Let t ∈ R and assume that �{� = t} = 0. For ℎ ∈ R we define

f (t + ℎ) − f (t)
ℎ

= ∫�⩽t−ℎ
|�(x) − (t + ℎ)| − |�(x) − t|

ℎ
dx

+ ∫t−ℎ<�<t+ℎ
|�(x) − (t + ℎ)| − |�(x) − t|

ℎ
dx

+ ∫�⩾t+ℎ
|�(x) − (t + ℎ)| − |�(x) − t|

ℎ
dx

=∶ I1(ℎ) + I2(ℎ) + I3(ℎ).

and we consider the three integrals separately. We have

I1(ℎ) = ∫�⩽t−ℎ
−(�(x) − (t + ℎ)) + (�(x) − t)

ℎ
dx

= ∫�⩽t−ℎ
dx = �(� ⩽ t − ℎ) ←←←←←←←←←←←←←←←←←→

ℎ→0
�{� < t}.

Similarly,

I3(ℎ) = ∫�⩾t−ℎ
(�(x) − (t + ℎ) − (�(x) − t)

ℎ
dx

= �(� ⩾ t + ℎ) ←←←←←←←←←←←←←←←←←→
ℎ→0

�{� > t}.

By our assumptions, �{t − ℎ < � < t + ℎ} ←←←←←←←←←←←←←←←←←→
ℎ→0

�{� = t} = 0, and using dominated
convergence we arrive at

I2(ℎ) = ∫t−ℎ<�<t+ℎ
|�(x) − (t + ℎ)| − |�(x) − t|

ℎ
dx ←←←←←←←←←←←←←←←←←→

ℎ→0
0

(notice that ||�(x)−(t+ℎ)|−|�(x)−t||
ℎ

⩽ 2 b/o the lower triangle inequality!). Putting together
all calculations, we get

lim
ℎ→0

f (x + ℎ) − f (x)
ℎ

= �{� > t} + �{� < t}.
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‘⇒’: We use the notation introduced in the direction ‘⇐’. If f is differentiable at t ∈ R,
we find as in the first part of the proof that

lim
ℎ→0

I2(ℎ) = f ′(t) − limℎ→0 I1(ℎ) − limℎ→0 I3(ℎ)

exists. We split I2 once again:

I2(ℎ) = ∫{t−ℎ<�<t+ℎ}⧵{�=t}
|�(x) − (t + ℎ)| − |�(x) − t|

ℎ
dx

+ ∫{�=t}
|�(x) − (t + ℎ)| − |�(x) − t|

ℎ
dx

=∶ I12 (ℎ) + I
2
2 (ℎ)

Obviously, we have

I22 (ℎ) =
|ℎ|
ℎ ∫{�=t}

1 dx = |ℎ|
ℎ
�{� = t}

and with dominated convergence we get

lim
ℎ→0

I12 (ℎ) = 0.

Therefore, limℎ→0 I2(ℎ) can only exist, if

lim
ℎ→0

I22 (ℎ) = �(� = t) limℎ→0
|ℎ|
ℎ

exists, and this is the case if �(� = t) = 0.
■■

Problem 12.25 Solution:

(i) The map t → u(t, x) ∶= x−2 sin2(x)e−tx is continuous on [0,∞) and differentiable on
(0,∞) differenzierbar. Because of the continuity and differentiability lemmas (The-
orem 12.4 and 12.5) it is enough to find suitable majorants for the function and its
derivatives. Fix t ⩾ 0. Using the elementary inequalities sin x

x
⩽ 1 and e−tx ⩽ 1 we get

|u(t, x)| ⩽ 1[0,1](x) +
1
x2
1(1,∞)(x) =∶ w(x).

Since w ∈ 1([0,∞)) (cf. Beispiel 12.14), continuity follows from the continuity
lemma. Assume now that t ∈ (r,∞) for some r > 0. Then we get

|)tu(t, x)| =
|

|

|

|

|

sin2(x)
x2

(−x)e−tx
|

|

|

|

|

⩽ 1[0,1](x) + xe−tx1[1,∞)(x) ∈ 1([0,∞))

|)2t u(t, x)| =
|

|

|

|

|

sin2(x)
x2

(−x)2e−tx
|

|

|

|

|

⩽ 1[0,1](x) + x2e−tx1[1,∞)(x) ∈ 1([0,∞)).
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Now the differentiability lemma shows that f has two derivatives which are given by

f ′(t) = −∫

∞

0

sin2(x)
x

e−tx dx,

f ′′(t) = ∫

∞

0
sin2(x)e−tx dx.

(ii) In order to calculate f ′′ we use that Riemann and Lebesgue integrals auszurechnen
coincide if a function is Riemann integrable (Theorem 12.8).
Using sin2(x) = 1

2 (1 − cos(2x)) =
1
2 Re(1 − e

i 2x) we get

f ′′(t) = 1
2
Re

(

∫

∞

0
(1 − ei 2x)e−tx dx

)

,

(cf. Problem 10.9). Using dominated convergence, we see

∫

∞

0
(1 − ei 2x)e−tx dx = lim

R→∞∫

R

0
(1 − ei 2x)e−tx dx.

Since x → (1 − ei 2x)e−tx is Riemann integrable, we can integrate ‘as usual’:

∫

∞

0
(1 − ei 2x)e−tx dx = lim

R→∞

[ 1
−t
e−tx

]R

x=0
− lim
R→∞

[ 1
2i − t

ex(2i−t)
]R

x=0
= 1
t
− 1
t − 2i

.

Thus,
f ′′(t) = 1

2
Re

(1
t
− 1
t − 2i

)

= 1
2

(

1
t
− t
t2 + 4

)

= 2
t(t2 + 4)

.

The limits limt→∞ f (t) and limt→∞ f ′(t) follow again with dominated convergence (the
necessary majorants are those from part (i)):

lim
t→∞

f (t) = ∫

∞

0
lim
t→∞

(

sin2(x)
x2

e−tx
)

dx = 0,

lim
t→∞

f ′(t) = −∫

∞

0
lim
t→∞

(

sin2(x)
x

e−tx
)

dx = 0.

(iii) We begin with a closed expression for f ′: from the fundamental theorem of (Riemann)
integration we know

f ′(R) − f ′(t) = ∫

R

t
f ′′(s) ds.

Letting R→∞ we get using (ii)

f ′(t) = − lim
R→∞∫

R

t
f ′′(s) ds

= −1
2
lim
R→∞

[

log s − 1
2
log(s2 + 4)

]R

s=t

= 1
2

(

log t − 1
2
log(t2 + 4)

)

= 1
2
log t

√

t2 + 4
.
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Finally,

f (t) = − lim
R→∞∫

R

t
f ′(s) ds = −1

2 ∫

∞

t
log s

√

s2 + 4
ds.

(In this part we have again used the fact that the Lebesgue integral extends the Riemann
integral.)

■■

Problem 12.26 Solution: We follow the hint: since e−tx ⩾ 0 we can use Beppo Levi to get

∫

∞

0
e−xt dx = sup

n∈N∫

n

0
e−xt dx = lim

n→∞∫

n

0
e−xt dx.

Moreover, x → e−tx is continuous, hence measurable and Riemann-integrable on compact inter-
vals, and we may (Theorem 12.8) use the Riemann integral to evaluate things.

∫

n

0
e−xt dx =

[

e−tx

−t

]n

x=0

n→∞
←←←←←←←←←←←←←←←←←←←←→

1
t
.

Thus, e−tx ∈ 1(0,∞) and ∫ ∞0 e−xtdx = 1
t
. Now we use the differentiability lemma, The-

orem 12.5. For u(t, x) ∶= e−tx we have

|)tu(t, x)| = |x|e−tx ⩽ |x|e−ax ∈ 1(0,∞) ∀ t ∈ (a,∞), a > 0,

(cf. Example 12.14). Therefore (use the differentiability lemma)
d
dt ∫

∞

0
e−tx dx = ∫

∞

0
(−x)e−tx dx ∀ t ∈ (a,∞).

Since a > 0 is arbitrary, we get differentiability on (0,∞). Iterating this argument, we inver that
we can swap derivatives of any order with the integral. Morover,

dn

dtn

(

∫

∞

0
e−xt dx

)

= dn

dtn
(1
t

)

⇒

(

∫

∞

0
(−x)ne−xt dx

)

= (−1)nn!
tn+1

.

If t = 1, the claim follows.
■■

Problem 12.27 Solution: Throughout we fix (a, b) ⊂ (0,∞) and take t ∈ (a, b). As in Problem 12.17
we get

∫(0,1)
x−� dx <∞ ∀ � < 1 and ∫(1,∞)

x−� dx <∞ ∀ � > 1.

(i) Note that differentiability implies continuity, so it suffices to show that Γ is m times
differentiable for every m.
Induction Hypothesis: Γ(m) exists and is of the form as claimed in the statement of the
problem.
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Induction Start m = 1: We have to show that Γ(t) is differentiable. We want to use
the differentiability lemma. For this we remark first of all, that the integrand function
t → (t, x) is differentiable on (a, b) and that

)t(t, x) = )te−x xt−1 = e−x xt−1 log x.

We have now to find a uniform (for t ∈ (a, b)) integrable dominating function for
|)t(t, x)|. Since log x ⩽ x for all x > 0 (the logarithm is a concave function!),

|

|

|

e−x xt−1 log x||
|

= e−x xt−1 log x

⩽ e−xxt ⩽ e−xxb ⩽ Cb x
−2 ∀ x ⩾ 1, t ∈ (a, b)

(for the last step multiply with x2 and use that x�e−x is continuous for every � > 0 and
limx→∞ x�e−x = 0 to find Cb). Moreover,

|

|

|

e−x xt−1 log x||
|

⩽ xa−1 | log x|

= xa−1 log 1
x

⩽ Ca x
−1∕2 ∀ x ∈ (0, 1), t ∈ (a, b)

where we use the fact that limx→0 x� log
1
x
= 0 which is easily seen by the substitution

x = e−u and u→∞ and the continuity of the function x� log 1
x
.

Both estimates together furnish an integrable dominating function, so the differentiab-
ility lemma applies and shows that

Γ′(t) = ∫(0,∞)
)t(t, x) dx = ∫(0,∞)

e−x xt−1 log x dx = Γ(1)(x).

Induction Step m⇝ m+1: Set  (m)(t, x) = e−x xt−1 (log x)m. We want to apply the dif-
ferentiability lemma to Γ(m)(x). With very much the same arguments as in the induction
start we find that  (m+1)(t, x) = )t (m)(t, x) exists (obvious) and satisfies the following
bounds

|

|

|

e−x xt−1 (log x)m+1||
|

= e−x xt−1 (log x)m+1

⩽ e−xxt+m

⩽ e−xxb+m

⩽ Cb,m x
−2 ∀ x ⩾ 1, t ∈ (a, b)

|

|

|

e−x xt−1 (log x)m+1||
|

⩽ xa−1 | log x|m+1

= xa−1
(

log 1
x

)m+1

⩽ Ca,m x
−1∕2 ∀ x ∈ (0, 1), t ∈ (a, b)

and the differentiability lemma applies completing the induction step.
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(ii) Using a combination of Beppo Levi (indicated by ‘BL’), Riemann=Lebesgue (if the
Riemann integral over an interval exists) and integration by parts (for the Riemann in-
tegral, indicated by ‘parts’) techniques we get

tΓ(t) = lim
n→∞∫(1∕n,n)

e−x txt−1 dx (BL)

= lim
n→∞

(R)∫

n

1∕n
e−x )xx

t dx

= lim
n→∞

[

e−x xt
]n
x=1∕n − lim

n→∞
(R)∫

n

1∕n
)xe

−x xt dx (parts)

= lim
n→∞

(R)∫

n

1∕n
e−x x(t+1)−1 dx

= lim
n→∞∫(1∕n,n)

e−x x(t+1)−1 dx

= ∫(0,∞)
e−x x(t+1)−1 dx (BL)

= Γ(t + 1).

(iii) We have to show that

log Γ(�t + (1 − �)s) ⩽ � log Γ(t) + (1 − �) log Γ(s) ∀s, t > 0, � ∈ (0, 1).

This is clearly equivalent to

Γ(�t + (1 − �)s) ⩽ [Γ(t)]� [Γ(s)]1−� ∀s, t > 0, � ∈ (0, 1).

Fix s, t > 0 and write � = 1
p
and 1 − � = 1

q
= 1 − 1

p
where p, q ∈ (1,∞) are conjugate

exponents. We get using Hölder’s inequality

Γ(�t + (1 − �)s) = ∫

∞

0
e−xx�t+(1−�)s−1 dx

= ∫

∞

0
e−

1
pxx

1
p (t−1)e−

1
q xx

1
q (s−1) dx

⩽
[

∫

∞

0
e−xxt−1 dx

]
1
p
[

∫

∞

0
e−xxs−) dx

]
1
q

⩽ [Γ(t)]� [Γ(s)]1−� .

(iii) Alternative – direct calculuation Since log and Γ are inC2 we can apply the convexity
criterion: log Γ is convex if, and only if, d2

dt2
log Γ(t) ⩾ 0 holds. We have

d
dt
log Γ(t) = Γ′(t)

Γ(t)
d2

dt2
log Γ(t) = Γ(t)Γ′′(t) − (Γ′(t))2

(Γ(t))2

which is non-negative iff
0
!
⩽ Γ(t)Γ′′(t) − (Γ′(t))2
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So with the notation from part (ii), along with the dominated convergence theorem
(indicated by ‘DC’ – this is needed for Γ′, since its integrand will take negative values,
so Beppo Levi does not apply), we get
Γ(t)Γ′′(t) − (Γ′(t))2 = lim

n→∞∫(1∕n,n) ∫(1∕n,n)
e−x−y (xy)t−1(log y)2 dx dy (BL)

− lim
n→∞∫(1∕n,n) ∫(1∕n,n)

e−x−y (xy)t−1 log x log y dx dy (DC)

= lim
n→∞

(R)∫

n

1∕n ∫

n

1∕n
e−x−y(xy)t−1 log y (log y − log x) dx dy

= lim
n→∞

(R)∫

n

1∕n ∫

n

1∕n
e−x−y(xy)t−1 log y log y

x
dx dy

In the last expression we can change the roles of x and y without changing the value of
the integrals (Fubini), so we get

= lim
n→∞

1
2
(R)∫

n

1∕n ∫

n

1∕n
e−x−y(xy)t−1 log y log y

x
dx dy

+ lim
n→∞

1
2
(R)∫

n

1∕n ∫

n

1∕n
e−x−y(xy)t−1 log x log x

y
dx dy

= lim
n→∞

1
2
(R)∫

n

1∕n ∫

n

1∕n
e−x−y(xy)t−1(log y log y

x
+ log x log x

y
) dx dy.

At last, using well-known logarithmic identities, we get
log y log y

x
+ log x log x

y
= log y log y

x
− log x log y

x

= log y
x
(log y − log x)

=
(

log y
x

)2

and inserting this into the above integral gives

= lim
n→∞

1
2
(R)∫

n

1∕n ∫

n

1∕n
e−x−y(xy)t−1

(

log y
x

)2
dx dy

= 1
2 ∫(0,∞) ∫(0,∞)

e−x−y(xy)t−1(log y
x
)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
⩾0

dx dy ⩾ 0. (BL)

This finishes the proof.
■■

Problem 12.28 Solution:

(i) The function x → x ln x is bounded and continuous in [0, 1], hence Riemann integrable.
Since in this case Riemann and Lebesgue integrals coincide, we may use Riemann’s integral
and the usual rules for integration. Thus, changing variables according to x = e−t, dx =
−e−t dt and then s = (k + 1)t, ds = (k + 1) ds we find,

∫

1

0
(x ln x)k dx = ∫

∞

0

[

e−t(−t)
]k e−t dt
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= (−1)k ∫

∞

0
tke−t(k+1) dt

= (−1)k ∫

∞

0

( s
k + 1

)k
e−s ds

k + 1

= (−1)k
( 1
k + 1

)k+1

∫

∞

0
s(k+1)−1e−s ds

= (−1)k
( 1
k + 1

)k+1
Γ(k + 1).

(ii) Following the hint we write

x−x = e−x ln x =
∞
∑

k=0
(−1)k (x ln x)

k

k!
.

Since for x ∈ (0, 1) the terms under the sum are all positive, we can use Beppo Levi’s theorem
and the formula Γ(k + 1) = k! to get

∫(0,1)
x−x dx =

∞
∑

k=0
(−1)k 1

k! ∫(0,1)
(x ln x)k dx

=
∞
∑

k=0
(−1)k 1

k!
(−1)k

( 1
k + 1

)k+1
Γ(k + 1)

=
∞
∑

k=0

( 1
k + 1

)k+1

=
∞
∑

n=1

(1
n

)n
.

■■

Problem 12.29 Solution: Fix (a, b) ⊂ (0, 1) and let always u ∈ (a, b). We have for x ⩾ 0 andL ∈ N0

|xLf (u, x)| = |x|L
|

|

|

|

eux

ex + 1
|

|

|

|

= xL eux

ex + 1
⩽ xL e

ux

ex

= xL e(u−1)x

⩽ 1[0,1](x) +Ma,b1(1,∞)(x) x−2

where we use that u − 1 < 0, the continuity and boundedness of x�e−ax for x ∈ [1,∞) and � ⩾ 0.
If x ⩽ 0 we get

|xLf (u, x)| = |x|L
|

|

|

|

eux

ex + 1
|

|

|

|

= |x|L e−u|x|

⩽ 1[−1,0](x) +Na,b1(−∞,1)(x) |x|−2.

Both inequalities give dominating functionswhich are integrable; therefore, the integral ∫
R
xLf (u, x) dx

exists.
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To seem-fold differentiability, we use the Differentiability lemma (Theorem 12.5)m-times. Form-
ally, we have to use induction. Let us only make the induction step (the start is very similar!). For
this, observe that

)mu (x
nf (u, x)) = )mu

xneux

ex + 1
= xn+meux

ex + 1
but, as we have seen in the first step with L = n + m, this is uniformly bounded by an integrable
function. Therefore, the Differentiability lemma applies and shows that

)mu ∫R
xn f (u, x) dx = ∫R

xn )mu f (u, x) dx = ∫R
xn+m f (u, x) dx.

■■

Problem 12.30 Solution: Because of the binomial formual we have (1 + x2)n ⩾ 1 + nx2; this yields,
in particular,

|

|

|

|

1 + nx2
(1 + x2)n

|

|

|

|

⩽ 1.

Since
lim
n→∞

1 + nx2
(1 + x2)n

= 0 ∀ x ∈ (0, 1)

(exponential growth is always stronger than polynomial growth!) we can use dominated conver-
gence and find

lim
n→∞∫

1

0

1 + nx2
(1 + x2)n

dx = 0.

■■

Problem 12.31 Solution:

(i) We begin by showing that f is well defined, i.e. the integral expression makes sense. Recall
the following estimates

| arctan(y)| ⩽ |y|, | arctan(y)| ⩽ �
2
, y ∈ R,

(the first inequality follows from the mean value theorem, the second from the definition of
arctan.) Moreover,

sinh x = 1
2
(ex − e−x) ⩾ 1

2
(ex − 1) ⩾ 1

2
1
2
x2 ∀x ⩾ 1.

For u(t, x) ∶= arctan
(

t
sinh x

)

we see

|u(t, x)| ⩽ �
2
1(0,1)(x) +

|

|

|

|

t
sinh x

|

|

|

|

1[1,∞)(x)

⩽ �
2
1[0,1](x) +

1
4
1
x2
1[1,∞)(x) ∈ 1((0,∞)).

This proves that the integral f (t) = ∫(0,∞) u(t, x) dx exists. In order to check differentiability
of f , we have to find (Theorem 12.5) a majorizing function for the derivative of the integrand.
Fix R > 0 and let t ∈ (R−1, R). By the chain rule

)
)t
u(t, x) = 1

1 +
(

t
sinh x

)2
1

sinh x

144



Solution Manual. Last update 18th July 2019

= 1
t2

sinh x + sinh x
.

Since x → 1
R−2+sinh x is continuous, there is a constant C1 > 0 such that

sup
x∈[0,1]

1
R−2 + sinh x

⩽ C1.

Using 0 ⩽ sinh x ⩽ 1 for x ∈ [0, 1], we get
|)tu(t, x)| ⩽

1
R−2
sinh x + sinh x

⩽ 1
R−2 + sinh x

⩽ C1 ∀ x ∈ [0, 1].

Similarly we get for x > 1
|)tu(t, x)| ⩾

1
sinh x

= 2 1
ex − e−x

= 2
ex

1
1 − e−2x
⏟⏞⏟⏞⏟
⩽C2<∞

∈ 1((1,∞)).

Therefore,
|)tu(t, x)| ⩽ C11(0,1](x) + 2C2

1
ex
1(1,∞)(x) ∈ 1((0,∞)).

Using the differentiability lemma, Theorem 12.5, we find that f is differentiable on (R−1, R)
and that

f ′(t) = ∫(0,∞)
1

t2
sinh x + sinh x

dx ∀ t ∈ (R−1, R).

SinceR > 0 is arbitrary, f is differentiable on (0,∞). That limt↓0 f ′(t) does not exist, follows
directly from the closed expresson for f ′ in part (ii).

(ii) Note that f (0) = 0. In order to find an expression for f ′, we perform the following substitu-
tion: u = cosh x and we get, observing that cosh2 x − sinh2 x = 1:

f ′(t) = ∫(1,∞)
1

t2
√

u2−1
+
√

u2 − 1
1

√

u2 − 1
du

= ∫(1,∞)
1

t2 − 1 + u2
du.

(Observe: x → 1
t2

sinh x+sinh x
is continuous, hence Riemann-integrable. Since we have estab-

lished in part (i) the existence of the Lebesgue integral, we can use Riemann integrals (b/o
Theorem 12.8).) There are two cases:

• t > 1: We have t2 − 1 > 0 and so
f ′(t) = 1

t2 − 1 ∫(1,∞)
1

1 +
(

u
√

t2−1

)2 du

= 1
t2 − 1

[

√

t2 − 1 arctan

(

u
√

t2 − 1

)]∞

u=1

= 1
√

t2 − 1

(

�
2
− arctan

(

1
√

t2 − 1

))

= 1
√

t2 − 1
arctan

(√

t2 − 1
)

.

145



R.L. Schilling: Measures, Integrals & Martingales

• t < 1: Then C ∶=
√

1 − t2 makes sense and we get
u2 + t2 − 1 = u2 − C2 = (u + C)(u − c).

Moreover, by partial fractions,
1

u2 − C2
= 1
2C

1
u + C

− 1
2C

1
u − C

and so

∫(1,∞)
1

u2 + t2 − 1
du = ∫(1,∞)

u2 − C2du

= 1
2C

lim
R→∞

(

∫

R

1

1
u + C

du − ∫

R

1

1
u − C

du
)

= 1
2C

lim
R→∞

(

ln
(1 + C
1 − C

)

+ ln
(R + C
R − C

))

= 1
2C

ln
(1 + C
1 − C

)

= 1
2
√

1 − t2
ln

(

1 +
√

1 − t2

1 −
√

1 − t2

)

.

The first part of our argument shows, in particular,

∫

∞

1
f ′(t) dt = ∞.

Since f (t) = f (1) + ∫ t
1 f

′(s) ds, t ⩾ 1, we get limt→∞ f (t) = ∞.
■■

Problem 12.32 Solution:

(i) Since
|

|

|

|

dm

dtm
e−tX

|

|

|

|

= |

|

|

Xme−tX||
|

⩽ Xm

m applications of the differentiability lemma, Theorem 12.5, show that �(m)X (0+) exists and
that

�(m)X (0+) = (−1)m ∫ Xm dP.

(ii) Using the exponential series we find that

e−tX −
m
∑

k=0
Xk (−1)ktk

k!
=

∞
∑

k=m+1
Xk (−1)ktk

k!

= tm+1
∞
∑

j=0
Xm+1+j (−1)m+1+jtj

(m + 1 + j)!
.

Since the left-hand side has a finite P-integral, so has the right, i.e.

∫

(

∞
∑

j=0
Xm+1+j (−1)m+1+jtj

(m + 1 + j)!

)

dP converges
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and we see that

∫

(

e−tX −
m
∑

k=0
Xk (−1)ktk

k!

)

dP = o(tm)

as t→ 0.
(iii) We show, by induction in m, that

|

|

|

|

e−u −
m−1
∑

k=0

(−u)k

k!
|

|

|

|

⩽ um

m!
∀ u ⩾ 0. (*)

Because of the elementary inequality

|e−u − 1| ⩽ u ∀ u ⩾ 0

the start of the induction m = 1 is clear. For the induction step m→ m + 1 we note that
|

|

|

|

e−u −
m
∑

k=0

(−u)k

k!
|

|

|

|

=
|

|

|

|

∫

u

0

(

e−y −
m−1
∑

k=0

(−y)k

k!

)

dy
|

|

|

|

⩽ ∫

u

0

|

|

|

|

e−y −
m−1
∑

k=0

(−y)k

k!
|

|

|

|

dy

(*)
⩽ ∫

u

0

ym

m!
dy

= um+1

(m + 1)!
,

and the claim follows.
Setting x = tX in (*), we find by integration that

±
(

∫ e−tX −
m−1
∑

k=0
(−1)ktk

∫ Xk dP
k!

)

⩽
tm ∫ Xm dP

m!
.

(iv) If t is in the radius of convergence of the power series, we know that

lim
m→∞

|t|m ∫ Xm dP
m!

= 0

which, when combined with (iii), proves that

�X(t) = lim
m→∞

m−1
∑

k=0
(−1)ktk

∫ Xk dP
k!

.

■■

Problem 12.33 Solution:

(i) Wrong, u is NOT continuous on the irrational numbers. To see this, just take a sequence of
rationals qj ∈ Q ∩ [0, 1] approximating p ∈ [0, 1] ⧵Q. Then

lim
j
u(qj) = 1 ≠ 0 = u(p) = u(limj qj).
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(ii) True. Mind that v is not continuous at 0, but {n−1, n ∈ N} ∪ {0} is still countable.
(iii) True. The points where u and v are not 0 (that is: where they are 1) are countable sets, hence

measurable and also Lebesgue null sets. This shows that u, v are measurable and almost
everywhere 0, hence ∫ u d� = 0 = ∫ v d�.

(iv) True. SinceQ∩ [0, 1] as well as [0, 1] ⧵Q are dense subsets of [0, 1], ALL lower resp. upper
Darboux sums are always

S�[u] ≡ 0 resp. S�[u] ≡ 1

(for any finite partition � of [0, 1]). Thus upper and lower integrals of u have the value 0 resp.
1 and it follows that u cannot be Riemann integrable.

■■

Problem 12.34 Solution: Note that every functionwhich has finitelymany discontinuities is Riemann
integrable. Thus, if {qj}j∈N is an enumeration of Q, the functions uj(x) ∶= 1{q1,q2,…,qj}(x) are
Riemann integrable (with Riemann integral 0) while their increasing limit u∞ = 1Q is not Riemann
integrable.

■■

Problem 12.35 Solution: Of course we have to assume that u is Borel measurable! By assumption
we know that uj ∶= u1[0,j] is (properly) Riemann integrable, hence Lebesgue integrable and

∫[0,j]
u d� = ∫[0,j]

uj d� = (R)∫
j

0
u(x) dx ←←←←←←←←←←←←←←←←←←←←→

j→∞ ∫

∞

0
u(x) dx.

The last limit exists because of improper Riemann integrability. Moreover, this limit is an increas-
ing limit, i.e. a ‘sup’. Since 0 ⩽ uj ↑ u we can invoke Beppo Levi’s theorem and get

∫ u d� = sup
j ∫ uj d� = ∫

∞

0
u(x) dx <∞

proving Lebesgue integrability.
■■

Problem 12.36 Solution: Observe that x2 = k� ⇐⇒ x =
√

k�, x ⩾ 0, k ∈ N0. Thus, Since
sin x2 is continuous, it is on every bounded interval Riemann integrable. By a change of variables,
y = x2, we get

∫

√

b

√

a
| sin(x2)| dx = ∫

b

a
| sin y| dy

2
√

y
= ∫

b

a

| sin y|
2
√

y
dy

which means that for a = ak = k� and b = bk = (k + 1)� = ak+1 the values ∫
√

ak+1
√

ak
| sin(x2)| dx

are a decreasing sequence with limit 0. Since on [
√

ak,
√

ak+1
] the function sin x2 has only one
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sign (and alternates its sign from interval to interval), we can use Leibniz’ convergence criterion
to see that the series

∑

k
∫

√

ak+1

√

ak
sin(x2) dx (*)

converges, hence the improper integral exists.
The function cos x2 can be treated similarly. Alternatively, we remark that sin x2 = cos(x2−�∕2).
The functions are not Lebesgue integrable. Either we show that the series (*) does not converge
absolutely, or we argue as follows:
sin x2 = cos(x2−�∕2) shows that ∫ | sin x2| dx and ∫ | cos x2| dx either both converge or diverge.
If they would converge (this is equivalent to Lebesgue integrability...) we would find because of
sin2 +cos2 ≡ 1 and | sin |, | cos | ⩽ 1,

∞ = ∫

∞

0
1 dx = ∫

∞

0

[

(sin x2)2 + (cos x2)2
]

dx

= ∫

∞

0
(sin x2)2 dx + ∫

∞

0
(cos x2)2 dx

⩽ ∫

∞

0
| sin x2| dx + ∫

∞

0
| cos x2| dx < ∞,

which is a contradiction.
■■

Problem 12.37 Solution: Let r < s and, without loss of generality, a ⩽ b. A change of variables
yields

∫

s

r

f (bx) − f (ax)
x

dx = ∫

s

r

f (bx)
x

dx − ∫

s

r

f (ax)
x

dx

= ∫

bs

br

f (y)
y

dy − ∫

as

ar

f (y)
y

dy

= ∫

bs

as

f (y)
y

dy − ∫

br

ar

f (y)
y

dy

Using the mean value theorem for integrals, I.12, we get

∫

s

r

f (bx) − f (ax)
x

dx = f (�s)∫

bs

as

1
y
dy − f (�r)∫

br

ar

1
y
dy

= f (�s) ln
b
a
− f (�r) ln

b
a
.

Since �s ∈ (as, bs) and �r ∈ (ar, br), we find that �s ←←←←←←←←←←←←←←←←←←←←→s→∞
∞ and �r ←←←←←←←←←←←←←←←←→r→0

0 which means that

∫

s

r

f (bx) − f (ax)
x

dx =
[

f (�s) − f (�r)
]

ln b
a

s→∞
←←←←←←←←←←←←←←←←←←←←←←←←→
r→0

(M − m) ln b
a
.

■■
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13 The function spaces p.
Solutions to Problems 13.1�13.26

Problem 13.1 Solution:

(i) We use Hölder’s inequality for r, s ∈ (1,∞) and 1
s
+ 1

t
= 1 to get

‖u‖qq = ∫ |u|q d� = ∫ |u|q ⋅ 1 d�

⩽
(

∫ |u|qr d�
)1∕r

⋅
(

∫ 1s d�
)1∕s

=
(

∫ |u|qr d�
)1∕r

⋅ (�(X))1∕s .

Now let us choose r and s. We take
r = p

q
> 1 ⇐⇒

1
r
= q
p

and 1
s
= 1 − 1

r
= 1 − q

p
,

hence
‖u‖q =

(

∫ |u|p d�
)q∕p⋅1∕q

⋅ (�(X))(1−q∕p)(1∕q)

=
(

∫ |u|p d�
)q∕p⋅1∕q

⋅ (�(X))1∕q−1∕p

= ‖u‖p ⋅ (�(X))1∕q−1∕p .

(ii) If u ∈ p we know that u is measurable and ‖u‖p <∞. The inequality in (i) then shows that
‖u‖q ⩽ const ⋅ ‖u‖p <∞,

hence u ∈ q. This gives p ⊂ q. The inclusion q ⊂ 1 follows by taking p⇝ q, q ⇝ 1.
Let (un)n∈N ⊂ p be a Cauchy sequence, i.e. limm,n→∞ ‖un−um‖p = 0. Since by the inequal-
ity in (i) also

lim
m,n→∞

‖un − um‖q ⩽ �(X)1∕q−1∕p lim
m,n→∞

‖un − um‖p = 0

we get that (un)n∈N ⊂ q is also a Cauchy sequence in q.
(iii) No, the assertion breaks down completely if the measure � has infinite mass. Here is an

example: � = Lebesgue measure on (1,∞). Then the function f (x) = 1
x
is not integrable

over [1,∞), but f 2(x) = 1
x2

is. In other words: f ∉ 1(1,∞) but f ∈ 2(1,∞), hence
2(1,∞) ⊄ 1(1,∞). (Playing around with different exponents shows that the assertion also
fails for other p, q ⩾ 1....).

151



R.L. Schilling: Measures, Integrals & Martingales

■■

Problem 13.2 Solution: This is going to be a bit messy and rather than showing the ‘streamlined’
solution we indicate how one could find out the numbers oneself. Now let � be some number in
(0, 1) and let �, � be conjugate indices: 1

�
+ 1

�
= 1 where �, � ∈ (1,∞). Then by the Hölder

inequality

∫ |u|r d� = ∫ |u|r�|u|r(1−�) d�

⩽
(

∫ |u|r�� d�
)

1
�
(

∫ |u|r(1−�)� d�
)

1
�

=
(

∫ |u|r�� d�
)

r�
r��
(

∫ |u|r(1−�)� d�
)

r(1−�)
r(1−�)�

.

Taking rth roots on both sides yields

‖u‖r ⩽
(

∫ |u|r�� d�
)

�
r��
(

∫ |u|r(1−�)� d�
)

(1−�)
r(1−�)�

= ‖u‖�r��‖u‖
1−�
r(1−�)� .

This leads to the following system of equations:
p = r��, q = r(1 − �)�, 1 = 1

�
+ 1
�

with unknown quantities �, �, �. Solving it yields

� =
1
r
− 1

q
1
p
− 1

q

, � = q − p
q − r

� = q − p
r − p

.

■■

Problem 13.3 Solution:

(i) If u, v ∈ p(�), then u+v and �u are again in p(�); this follows from the homogeneity
of the integral andMinkowski’s inequality (Corollary 13.4. Using the Cauchy–Schwarz
inequality, the product uv is in p(�), if u, v ∈ 2p(�). More generally: if there are
conjugate numbers �, � ∈ [1,∞] (i.e. �−1 + �−1 = 1), such that u ∈ �p and v ∈ �p,
then uv ∈ p(�).

(ii) Consider the measure space ((0, 1),ℬ(0, 1), �) and set u(x) ∶= v(x) ∶= x−1∕3. This
gives

∫

1

0
|u(x)|2 dx = ∫

1

0
x−2∕3 dx = 3

[

x1∕3
]1
x=0 = 3 <∞,

i.e. u, v ∈ 2(�). On the other hand, u ⋅ v ∉ 2(�) as

∫

1

0
|u(x)v(x)|2 dx = ∫

1

0
x−4∕3 dx = lim

r→0

[

−3x−1∕3
]1
x=r = ∞.

This proves that 2(�) is not an algebra. Define ũ ∶= u2 and ṽ ∶= v2, we get a similar
counterexample which works in 1(�).
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(iii) From Minkowski’s inequality we get

‖u‖p = ‖(u − v) + v‖p ⩽ ‖u − v‖p + ‖v‖p

⇐⇒ ‖u‖p − ‖v‖p ⩽ ‖u − v‖p.

If we change the rôles of u and v, we obtain

‖v‖p − ‖u‖p ⩽ ‖v − u‖p = ‖u − v‖p

and, therefore,
|

|

|

‖u‖p − ‖v‖p
|

|

|

= max{‖u‖p − ‖v‖p, ‖v‖p − ‖u‖p} ⩽ ‖u − v‖p.

■■

Problem 13.4 Solution:

(i) We consider the three cases separately.
(a) Every map u ∶ (Ω, {∅,Ω}) → (R, {∅,R}) is measurable. Indeed: u is measurable if,

and only if, u−1(A) ∈ {∅,Ω} for all A ∈ A = {∅,R}. Since

u−1(∅) = ∅ u−1(R) = Ω

this is indeed true for any map u.
(b) Every measurable map u ∶ (Ω, {∅,Ω}) → (R,ℬ(R)) is constant Indeed: Suppose, u

is not constant, i.e. there are !1, !2 ∈ Ω and x, y ∈ R, x ≠ y, such that u(!1) = x,
u(!2) = y. Then u−1({x}) ∉ {∅,Ω} as !1 ∈ u−1({x}) (and so u−1({x}) ≠ ∅) and
!2 ∉ u−1({x}) (and so u−1({x}) ≠ Ω).

(c) Everymeasurablemap u ∶ (Ω, {∅,Ω})→ (R,P (R)) is clearly {∅,Ω}∕ℬ(R)-measurable.
From (b) we know that such functions are constant. On the other hand, constant maps
are measurable for any �-algebra. Therefore, every {∅,Ω}∕P (R)-measurable map is
constant.

(ii) We determine first the �(B)-measurable maps. We claim: every �(B)∕ℬ(R)-measurable
map is of the form

u(!) = c11B(!) + c21Bc (!), ! ∈ Ω, (⋆)
for c1, c2 ∈ R. Indeed: If u is given by (⋆), then

u−1(A) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Ω, c1, c2 ∈ A,

B, c1 ∈ A, c2 ∉ A,

Bc , c1 ∉ A, c2 ∈ A,

∅, c1, c2 ∉ A
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for any A ∈ ℬ(R). Therefore, u is �(B)∕ℬ(R)-measurable. Conversely, assume that
the function u is �(B)∕ℬ(R)-measurable. Choose any !1 ∈ B, !2 ∈ Bc and define
c1 = u(!1), c2 = u(!2). If u were not of the form (⋆), then there would be some ! ∈ Ω
such that u(!) ∉ {c1, c2}. In this case A ∶= {u(!)} satisfies u−1(A) ∉ {∅,Ω, B, Bc},
contradicting the measurability of u.
By definition,

p(Ω, �(B), �) =
{

u ∶ (Ω, �(B))→ (R,ℬ(R))messbar ∶ ∫ |u|p d� <∞
}

.

We have already shown that the �(B)-measurable maps are given by (⋆). Because of the
linearity of the integral we see that

∫ |u|p d� = |c1|
p�(B) + |c2|

p�(Bc).

Consequently, u ∈ p(Ω, �(B), �) if, and only if,
• c1 = 0 or �(B) <∞
• c2 = 0 or �(Bc) <∞.

In particular, every map of the form (⋆) is in p(Ω, �(B), �) if � is a finite measure.
■■

Problem 13.5 Solution: Proof by induction inN .
StartN = 2: this is just Hölder’s inequality.
Hypothesis: the generalized Hölder inequality holds for someN ⩾ 2.
Step N ⇝ N + 1:. Let u1,… , uN , w be N + 1 functions and let p1,… , pN , q > 1 be such that
p−11 + p−12 +…+ p−1N + q−1 = 1. Set p−1 ∶= p−11 + p−12 +…+ p−1N . Then, by the ordinary Hölder
inequality,

∫ |u1 ⋅ u2 ⋅… ⋅ uN ⋅w| d� ⩽
(

∫ |u1 ⋅ u2 ⋅… ⋅ uN |
p d�

)1∕p
‖u‖q

=
(

∫ |u1|
p ⋅ |u2|

p ⋅… ⋅ |uN |
p d�

)1∕p
‖u‖q

Now use the induction hypothesis which allows us to apply the generalized Hölder inequality for
N (!) factors �j ∶= pj∕p, and thus∑N

j=1 �
−1
j = p∕p = 1, to the first factor to get

∫ |u1 ⋅ u2 ⋅… ⋅ uN ⋅w| d� =
(

∫ |u1|
p ⋅ |u2|

p ⋅… ⋅ |uN |
p d�

)1∕p
‖u‖q

⩽ ‖u‖p1 ⋅ ‖u‖p2 ⋅… ⋅ ‖u‖pN‖u‖q.

■■
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Problem 13.6 Solution: Draw a picture similar to the one used in the proof of Lemma 13.1 (note
that the increasing function need not be convex or concave....). Without loss of generality we can
assume that A,B > 0 are such that �(A) ⩾ B which is equivalent to A ⩾  (B) since � and  are
inverses. Thus,

AB = ∫

B

0
 (�) d� + ∫

 (B)

0
�(�) d� + ∫

A

 (B)
B d�.

Using the fact that � increases, we get that

�( (B)) = B ⇐⇒ �(C) ⩾ B ∀C ⩾  (B)

and we conclude that

AB = ∫

B

0
 (�) d� + ∫

 (B)

0
�(�) d� + ∫

A

 (B)
B d�

⩽ ∫

B

0
 (�) d� + ∫

 (B)

0
�(�) d� + ∫

A

 (B)
�(�) d�

= ∫

B

0
 (�) d� + ∫

A

0
�(�) d�

= Ψ(B) + Φ(A).

■■

Problem 13.7 Solution: Let us show first of all that p-limk→∞ uk = u. This follows immediately
from limk→∞ ‖u − uk‖p = 0 since the series∑∞

k=1 ‖u − uk‖p converges.
Therefore, we can find a subsequence (uk(j))j∈N such that

lim
j→∞

uk(j)(x) = u(x) almost everywhere.

Now we want to show that u is the a.e. limit of the original sequence. For this we mimic the trick
from the Riesz–Fischer theorem 13.7 and show that the series

∞
∑

j=0
(uj+1 − uj) = lim

K→∞

K
∑

j=0
(uj+1 − uj) = lim

K→∞
uK

(again we agree on u0 ∶= 0 for notational convenience) makes sense. So let us employ Lemma
13.6 used in the proof of the Riesz–Fischer theorem to get

‖

‖

‖

‖

‖

‖

∞
∑

j=0
(uj+1 − uj)

‖

‖

‖

‖

‖

‖p

⩽
‖

‖

‖

‖

‖

‖

∞
∑

j=0
|uj+1 − uj|

‖

‖

‖

‖

‖

‖p

⩽
∞
∑

j=0
‖uj+1 − uj‖p

⩽
∞
∑

j=0

(

‖uj+1 − u‖p + ‖u − uj‖p
)

<∞
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where we useMinkowski’s inequality, the function u from above and the fact that∑∞
j=1 ‖uj−u‖p <

∞ along with ‖u1‖p < ∞. This shows that limK→∞ uK (x) =
∑∞
j=0(uj+1(x) − uj(x)) exists almost

everywhere.
We still have to show that limK→∞ uK (x) = u(x). For this we remark that a subsequence has
necessarily the same limit as the original sequence—whenever both have limits, of course. But
then,

u(x) = lim
j→∞

uk(j)(x) = lim
k→∞

uk(x) =
∞
∑

j=0
(uj+1(x) − uj(x))

and the claim follows.
■■

Problem 13.8 Solution: That for every fixed x the sequence

un(x) ∶= n1(0,1∕n)(x) ←←←←←←←←←←←←←←←←←←←←→n→∞
0

is obvious. On the other hand, for any subsequence (un(j))j we have

∫ |un(j)|
p d� = n(j)p 1

n(j)
= n(j)p−1 ←←←←←←←←←←←←←←←←←←←←→

j→∞
c

with c = 1 in case p = 1 and c = ∞ if p > 1. This shows that thep-limit of this subsequence—let
us call it w if it exists at all—cannot be (not even a.e.) u = 0.
On the other hand, we know that a sub-subsequence (ũk(j))j of (uk(j))j converges pointwise almost
everywhere to the p-limit:

lim
j
ũk(j)(x) = w(x).

Since the full sequence limn un(x) = u(x) = 0 has a limit, this shows that the sub-sub-sequence
limit w(x) = 0 almost everywhere—a contradiction. Thus, w does not exist in the first place.

■■

Problem 13.9 Solution: Using Minkowski’s and Hölder’s inequalities we find for all � > 0

‖ukvk − uv‖1 = ‖ukvk − ukv + ukv − uv‖

⩽ ‖uk ⋅ (vk − v)‖ + ‖(uk − u)v‖

⩽ ‖uk‖p‖vk − v‖q + ‖uk − u‖p‖v‖q
⩽ (M + ‖v‖q)�

for all n ⩾ N�. We use here that the sequence (‖uk‖p)k∈N is bounded. Indeed, by Minkowski’s
inequality

‖uk‖p = ‖uk − u‖p + ‖u‖p ⩽ � + ‖u‖p =∶M.

■■
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Problem 13.10 Solution: We use the simple identity
‖un − um‖22 = ∫ (un − um)2 d�

= ∫ (u2n − 2unum + um) d�

= ‖un‖
2
2 + ‖um‖

2
2 − 2∫ unum d�.

(*)

Case 1: un → u in2. This means that (un)n∈N is an2 Cauchy sequence, i.e. that limm,n→∞ ‖un−
um‖22 = 0. On the other hand, we get from the lower triangle inequality for norms

lim
n→∞

|

|

‖un‖2 − ‖u‖2|| ⩽ lim
n→∞

‖un − u‖2 = 0

so that also limn→∞ ‖un‖22 = limm→∞ ‖um‖22 = ‖u‖22. Using (*) we find

2∫ unum d� = ‖un‖
2
2 + ‖um‖

2
2 − ‖un − um‖22

←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
n,m→∞

‖u‖22 + ‖u‖22 − 0

= 2‖u‖22.

Case 2: Assume that limn,m→∞ ∫ unum d� = c for some number c ∈ R. By the very definition of
this double limit, i.e.

∀ � > 0 ∃N� ∈ N ∶
|

|

|

|

∫ unum d� − c
|

|

|

|

< � ∀n, m ⩾ N�,

we see that limn→∞ ∫ unun d� = c = limm→∞ ∫ umum d� hold (with the same c!). Therefore, again
by (*), we get

‖un − um‖22 = ‖un‖
2
2 + ‖um‖

2
2 − 2∫ unum d�

←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
n,m→∞

c + c − 2c = 0,

i.e. (un)n∈N is a Cauchy sequence in 2 and has, by the completeness of this space, a limit.
■■

Problem 13.11 Solution: Use the exponential series to conclude from the positivity of ℎ and u(x)
that

exp(ℎu) =
∞
∑

j=0

ℎjuj

j!
⩾ ℎN

N!
uN .

Integrating this gives
ℎN

N! ∫
uN d� ⩽ ∫ exp(ℎu) d� <∞

and we find that u ∈ N . Since � is a finite measure we know from Problem 13.1 that for N > p
we have N ⊂ p.

■■
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Problem 13.12 Solution:

(i) We have to show that |un(x)|p ∶= np�(x + n)−p� has finite integral—measurability is clear
since un is continuous. Since np� is a constant, we have only to show that (x+ n)−p� is in 1.
Set  ∶= p� > 1. Then we get from a Beppo Levi and a domination argument

∫(0,∞)
(x + n)− �(dx) ⩽ ∫(0,∞)

(x + 1)− �(dx)

⩽ ∫(0,1)
1 �(dx) + ∫(1,∞)

(x + 1)− �(dx)

⩽ 1 + lim
k→∞∫(1,k)

x− �(dx).

Now using that Riemann=Lebesgue on intervals where the Riemann integral exists, we get

lim
k→∞∫(1,k)

x− �(dx) = lim
k→∞∫

k

1
x− dx

= lim
k→∞

[

(1 − )−1x1−
]k
1

= (1 − )−1 lim
k→∞

(

k1− − 1
)

= ( − 1)−1 < ∞

which shows that the integral is finite.
(ii) We have to show that |vn(x)|q ∶= nqe−qnx is in 1—again measurability is inferred from

continuity. Since nq is a constant, it is enough to show that e−qnx is integrable. Set � = qn.
Since

lim
x→∞

(�x)2e−�x = 0 and e−�x ⩽ 1 ∀ x ⩾ 0,

and since e−�x is continuous on [0,∞), we conclude that there are constants C,C(�) such
that

e−�x ⩽ min
{

1, C
(�x)2

}

⩽ C(�) min
{

1, 1
x2

}

= C(�)
(

1(0,1)(x) + 1[1,∞)
1
x2

)

but the latter is an integrable function on (0,∞).
■■

Problem 13.13 Solution: Without loss of generality we may assume that � ⩽ �. We distinguish
between the case x ∈ (0, 1) and x ∈ [1,∞). If x ⩽ 1, then

1
x�

⩾ 1
x� + x�

⩾ 1
x� + x�

=
1∕2

x� + x�
∀ x ⩽ 1;

this shows that (x� + x�)−1 is in 1((0, 1), dx) if, and only if, � < 1.
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Similarly, if x ⩾ 1, then
1
x�

⩾ 1
x� + x�

⩾ 1
x� + x�

=
1∕2

x� + x�
∀ x ⩾ 1

this shows that (x� + x�)−1 is in 1((1,∞), dx) if, and only if, � > 1.
Thus, (x� + x�)−1 is in 1(R, dx) if, and only if, both � < 1 and � > 1.

■■

Problem 13.14 Solution: If we use X = {1, 2,… , n}, x(j) = xj , � = �1 +⋯ + �n we have
( n
∑

j=1
|xj|

p
)1∕p

= ‖x‖p(�)

and it is clear that this is a norm for p ⩾ 1 and, in view of Problem 13.19 it is not a norm for
p < 1 since the triangle (Minkowski) inequality fails. (This could also be shown by a direct
counterexample.

■■

Problem 13.15 Solution: Without loss of generality we can restrict ourselves to positive functions—
else we would consider positive and negative parts. Separability can obviously considered separ-
ately!
Assume that 1+ is separable and choose u ∈ p+. Then up ∈ 1 and, because of separability, there
is a sequence (fn)n ⊂ D1 ⊂ 1 such that

fn
in 1
←←←←←←←←←←←←←←←←←←←←→
n→∞

up ⇐⇒ upn
in 1
←←←←←←←←←←←←←←←←←←←←→
n→∞

up

if we set un ∶= f 1∕pn ∈ p. In particular, un(k)(x)→ u(x) almost everywhere for some subsequence
and ‖un(k)‖p ←←←←←←←←←←←←←←←←←←←←→k→∞

‖u‖p. Thus, Riesz’s theorem 13.10 applies and proves that

p ∋ un(k)
in p
←←←←←←←←←←←←←←←←←←←←←→
k→∞

u.

Obviously the separating set Dp is essentially the same as D1, and we are done.
The converse is similar (note that we did not make any assumptions on p ⩾ 1 or p < 1—this is
immaterial in the above argument).

■■

Problem 13.16 Solution: We have seen in the lecture that, whenever limn→∞ ‖u − un‖p = 0, there
is a subsequence un(k) such that limk→∞ un(k)(x) = u(x) almost everywhere. Since, by assumption,
limj→∞ uj(x) = w(x) a.e., we have also that limj→∞ un(j)(x) = w(x) a.e., hence u(x) = w(x)
almost everywhere.

■■
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Problem 13.17 Solution: We remark that y → log y is concave. Therefore, we can use Jensen’s
inequality for concave functions to get for the probability measure �∕�(X) = �(X)−11X �

∫ (log u) d�
�(X)

⩽ log
(

∫ u
d�
�(X)

)

= log

(

∫ u d�
�(X)

)

= log
(

1
�(X)

)

,

and the claim follows.
■■

Problem 13.18 Solution: As a matter of fact,

∫(0,1)
u(s) ds ⋅ ∫(0,1)

log u(t) dt ⩽ ∫(0,1)
u(x) log u(x) dx.

We begin by proving the hint. log x ⩾ 0 ⇐⇒ x ⩾ 1. So,

∀y ⩾ 1 ∶
(

log y ⩽ y log y ⇐⇒ 1 ⩽ y
)

and ∀y ⩽ 1 ∶
(

log y ⩽ y log y ⇐⇒ 1 ⩾ y
)

.

Assume now that ∫(0,1) u(x) dx = 1. Substituting in the above inequality y = u(x) and integrating
over (0, 1) yields

∫(0,1)
log u(x) dx ⩽ ∫(0,1)

u(x) log u(x) dx.

Now assume that � = ∫(0,1) u(x) dx. Then ∫(0,1) u(x)∕� dx = 1 and the above inequality gives

∫(0,1)
log u(x)

�
dx ⩽ ∫(0,1)

u(x)
�

log u(x)
�

dx

which is equivalent to

∫(0,1)
log u(x) dx − log �

= ∫(0,1)
log u(x) dx − ∫(0,1)

log � dx

= ∫(0,1)
log u(x)

�
dx

⩽ ∫(0,1)
u(x)
�

log u(x)
�

dx

= 1
� ∫(0,1)

u(x) log u(x)
�

dx

= 1
� ∫(0,1)

u(x) log u(x) dx − 1
� ∫(0,1)

u(x) log � dx

= 1
� ∫(0,1)

u(x) log u(x) dx − 1
� ∫(0,1)

u(x) dx log �
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= 1
� ∫(0,1)

u(x) log u(x) dx − log �.

The claim now follows by adding log � on both sides and then multiplying by � = ∫(0,1) u(x) dx.
■■

Problem 13.19 Solution:

(i) Let p ∈ (0, 1) and pick the conjugate index q ∶= p∕(p−1) < 0. Moreover, s ∶= 1∕p ∈ (1,∞)
and the conjugate index t, 1

s
+ 1

t
= 1, is given by

t = s
s − 1

=
1
p

1
p
− 1

= 1
1 − p

∈ (1,∞).

Thus, using the normal Hölder inequality for s, t we get

∫ up d� = ∫ up w
p

wp d�

⩽
(

∫
(

upwp)s d�
)1∕s(

∫ w−pt d�
)1∕t

=
(

∫ uw d�
)p(

∫ wp∕(p−1) d�
)1−p

.

Taking pth roots on either side yields
(

∫ up d�
)1∕p

⩽
(

∫ uw d�
)(

∫ wp∕(p−1) d�
)(1−p)∕p

=
(

∫ uw d�
)(

∫ wq d�
)−1∕q

and the claim follows.
(ii) This ‘reversed’Minkowski inequality follows from the ‘reversed’ Hölder inequality in exactly

the same way as Minkowski’s inequality follows from Hölder’s inequality, cf. Corollary 13.4.
To wit:

∫ (u + v)p d� = ∫ (u + v) ⋅ (u + v)p−1 d�

= ∫ u ⋅ (u + v)p−1 d� + ∫ v ⋅ (u + v)p−1 d�

(i)
⩾ ‖u‖p ⋅

‖

‖

‖

(u + v)p−1‖‖
‖q
+ ‖v‖p ⋅

‖

‖

‖

(u + v)p−1‖‖
‖q
.

Dividing both sides by ‖|u + v|p−1‖q proves our claim since

‖

‖

‖

(u + v)p−1‖‖
‖q
=
(

∫ (u + v)(p−1)q d�
)1∕q

=
(

∫ (u + v)p d�
)1−1∕p

.

■■

Problem 13.20 Solution: By assumption, |u| ⩽ ‖u‖∞ ⩽ C <∞ and u ≢ 0.
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(i) We have
Mn = ∫ |u|n d� ⩽ Cn ∫ d� = Cn�(X) ∈ (0,∞).

Note thatMn > 0.
(ii) By the Cauchy–Schwarz-Inequality,

Mn = ∫ |u|n d�

= ∫ |u|
n+1
2
|u|

n−1
2 d�

⩽
(

∫ |u|n+1 d�
)1∕2(

∫ |u|n−1 d�
)1∕2

=
√

Mn+1Mn−1.

(iii) The upper estimate follows from
Mn+1 = ∫ |u|n+1 d� ⩽ ∫ |u|n ⋅ ‖u‖∞ d� = ‖u‖∞Mn.

Set P ∶= �∕�(X); the lower estimate is equivalent to
(

∫ |u|n
d�
�(X)

)1∕n
⩽

∫ |u|n+1 d�
�(X)

∫ |u|n d�
�(X)

⇐⇒

(

∫ |u|n dP
)1+1∕n

⩽ ∫ |u|n+1 dP

⇐⇒

(

∫ |u|n dP
)(n+1)∕n

⩽ ∫ |u|n+1 dP

and the last inequality follows easily from Jensen’s inequality since P is a probability meas-
ure:

(

∫ |u|n dP
)(n+1)∕n

∫ |u|n⋅
n+1
n dP = ∫ |u|n+1 dP .

(iv) Following the hint we get
‖u‖n ⩾

(

�
{

u > ‖u‖∞ − �
}

)1∕n
(

‖u‖∞ − �
) n→∞
←←←←←←←←←←←←←←←←←←←←→
�→0

‖u‖∞,

i.e.
lim inf
n→∞

‖u‖n ⩾ ‖u‖∞.

Combining this with the estimate from (iii), we get
‖u‖∞ ⩽ lim inf

n→∞
�(X)−1∕n‖u‖n

(iii)
⩽ lim inf

n→∞

Mn+1
Mn

⩽ lim sup
n→∞

Mn+1
Mn

⩽ ‖u‖∞.
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■■

Problem 13.21 Solution: The hint says it all.... Maybe, you have a look at the specimen solution of
Problem 13.20, too.
Case 1: ‖u‖L∞ <∞. For A� ∶= {u ⩾ ‖u‖∞ − �}, � > 0, we gave �(A�) > 0 and

‖u‖p ⩾
(

∫A�
(‖u‖∞ − �)p d�

)
1
p
= (‖u‖∞ − �)�(A�)

1
p .

Therefore,

lim inf
p→∞

‖u‖p ⩾ lim infn→∞

(

(‖u‖∞ − �)�(A�)
1
p

)

= ‖u‖∞ − �.

Since � > 0 is arbitrary, this shows that lim infp→∞ ‖u‖p ⩾ ‖u‖∞.
On the other hand, we have for p > q

∫ |u(x)|p d� = ∫ |u(x)|p−q|u(x)|q d� ⩽ ‖u‖p−q∞ ‖u‖qq.

Taking pth roots on both sides of the inequality, we get

lim sup
p→∞

‖u‖p ⩽ lim sup
p→∞

(

‖u‖
p−q
p
∞ ‖u‖

q
p
q

)

= ‖u‖∞.

This finishes the proof for all ‖u‖L∞ <∞.
Case 2: ‖u‖L∞ = ∞. The estimate

lim sup
p→∞

‖u‖p ⩽ ‖u‖∞

is trivially true. The converse inequality follows like this: Define AR ∶= {u ⩾ R}, R > 0. We
have �(Ar) > 0 (otherwise ‖u‖L∞ <∞!) and, as in the first part of the proof, we find

‖u‖p ⩾
(

∫AR
Rp d�

)
1
p
= R�(AR)

1
p .

Thus, lim infp→∞ ‖u‖p ⩾ R and since R > 0 is arbitrary, the claim follows:

lim inf
p→∞

‖u‖p ⩾∞ = ‖u‖∞.

■■

Problem 13.22 Solution: We begin with two observations
• If r ⩽ s ⩽ q, then ‖u‖r ⩽ ‖u‖s. This follows from Jensen’s inequality (Theorem 13.13) and

the fact that V (x) ∶= xs∕r, x ∈ R, is convex (cf. also Problem 13.1). In particular, ‖u‖r <∞
for all r ∈ (0, q).
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• We have
∫ log |u| d� ⩽ log ‖u‖p ∀ p ∈ (0, q). (⋆)

This follows again from Jensen’s inequality applied to the convex function V (x) ∶= − log x:

− log
(

∫ |u|p d�
)

⩽ ∫ − log(|u|p) d� − p∫ log |u| d�;

therefore,

log ‖u‖p =
1
p
log

(

∫ |u|p d�
)

⩾ ∫ log |u| d�.

Because of (⋆) it is enough to show that limp→0 ‖u‖p ⩽ exp(∫ ln |u| d�). (Note: by the monoton-
icity of ‖u‖p as p ↓ 0 we know that the limit limp→0 ‖u‖p exists.) Note that

log a = inf
p>0

ap − 1
p

, a > 0. (⋆⋆)

(Hint: show by differentiation that p → ap−1
p

is increasing.
Use l’Hospital’s rule to show that limp→0

ap−1
p
= log a.) From monotone convergence (mc) we get

∫ log |u| d�
mc
= inf

p>0∫
|u|p − 1

p
d�

= inf
p>0

∫ |u|p d� − 1
p

= inf
p>0

‖u‖pp − 1
p

(⋆⋆)
= log ‖u‖p

for all p > 0. Letting p→ 0 finishes the proof.
■■

Problem 13.23 Solution: Without loss of generality wemay assume that f ⩾ 0. We use the following
standard representation of f , see (8.7):

f =
N
∑

j=0
�j1Aj

with 0 = �0 < �1 < … < �N < ∞ and mutually disjoint sets Aj . Clearly, {f ≠ 0} =
A1 ⊍⋯ ⊍ AN .
Assume first that f ∈  ∩ p(�). Then

∞ > ∫ f p d� =
N
∑

j=1
�pj �(Aj) ⩾

N
∑

j=1
�p1 �(Aj) = �

p
1 �({f ≠ 0});

thus �({f ≠ 0}) <∞.
Conversely, if �({f ≠ 0}) <∞, we get

∫ f p d� =
N
∑

j=1
�pj �(Aj) ⩽

N
∑

j=1
�pN �(Aj) = �

p
N �({f ≠ 0}) <∞.
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Since this integrability criterion does not depend on p ⩾ 1, it is clear that +∩p(�) = +∩1(�),
and the rest follows since  = + − +.

■■

Problem 13.24 Solution: (i) ⇐⇒ (ii) and (iii) ⇐⇒ (iv), since Λ is concave if, and only if, V = −Λ
is convex. Moreover, (iii) generalizes (i) and (iv) gives (ii). It is, therefore, enough to verify (iii).
Since u is integrable and takes values in (a, b), we get

a = ∫ a �(dx) < ∫ u(x)�(dx) < ∫ b �(dx) = b.

This shows that the l.h.S. of the Jensen inequality is well-defined. The rest of the proof is similar to
the one of Theorem 13.13: take some affine-linear l(x) = �x+ � ⩽ V (x) – here we only consider
x ∈ (a, b) – and notice that

l
(

∫ u d�
)

= � ∫ u d� + � = ∫ (�u + �) d� ⩽ ∫ V (u) d�.

Now go to the sup over all affine-linear l below V and the claim follows.
■■

Problem 13.25 Solution:

(i) Note that Λ(x) = x1∕q is concave—e.g. differentiate twice and show that it is negative—and
using Jensen’s inequality for positive f, g ⩾ 0 yields

∫ fg d� = ∫ gf−p∕q1{f≠0}f
p d�

⩽ ∫ f p d�

(

∫ gqf−p1{f≠0}f p d�
∫ f p d�

)1∕q

⩽
(

∫ f p d�
)1−1∕q(

∫ gq d�
)1∕q

where we use 1{f≠0} ⩽ 1 in the last step.
Note that fg ∈ 1 follows from the fact that (gqf−p1{f≠0}

)

f p = gq ∈ 1.
(ii) The function Λ(x) = (x1∕p + 1)p has second derivative

Λ′′(x) = 1 − p
p

(

1 + x−1∕p
)

x−1−1∕p ⩽ 0

showing that Λ is concave. Using Jensen’s inequality gives for f, g ⩾ 0

∫ (f + g)p1{f≠0} d� = ∫

( g
f
1{f≠0} + 1

)p
f p1{f≠0} d�

⩽ ∫{f≠0}
f p d�

[

(∫ gp1{f≠0} d�
∫{f≠0} f p d�

)1∕p
+ 1

]p

=
[(

∫{f≠0}
gp d�

)1∕p
+
(

∫{f≠0}
f p d�

)1∕p]p
.
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Adding on both sides ∫{f=0}(f + g)p d� = ∫{f=0} g
p d� yields, because of the elementary

inequality Ap + Bp ⩽ (A + B)p, A,B ⩾ 0, p ⩾ 1,

∫ (f + g)p d�

⩽
[(

∫{f≠0}
gp d�

)1∕p
+
(

∫{f≠0}
f p d�

)1∕p]p
+
[

∫{f=0}
gp d�

]p∕p

⩽
[(

∫ gp d�
)1∕p

+
(

∫ f p d�
)1∕p]p

.

■■

Problem 13.26 Solution: Using Hölder’s inequality we get

|f − a|p ⩽ (|f | + |a|)p = (1 ⋅ |f | + 1 ⋅ |a|)p ⩽ 2p−1(|f |p + |a|p).

Since �(X) <∞, this shows that both sides of the asserted integral inequality are finite.
Without loss of generality we may assume that a > 0, otherwise we would consider −f instead of
f .
Without loss of generality we may assume that m = ∫ f d� = 0, otherwise we would consider
f − ∫ f d� instead of f .
Observe that

∫{0<f<2a}
|f |p d� ⩽ (2a)p−1 ∫{0<f<2a}

|f | d�

⩽ (2a)p−1 ∫{f>0}
|f | d�

= (2a)p−1 ∫{f<0}
|f | d�.

In the last line we use the fact that

∫{f>0}
|f | d� = ∫ f+ d�

∫ f d�=0
= ∫ f− d� = ∫{f<0}

|f | d�.

Thus,
∫{0<f<2a}

|f |p d� ⩽ (2a)p−1 ∫{f<0}
|f | d�

⩽ 2p−1 ∫{f<0}
(ap ∨ |f |p) d�

⩽ 2p−1 ∫{f<0}
|f − a|p d�.

(*)

Moreover,
∫{f>2a}

|f |p d� ⩽ 2p ∫{f>2a}
|f − a|p d�, (**)

which follows from

f > 2a ⇐⇒ |f − a| = f − a > a.
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Finally,
∫{f⩽0}

|f |p d� ⩽ 2p ∫{f⩽0}
|f − a|p d�. (***)

If we combine (*)–(***) we get

∫ |f |p d� =
{

∫{f>2a}
+∫{0<f<2a}

+∫{f⩽0}

}

|f |p d�

⩽ 2p ∫{f>2a}
|f − a|p d� + (2p−1 + 1)∫{f⩽0}

|f − a|p d�

⩽ 2p ∫ |f − a|p d�.

Solution 2 to 13.26: We need the following inequality for a, b ∈ R which follows from Hölder’s
inequality:

|a − b|p ⩽ (|a| + |b|)p = (1 ⋅ |a| + 1 ⋅ |b|)p ⩽ 2p−1(|a|p + |b|p).

Set b = f (x). Since �(X) < ∞, this shows that both sides of the claimed integral inequality are
finite.
Assume first that �(X) = 1. Then we find

|f (x) − m|p ⩽ (|f (x) − a| + |m − a|)p

⩽ 2p−1|f (x) − a|p + 2p−1|m − a|p

= 2p−1|f (x) − a|p + 2p−1
|

|

|

|

∫ f (y)�(dy) − a
|

|

|

|

p

= 2p−1|f (x) − a|p + 2p−1
|

|

|

|

∫ (f (y) − a)�(dy)
|

|

|

|

p

⩽ 2p−1|f (x) − a|p + 2p−1 ∫ |f (y) − a|p �(dy)

by Jensen’s inequality. Now we divide by 2p and integrate both sides with respect to �(dx) to get
2−p ∫ |f (x) − m|p �(dx) ⩽ 1

2 ∫
|f (x) − a|p �(dx) + 1

2 ∫
|f (y) − a|p �(dy)

which proves our claim for probability measures.
If � is a general finite measure we set g ∶= f − ∫ f d� and use the previous estimate

∫ |g|p
d�
�(X)

⩽ 2p−1 ∫ |g − a| d�
�(X)

∀a ∈ R.

Since a is arbitrary, we see from this

∫ |f − m|p d�
�(X)

⩽ 2p−1 ∫ |f − b| d�
�(X)

∀b ∈ R.

Remark: the same argument shows that we get for any convex function � with the ‘doubling
property’ �(2x) ⩽ c��(x) for all x:

∫ �(f − m) d� ⩽ c� ∫ �(f − a) d� ∀a ∈ R.

■■
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14 Product measures and Fubini's theorem.

Solutions to Problems 14.1�14.20

Problem 14.1 Solution:

• We have

(x, y) ∈
(

⋃

i
Ai

)

× B ⇐⇒ x ∈
⋃

i
Ai and y ∈ B

⇐⇒ ∃ i0 ∶ x ∈ Ai0 and y ∈ B
⇐⇒ ∃ i0 ∶ (x, y) ∈ Ai0 × B

⇐⇒ (x, y) ∈
⋃

i
(Ai × B).

• We have

(x, y) ∈
(

⋂

i
Ai

)

× B ⇐⇒ x ∈
⋂

i
Ai and y ∈ B

⇐⇒ ∀ i ∶ x ∈ Ai and y ∈ B
⇐⇒ ∀ i ∶ (x, y) ∈ Ai × B

⇐⇒ (x, y) ∈
⋂

i
(Ai × B).

• Using the formula A × B = �−11 (A) ∩ �
−1
2 (B) (see page 135 and the fact that inverse maps

interchange with all set operations, we get

(A × B) ∩ (A′ × B′) =
[

�−11 (A) ∩ �
−1
2 (B)

]

∩
[

�−11 (A
′) ∩ �−12 (B

′)
]

=
[

�−11 (A) ∩ �
−1
1 (A

′)
]

∩
[

�−12 (B) ∩ �
−1
2 (B

′)
]

= �−11 (A ∩ A
′) ∩ �−12 (B ∩ B

′)

= (A ∩ A′) × (B ∩ B′).

• Using the formula A × B = �−11 (A) ∩ �
−1
2 (B) (see page 135 and the fact that inverse maps

interchange with all set operations, we get

Ac × B = �−11 (A
c) ∩ �−12 (B)

=
[

�−11 (A)
]c ∩ �−12 (B)

= �−11 (X) ∩ �
−1
2 (B) ∩

[

�−11 (A)
]c
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= �−11 (X) ∩ �
−1
2 (B) ∩

{

[

�−11 (A)
]c ∪

[

�−12 (B)
]c
}

= (X × B) ∩
[

�−11 (A) ∩ �
−1
2 (B)

]c

= (X × B) ∩
[

A × B
]c

= (X × B) ⧵ (A × B).

• We have

A × B ⊂ A′ × B′ ⇐⇒
[

(x, y) ∈ A × B ⇐⇒ (x, y) ∈ A′ × B′
]

⇐⇒
[

x ∈ A, y ∈ B ⇐⇒ x ∈ A′, y ∈ B′
]

⇐⇒ A ⊂ A′, B ⊂ B′.

■■

Problem 14.2 Solution: Pick two exhausting sequences (Ak)k ⊂ A and (Bk)k ⊂ ℬ such that
�(Ak), �(Bk) <∞ and Ak ↑ X, Bk ↑ Y . Then, because of the continuity of measures,

� × �(A ×N) = lim
k
� × �

(

(A ×N) ∩ (Ak × Bk)
)

= lim
k
� × �

(

(A ∩ Ak) × (N ∩ Bk)
)

= lim
k

[

�(A ∩ Ak)
⏟⏞⏞⏟⏞⏞⏟

<∞

⋅ �(N ∩ Bk)
⏟⏞⏞⏞⏟⏞⏞⏞⏟
⩽ �(N)=0

]

= 0.

Since A ×N ∈ A ×ℬ ⊂ A ⊗ℬ, measurability is clear.
■■

Problem 14.3 Solution:

• (a)⇒ (b): If f is �1 × �2-negligible, we can use Tonelli’s theorem to infer that

0 = ∫E1

(

∫E2
|f (x1, x2)| d�2(x2)

)

d�1(x1).

Using Theorem 11.2 we find

�1

(

∫E2
|f (⋅, x2)| d�2(x2) ≠ 0

)

0.

This means that f (x1, ⋅) is for �1-almost all x1 �2-negligible.
• (b)⇒ (a): Set

N ∶=
{

x1 ∈ E1;∫E2
|f (x1, x2)| d�2(x2) ≠ 0

}

.

By assumption, �1(N) = 0. Therefore,

∫E1

(

∫E2
|f (x1, x2)| d�2(x2)

)

d�1(x1) = ∫N

(

∫E2
|f (x1, x2)| d�2(x2)

)

d�1(x1)
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+ ∫E1⧵N

(

∫E2
|f (x1, x2)| d�2(x2)

)

d�1(x1).

The first integral on the right-hand side is, by Theorem 11.2 equal to 0. The second integral
is also 0, due to the definition of the setN . Using Tonelli’s theorem we see

∫E1×E2
|f (x1, x2)| d�1 × �2(x1, x2) = 0.

• (a)⇔ (c): Use the symmetry in the variables or argue as in “(a)⇔ (b)”.
■■

Problem 14.4 Solution: Since the two expressions are symmetric in x and y, they must coincide if
they converge. Let us, therefore only look at the left hand side.
The inner integral,

∫(0,∞)
e−xy sin x �(dx)

clearly satisfies

∫(0,∞)
|

|

|

e−xy sin x||
|

�(dx) ⩽ ∫(0,∞)
e−xy �(dx)

= ∫

∞

0
e−xy dx

=
[

− e−xy

y

]∞

x=0

= 1
x
.

Since the integrand is continuous and has only one sign, we can use Riemann’s integral. Thus, the
integral exists. To calculate its value we observe that two integrations by parts yield

∫

∞

0
e−xy sinx dx = −e−xy cos x||

|

∞

x=0
− ∫

∞

0
ye−xy cos x dx

= 1 − y∫

∞

0
e−xy cos x dx

= 1 − y
(

e−xy sin x||
|

∞

x=0
+ ∫

∞

0
ye−xy sin x dx

)

= 1 − y2 ∫

∞

0
e−xy sin x dx.

And if we solve this equality for the integral expression, we get

(1 + y2)∫

∞

0
e−xy sin x dx = 1 ⇐⇒ ∫

∞

0
e−xy sin x dx = 1

1 + y2
.

Alternative: Since sin x = Im eix we get

∫

∞

0
e−xy sinx dx = Im∫

∞

0
e−(y−i)x dx = Im 1

y − i
= Im y + i

y2 + 1
= 1
y2 + 1

.
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Thus the iterated integral exists, since

∫(0,∞)

|

|

|

|

sin x
1 + x2

|

|

|

|

dx ⩽ ∫(0,∞)
1

1 + x2
dx = arctan x||

|

∞

0
= �
2
.

(Here we use again that improper Riemann integrals with positive integrands coincide with Le-
besgue integrals.)
In principle, the existence and equality of iterated integrals is not good enough to guarantee the
existence of the double integral. For this one needs the existence of the absolute iterated integrals—
cf. Tonelli’s theorem 14.8. In the present case one can see that the absolute iterated integrals exist,
though:
On the one hand we find

∫(0,∞)
e−xy| sin(x)| �(dx) ⩽ e−xy

−y
|

|

|

|

∞

0
= 1
y

and sin y
y

is, as a bounded continuous function, Lebesgue integrable over (0, 1).
On the other hand we can use integration by parts to get

∫

(k+1)�

k�
e−xy sin x dx = e−xy

−y
sin x||

|

(k+1)�

k�
− ∫

(k+1)�

k�

e−xy

−y
cos x dx

= e−xy

−y2
cos x||

|

(k+1)�

k�
− ∫

(k+1)�

k�

e−xy

−y2
(−1) sin x dx

which is equivalent to
y2 + 1
y2 ∫

(k+1)�

k�
e−xy sin x dx = e−(k+1)�y

−y2
(−1)k+1 − e−k�y

−y2
(−1)k

= (−1)k

y2
(e−(k+1)�y + e−k�y),

i.e. ∫ (k+1)�k� e−xy sin x dx = (−1)k 1
y2+1 (e

−(k+1)�y + e−k�y).

Now we find a bound for y ∈ (1,∞).

∫(0,∞)
e−xy| sin(x)|dx =

∞
∑

k=0
∫

(k+1)�

k�
e−xy sin x(−1)k dx

=
∞
∑

k=0
(−1)k(−1)k 1

y2 + 1
(e−(k+1)�y + e−k�y)

⩽ 2
y2 + 1

∞
∑

k=0
(e−�y)k

y>1
⩽ 2

y2 + 1

∞
∑

k=0
(e−�)k

which means that the left hand side is integrable over (1,∞).
Thus we have

∫(0,∞) ∫(0,∞)
|e−xy sin x sin y| �(dx) �(dy)
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⩽ ∫(0,1]
sin y
y

�(dy) + ∫(1,∞)
2

y2 + 1
�(dy)

∞
∑

k=0
(e−�)k

<∞.

By Fubini’s theorem we know that the iterated integrals as well as the double integral exist and
their values are identical.

Alternative proof for the absolute convergence of the integral:1 Let

f (x, y) = e−xy |sin x sin y| ⩾ 0 ∀x, y ⩾ 0.

By monotone convergence and Tonelli’s theorem

∬ f (x, y) dx dy = lim
A,B→∞∬(0,A]×(0,B]

f (x, y)dx dy

= sup
A,B⩾0∫(0,A] ∫(0,B]

f (x, y) dy dx.

Since the integrands are bounded and continuous, we can use Riemann integrals. Fix A > 1 and
B > 1. Then

∫

A

0 ∫

B

0
= ∫

1

0 ∫

1

0
+∫

1

0 ∫

B

1
+∫

1

0 ∫

A

1
+∫

A

1 ∫

B

1

Now we can estimate these expressions separately: since | sin t| ⩽ |t| we have

∫

1

0 ∫

1

0
f (x, y) dy dx ⩽ ∫

1

0 ∫

1

0
1 dx dy = 1.

∫

1

0 ∫

B

1
f (x, y) dy dx ⩽ ∫

B

1

[

∫

1

0
xe−xy dx

]

dy

= 1 − 1
e
+ e−B − 1

B
< 1 − 1

e
.

∫

1

0 ∫

A

1
f (x, y) dx dy ⩽ ∫

A

1

[

∫

1

0
ye−xy dy

]

dx

= 1 − 1
e
+ e−A − 1

A
< 1 − 1

e
.

∫

A

1 ∫

B

1
f (x, y) dx dy ⩽ ∫

B

1

[

∫

A

1
xe−xy dx

]

dy

= 1
e
− e−A + e−AB − e−B

B
< 1
e
.

These estimates now show

∫

∞

0 ∫

∞

0
e−xy |sin x sin y| dx dy ⩽ 3 − 1

e
.

■■

1This much more elegant proof was communicated to me in July 2012 by Alvaro H. Salas from the Universidad Nacional de
Colombia, Department of Mathematics
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Problem 14.5 Solution: Note that
d
dy

y
x2 + y2

= x2 − y2

(x2 + y2)2
.

Thus we can compute

∫(0,1) ∫(0,1)
x2 − y2

(x2 + y2)2
dy dx = ∫(0,1)

1
x2 + 1

dx = arctan x||
|

1

0
= �
4
.

By symmetry of x and y in the integrals it follows that

∫(0,1) ∫(0,1)
y2 − x2

(x2 + y2)2
dy dx = −�

4

and therefore the double integral can not exist. Since the existence would imply the equality of the
two above integrals. We can see this directly by

∫(0,1) ∫(0,1)

|

|

|

|

|

x2 − y2

(x2 + y2)2
|

|

|

|

|

dy dx ⩾ ∫

1

0 ∫

x

0

x2 − y2

(x2 + y2)2
dy dx

= ∫

1

0

x
x2 + x2

dx

= 1
2 ∫

1

0

1
x
dx = ∞.

■■

Problem 14.6 Solution: Since the integrand is odd, we have for y ≠ 0:

∫(−1,1)
xy

(x2 + y2)2
dx = 0

and {0} is a null set. Thus the iterated integrals have common value 0. But the double integral
does not exist, since for the iterated absolute integrals we get

∫(−1,1)

|

|

|

|

xy
(x2 + y2)2

|

|

|

|

dx = 1
|y| ∫

1∕|y|

0

�
(�2 + 1)2

d� ⩾ 2
|y| ∫

1

0

�
(�2 + 1)2

d�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
<∞

.

Here we use the substitution x = �|y| and the fact that |y| ⩽ 1, thus 1∕|y| ⩾ 1. But the outer
integral is bounded below by

∫(−1,1)
2
|y|

dy which is divergent.

■■

Problem 14.7 Solution: We use the generic notation f (x, y) for any of the integrands.
a) We have

∫

1

0
f (x, y) dy =

|

|

|

x − 1
2
|

|

|

(

x − 1
2

)3
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and this function is not integrable (in x) in the interval (0, 1). For 0 < y ⩽ 1
2 we have

∫

1

0
f (x, y) dx = ∫

1
2−y

0

(

x − 1
2

)−3
dx + ∫

1

1
2+y

(

x − 1
2

)−3
dx = 0.

For 12 ⩽ y ⩽ 1 this integral is again 0. Therefore,

∫

1

0

(

∫

1

0
f (x, y) dx

)

dy = 0.

Finally,

∫

1

0
|f (x, y)| dy = |

|

|

x − 1
2
|

|

|

−2
⇐⇒ ∫

1

0 ∫

1

0
|f (x, y)| dx dy = ∞.

b) We have

∫

1

0 ∫

1

0

x − y
(x2 + y2)3∕2

dy dx = ∫

1

0

[

1
x

x + y
(x2 + y2)1∕2

]y=1

y=0
dx

= ∫

1

0

[

x + 1
√

x2 + 1 − 1

]

dx

=

[

ln x +
√

x2 + 1

1 +
√

x2 + 1 − 1

]x=1

x=0

= ln 2.

Bcause of (anti-)symmetry we find

∫

1

0 ∫

1

0

x − y
(x2 + y2)3∕2

dx dy = − ln 2.

Morevoer,
1
2 ∫

1

0 ∫

1

0

|

|

|

|

x − y
(x2 + y2)3∕2

|

|

|

|

dy dx = ∫

1

0 ∫

x

0

x − y
(x2 + y2)3∕2

dy dx

= ∫

1

0

[

1
x

x − y
(x2 + y2)1∕2

]y=x

y=0
dx

= (
√

2 − 1)∫

1

0

dx
x

= ∞.

c) Since f is positive, Tonelli’s theorem ensures that all three integrals coincide. Let p ≠ 1. We
get

∫

1

0 ∫

1

0
(1 − xy)−p dy dy = 1

p − 1 ∫

1

0

(

(1 − x)1−p − 1
) dx
x
.

This integral is finite if, and only if, p < 2. For p = 1 we have

∫

1

0 ∫

1

0
(1 − xy)−p dy dy = −∫

1

0
ln(1 − x) dx

x
<∞.
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■■

Problem 14.8 Solution:

(i) We have [−n, n] ↑ R as n → ∞ and �([−n, n]) = 2n < ∞. This shows �-finiteness of
�. Let (qj)j∈N be an enumeration ofQ; set An ∶= {q1,… , qn} ∪ (R ⧵Q), then we have
An ↑ R and �Q(An) = n <∞. This shows �-finiteness of �Q.
We will show that �R is not �-finite. Assume �R were �-finite. Thus, there would be
a sequence An ↑ R, n ∈ N, such that �R(An) < ∞. Since �R is a counting measure,
every An is countable. Thus,R is a countable union of countable sets, hence countable
– a contradiciton.

(ii) The rationals Q are a � null set, hence 1
y
Q is for each y a � null set. We have

∫(0,1)
1Q(x ⋅ y) �(dx) = 0 ∀ y ∈ R.

This implies
∫(0,1) ∫(0,1)

1Q(x ⋅ y) d�(x) d�R(y) = 0.

(iii) Let x ∈ (0, 1). The set ( 1
x
Q) ∩ (0, 1) contains infinitely many values, so

∫(0,1)
1Q(x ⋅ y) �R(dy) = ∞ ∀ x.

Therefore, the iterated integral is∞.
(iv) Let x ∈ (0, 1) ⧵Q. Since y ⋅ x ∉ Q for any y ∈ Q, we have

∫(0,1)
1Q(x ⋅ y) �Q(dy) = 0 ∀ x ∈ (0, 1) ⧵Q.

On the other hand, if x ∈ Q ∩ (0, 1), then y ⋅ x ∈ Q for any y ∈ Q and so

∫(0,1)
1Q(x ⋅ y) �Q(dy) = ∞ ∀ x ∈ (0, 1) ∩Q.

Since Q is a � null set, we get

∫(0,1) ∫(0,1)
1Q(x ⋅ y) �Q(dy)�(dx) = ∫(0,1)

1Q(x) ⋅∞ d�(x) = 0.

(v) The results of (iii),(iv) do not contradict Fubini’s or Tonelli’s theorem, since these the-
orems require �-finiteness of all measures.

■■

Problem 14.9 Solution:

(i) Since the integrand is positive, we can use Tonelli’s theorem and work out the integral
as an iterated integral

I ∶= ∫[0,∞)2
dx dy

(1 + y)(1 + x2y)
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= ∫[0,∞)
1

1 + y

(

∫[0,∞)
1

1 + x2y
dx

)

dy

= ∫[0,∞)
1

1 + y
arctan(x

√

y)
√

y

|

|

|

|

∞

x=0
dy

= �
2 ∫ [0,∞) 1

1 + y
1
√

y
dy.

(Observe that the integrand is continuous, which enables us to use Riemann integrals
on bounded intervals. Note that ∫[0,∞)⋯ = supn∈N ∫[0,n)… because of monotone con-
vergence.) Using the substitution u =√

y, we get

I = �
2 ∫[0,∞)

1
1 + u2

du = � arctan(u)
|

|

|

|

∞

u=0
= �2

2
.

(ii) We use partial fractions in (i):
1

1 + y
1

1 + x2y
= 1
1 − x2

1
1 + y

− x2

1 − x2
1

1 + x2y
.

Thus,

I = ∫[0,∞)

(

∫[0,∞)
1

1 − x2
1

1 + y
− x2

1 − x2
1

1 + x2y
dy

)

dx

= ∫[0,∞)

(

lim
R→∞

[

1
1 − x2

ln(1 + R) − x2

1 − x2
ln(1 + x2R)

x2

])

dx

= ∫(0,∞)
1

1 − x2

(

lim
R→∞

ln
(

1 + R
1 + x2R

))

dx

= ∫[0,∞)
1

1 − x2
ln(x−2) dx

= 2∫[0,∞)
ln(x)
x2 − 1

dx.

From (i) we infer that ∫[0,∞) ln x
x2−1 dx =

I
2 =

�2

4 .
(iii) Using the geometric series we find

1
x2 − 1

= −
∑

n⩾0
(x2)n = −

∑

n⩾0
x2n, |x| < 1,

as well as
1

x2 − 1
= 1
x2

1
1 − x−2

= 1
x2

∑

n⩾0
(x−2)n =

∑

n⩾0
x−2(n+1), |x| > 1.

Thus,

∫(0,∞)
ln x
x2 − 1

dx = −
∑

n⩾0
∫(0,1)

x2n ln x dx +
∑

n⩾0
∫(1,∞)

x−2(n+1) ln x dx. (⋆)

(In order to swap summation and integration, we use dominated convergence!) Using
integration by parts, we find

∫(0,1)
x2n ln x dx = x2n+1

2n + 1
ln x

|

|

|

|

1

x=0
− 1
2n + 1 ∫(0,1)

x2n dx
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= − 1
(2n + 1)2

and, in a similar fashion,

∫(1,∞)
x−2(n+1) ln x dx = x−2(n+1)+1

−2(n + 1) + 1
ln x

|

|

|

|

∞

x=1
− 1
−2(n + 1) + 1 ∫(1,∞)

x−2(n+1) dx

= 1
(−2(n + 1) + 1)2

= 1
(2n + 1)2

.

Inserting these results into (⋆), the claim follows from part (ii).
■■

Problem 14.10 Solution:

(i) Since � is �-finite, there is an exhausting sequence (Gn)n∈N ⊂ℬ(R) such that �(Gn) <∞
and Gn ↑ R. For each n ∈ N the set

Bnk ∶=
{

x ∈ Gn;�({x}) >
1
k

}

is finite. Indeed: Assume there were countably infinitely many (xj)j∈N ⊂ Bnk, xj ≠ xi for
i ≠ j. Since the sets {xj}, j ∈ N, are disjoint, we conclude that

�(Gn) ⩾ �

(

∑

j∈N
{xj}

)

=
∑

j∈N
�({xj}) = ∞.

This is a contradiction to �(Gn) <∞.
Thus, the set

Bn ∶= {x ∈ Gn;�({x}) > 0} =
⋃

k∈N

{

x ∈ Gn;�({x}) >
1
k

}

is countable and so is
D =

⋃

n∈N
Bn

as it is a countable union of countable sets.
(ii) For the diagonal 1Δ(x, y) = 1{y}(x)1R(y) we find from Theorem 14.5:

� × �(Δ) = ∫R

(

∫ 1{y}(x)�(dx)
)

�(dy)

= ∫R
�({y})1D(y) �(dy)

=
∑

y∈D
�({y})�({y}).

(In the last step we use that D is countable.)
■■
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Problem 14.11 Solution: Note that the diagonal Δ ⊂ R2 is measurable, i.e. the (double) integrals
are well-defined. The inner integral on the l.h.S. satisfies

∫[0,1]
1Δ(x, y) �(dx) = �({y}) = 0 ∀ y ∈ [0, 1]

so that the left-hand side

∫[0,1]∫[0,1]
1Δ(x, y) �(dx)�(dy) = ∫[0,1]

0�(dy) = 0.

On the other hand, the inner integral on the right-hand side equals

∫[0,1]
1Δ(x, y)�(dy) = �({x}) = 1 ∀ x ∈ [0, 1]

so that the right-hand side

∫[0,1]∫[0,1]
1Δ(x, y)�(dy) �(dx) = ∫[0,1]

1 �(dx) = 1.

This shows that the double integrals are not equal. This does not contradict Tonelli’s theorem since
� is not �-finite.

■■

Problem 14.12 Solution:

(i) Note that, due to the countability ofN andN ×N there are no problems with measurability
and �-finiteness (of the counting measure).
Tonelli’s Theorem. Let (ajk)j,k∈N be a double sequence of positive numbers ajk ⩾ 0. Then

∑

j∈N

∑

k∈N
ajk =

∑

k∈N

∑

j∈N
ajk

with the understanding that both sides are either finite or infinite.

Fubini’s Theorem. Let (ajk)j,k∈N ⊂ R be a double sequence of real numbers ajk. If
∑

j∈N

∑

k∈N
|ajk| or ∑

k∈N

∑

j∈N
|ajk|

is finite, then all of the following expressions converge absolutely and sum to the same value:
∑

j∈N

(

∑

k∈N
|ajk|

)

,
∑

k∈N

(

∑

j∈N
|ajk|

)

,
∑

(j,k)∈N×N
|ajk|.

(ii) Consider the (obviously �-finite) measures �j ∶= ∑

k∈Aj �k and � = ∑

j∈N �j . Tonelli’s
theorem tells us that

∑

j∈N

∑

k∈Aj

|xk| = ∫N∫N
|xk|�j(dk)�(dj)

= ∫N∫N
|xk|1Aj (k)�(dk)�(dj)
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= ∫N∫N
|xk|1Aj (k)�(dj)�(dk)

= ∫N
|xk|

(

∫N
1Aj (k)�(dj)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=1, as the Aj are disjoint

�(dk)

= ∫N
|xk|�(dk)

=
∑

k∈N
|xk|.

■■

Problem 14.13 Solution:

(i) Set U (a, b) ∶= a − b. Then
U (u(x), y)1[0,∞)(y) ⩾ 0 ⇐⇒ u(x) ⩾ y ⩾ 0

andU (u(x), y)1[0,∞)(y) is a combination/sum/product ofℬ(R2) resp.ℬ(R)-measurable func-
tions. Thus S[u] isℬ(R2)-measurable.

(ii) Yes, true, since by Tonelli’s theorem
�2(S[u]) = ∫R2

1S[u](x, y) �2(d(x, y))

= ∫R∫R
1{(x,y)∶u(x)⩾y⩾0}(x, y) �1(dy) �1(dx)

= ∫R∫[0,u(x)]
1 �1(dy) �1(dx)

= ∫R
u(x) �1(dx)

(iii) Measurability follows from (i) and with the hint. Moreover,
�2(Γ[u]) = ∫R2

1Γ[u](x, y) �2(d(x, y))

= ∫R∫R
1{(x,y)∶y=u(x)}(x, y) �1(dy) �1(dx)

= ∫R∫[u(x),u(x)]
1 �1(dy) �1(dx)

= ∫R
�1({u(x)}) �1(dx)

= ∫R
0 �1(dx)

= 0.

■■

Problem 14.14 Solution: The hint given in the text should be good enough to solve this problem....
■■
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Problem 14.15 Solution: Since (i) implies (ii), we will only prove (i) under the assumption that both
(X,A , �) and (Y ,ℬ, �) are complete measure spaces. Note that we have to assume �-finiteness of
� and �, otherwise the product construction would not work. Pick some setZ ∈ P (X)⧵A (which
is, because of completeness, not a null-set!), and some �-null setN ∈ℬ and consider Z ×N .
We get for some exhausting sequence (Ak)k ⊂ A , Ak ↑ X and �(Ak) <∞:

� × �(X ×N) = sup
k∈N

� × �(Ak ×N)

= sup
k∈N

(

�(Ak)
⏟⏟⏟
<∞

⋅ �(N)
⏟⏟⏟
=0

)

= 0;

thusZ×N ⊂ X×N is a subset of ameasurable�×� null set, hence it should beA⊗ℬ-measurable,
if the product space were complete. On the other hand, because of Theorem 14.17(iii), if Z ×N
is A ⊗ℬ-measurable, then the section

x → 1Z×N (x, y) = 1Z(x)1N (y)
y∈N
= 1Z(x)

is A -measurable which is only possible if Z ∈ A .
■■

Problem 14.16 Solution:

(i) Let A ∈ℬ[0,∞)⊗ P (N), fix k ∈ N and consider

1A(x, k) and Bk ∶= {x ∶ 1A(x, k) = 1};

because of Theorem 14.17(iii), Bk ∈ℬ[0,∞). Since

(x, k) ∈ A ⇐⇒ 1A(x, k) = 1

⇐⇒ ∃ k ∈ N ∶ 1A(x, k) = 1

⇐⇒ ∃ k ∈ N ∶ x ∈ Bk

it is clear that A = ⋃

k∈N Bk × {k}.
(ii) Let M ∈ P (N) and set � ∶= ∑

j∈N �j ; we know that � is a (�-finite) measure on P (N).
Using Tonelli’s theorem 14.8 we get

�(B ×M) ∶=
∑

m∈M
�(B × {m})

∶=
∑

m∈M
∫B

e−t t
m

m!
�(dt)

= ∫M∫B
e−t t

m

m!
�(dt) � (dm)

= ∬B×M
e−t t

m

m!
� × � (dt, dm)
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which shows that the measure �(dt, dm) ∶= e−t t
m

m! � × � (dt, dm) has all the properties re-
quired by the exercise.
The uniqueness follows, however, from the uniqueness theorem for measures (Theorem 5.7):
the family of ‘rectangles’ of the form B ×M ∈ ℬ[0,∞) × P (N) is a ∩-stable generator of
the product �-algebraℬ[0,∞)⊗ P (N) and contains an exhausting sequence, say, [0,∞) ×
{1, 2,… k} ↑ [0,∞) × N. But on this generator � is (uniquely) determined by prescribing
the values �(B × {m}).

■■

Problem 14.17 Solution: Assume first that � ⩾ 0. The point here is that Corollary 14.15 does not
apply to the function s → e−�s since this function is decreasing and has the value 1 for s = 0.
Consider therefore �(s) ∶= 1 − e−�s. This � is admissible in 14.15 and we get

∫ �(T ) dP = ∫
(

1 − e−�T
)

dP = ∫

∞

0
�e−�sP(T ⩾ s) ds.

Rearranging this equality then yields

∫ e−�T dP = 1 − �∫

∞

0
e−�sP(T ⩾ s) ds.

If � < 0 the formula remains valid if we understand it in the sense that either both sides are finite
or both sides are infinite. The above argument needs some small changes, though. First, e−�s
is now increasing (which is fine) but still takes the value 1 if s = 0. So we should change to
�(s) ∶= e−�s − 1. Now the same calculation as above goes through. If one side is finite, so is
the other; and if one side is infinite, then the other is infinite, too. The last statement follows from
Theorem 14.13 or Corollary 14.15.

■■

Problem 14.18 Solution:

(i) This is similar to Problem 6.1, in particular (i) and (vi).
(ii) Note that

1B(x, y) = 1(a,b](x)1[x,b](y)

= 1(a,b](y)1(a,y](x)

= 1(a,b](x)1(a,b](y)1[0,∞)(y − x);

the last expression is, however, a product of (combinations of) measurable functions, thus 1B
is measurable and so is then B.
Without loss of generality we can assume that a > 0, all other cases are similar.
Using Tonelli’s theorem 14.8 we get

� × �(B) = ∬ 1B(x, y)� × �(dx, dy)
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= ∬ 1(a,b](y)1(a,y](x)� × �(dx, dy)

= ∫(a,b] ∫(a,y]
�(dx) �(dy)

= ∫(a,b]
�(a, y] �(dy)

= ∫(a,b]

(

�(0, y] − �(0, a]
)

�(dy)

= ∫(a,b]
�(0, y]�(dy) − �(0, a]∫(a,b]

�(dy)

= ∫(a,b]
F (y) dG(y) − F (a)

(

G(b) − G(a)
)

. (*)

We remark at this point already that a very similar calculation (with �, � and F ,G inter-
changed and with an open interval rather than a semi-open interval) yields

∬ 1(a,b](y)1(y,b](x)�(dx) �(dy)

= ∫(a,b]
G(y−) dF (y) − G(a)

(

F (b) − F (a)
)

.
(**)

(iii) On the one hand we have

� × �
(

(a, b] × (a, b]
)

= �(a, b]�(a, b]

=
(

F (b) − F (a)
)(

G(b) − G(a)
)

(+)

and on the other we find, using Tonelli’s theorem at step (T)

� × �
(

(a, b] × (a, b]
)

= ∬ 1(a,b](x)1(a,b](y)�(dx) �(dy)

= ∬ 1(a,y](x)1(a,b](y)�(dx) �(dy)+

+∬ 1(y,b](x)1(a,b](y)�(dx) �(dy)

T
= ∬ 1(a,b](x)1[x,b](y) �(dy)�(dx)+

+∬ 1(y,b](x)1(a,b](y)�(dx) �(dy)

∗,∗∗
= ∫(a,b]

F (y) dG(y) − F (a)
(

G(b) − G(a)
)

+

+ ∫(a,b]
G(y−) dF (y) − G(a)

(

F (b) − F (a)
)

.

Combining this formula with the previous one marked (+) reveals that

F (b)G(b) − F (a)G(a) = ∫(a,b]
F (y) dG(y) + ∫(a,b]

G(y−) dF (y).
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Finally, observe that

∫(a,b]

(

F (y) − F (y−)
)

dG(y) = ∫(a,b]
�({y}) �(dy)

=
∑

a<y⩽b
�({y})�({y})

=
∑

a<y⩽b
ΔF (y)ΔG(y).

(Mind that the sum is at most countable because of Lemma 14.14) from which the claim
follows.

(iv) It is clear that uniform approximation allows to interchange limiting and integration proced-
ures so that we *really* do not have to care about this. We show the formula for monomials
t, t2, t3, ... by induction. Write �n(t) = tn, n ∈ N.

Induction start n = 1: in this case �1(t) = t, �′1(t) = 1 and �(F (s))−�(F (s−))−ΔF (s) = 0,
i.e. the formula just becomes

F (b) − F (a) = ∫(a,b]
dF (s)

which is obviously true.

Induction assumption: for some n we know that

�n(F (b)) − �n(F (a)) = ∫(a,b]
�′n(F (s−)) dF (s)

+
∑

a<s⩽b

[

�n(F (s)) − �n(F (s−)) − �′n(F (s−))ΔF (s)
]

.

Induction step n ⇝ n + 1: Write, for brevity F = F (s) and F− = F (s−). We have because
of (iii) with G = �n◦F and because of the induction assumption

�n+1(F (b)) − �n+1(F (a))

= F (b)�n(F (b)) − F (a)�n(F (a))

= ∫(a,b]
F n− dF + ∫(a,b]

F− dF
n +

∑

ΔFΔF n

= ∫(a,b]
F n− dF + ∫(a,b]

F− �
′
n(F−) dF+

+
∑

[

F−�n(F ) − F−�n(F−) − F−�′n(F−)ΔF
]

+
∑

ΔFΔF n

= ∫(a,b]
F n− dF + ∫(a,b]

F− nF
n−1
− dF+

+
∑

[

F−F
n − F n+1− − F−nF n−1− ΔF + ΔFΔF n

]

= ∫(a,b]
(n + 1)F n− dF +

∑

[

F−F
n − F n+1− − nF n−ΔF + ΔFΔF

n
]

= ∫(a,b]
�′n+1◦F− dF +

∑

[

F−F
n − F n+1− − nF n−ΔF + ΔFΔF

n
]
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The expression under the sum can be written as
F−F

n − F n+1− − nF n−ΔF + ΔFΔF
n

= (F− − F )F n + F n+1 − F n+1− − nF n−ΔF + ΔFΔF
n

= F n+1 − F n+1− + ΔF
(

− F n − nF n− + ΔF
n
)

= F n+1 − F n+1− + ΔF
(

− F n − nF n− + F
n − F n−

)

= F n+1 − F n+1− − (n + 1)F n−ΔF

= �n+1◦F − �n+1◦F− − �′n+1◦F−ΔF

and the induction is complete.
■■

Problem 14.19 Solution:

(i) We have the following pictures:

✲

✻

1 3 4 5 6 9 x

2

4

3

f (x)

1

This is the graph of the original func-
tion f (x).
Open and full dots indicate the con-
tinuity behaviour at the jump points.
x-values are to be measured in �-
length, i.e. x is a point in the measure
space (X,A , �).

✲

✻

2 3 4 t

m1

m2

m3

�f (t)

1

This is the graph of the associated
distribution function �f (t). It is de-
creasing and left-continuous at the
jump points.
t-values are to be measured using Le-
besgue measure in [0,∞).
m1 = �

(

[4, 5]
)

m2 − m1 = �
(

[6, 9]
)

m3 − m2 = �
(

[4, 5]
)
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✲

✻

2

3

4

f ∗(�)

m1 m2 m3 �

1

This is the graph of the decreasing re-
arrangement f ∗(�) of f (x). It is de-
creasing and right-continuous at the
jump points. (Please note that the
picture is wrong and actually depicts
the left-continuous inverse which is
inf{t ∶ �f (t) < �}— mind the “⩽”
vs. “<” inside the infimum)
�-values are to be measured using
Lebesgue measure in [0,∞).
m1, m2, m3 are as in the previous pic-
ture.

(ii) The first equality,

∫R
|f |p d� = p∫

∞

0
tp−1 �f (t) dt,

follows immediately from Theorem 14.13 with u = |f | and �f (t) = �({|f | ⩾ t}).
To show the second equality we have two possibilities. We can...

a) ...show the second equality first for (positive) simple functions and use then a (by now
standard...) Beppo Levi/monotone convergence argument to extend the result to all positive
measurable functions. Assume that f (x) = ∑N

j=0 aj1Bj (x) is a positive simple function in
standard representation, i.e. a0 = 0 < a1 < ⋯ < an < ∞ and the sets Bj = {f = aj} are
pairwise disjoint. Then we have

�({f = aj}) = �({f ⩾ aj} ⧵ {f ⩾ aj+1})

= �({f ⩾ aj}) − �({f ⩾ aj+1})

= �f (aj) − �f (aj+1) (an+1 ∶= ∞, �f (an+1) = 0)
= �1

(

(�f (aj+1), �f (aj)]
)

= �1(f ∗ = aj).

This proves

∫ f p d� =
n
∑

j=0
apj �(Bj) =

n
∑

j=0
apj �

1(f ∗ = aj) = ∫ (f ∗)p d�1

and the general case follows from the above-mentioned Beppo Levi argument.

or we can

b) use Theorem 14.13 once again with u = f ∗ and � = �1 provided we know that

�
(

{|f | ⩾ t}
)

= �1
(

{f ∗ ⩾ t}
)

.
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This, however, follows from

f ∗(�) ⩾ t ⇐⇒ inf{s ∶ �f (s) ⩽ �} ⩾ t

⇐⇒ �f (t) ⩾ � (as �f is right cts. & decreasing)
⇐⇒ �

(

{|f | ⩾ t}
)

⩾ �

and therefore

�1
(

{� ⩾ 0 ∶ f ∗(�) ⩾ t}
)

= �1
(

{� ⩾ 0 ∶ �(|f | ⩾ t) ⩾ �}
)

= �(|f | ⩾ t).

■■

Problem 14.20 Solution: (By Franzsika Kühn) Fix t ∈ R. Applying the fundamental theorem of
calculus and Fubini’s theorem, we find

F (t + ℎ) − F (t) = ∫X
(�(t + ℎ, x) − �(t, x))�(dx) = ∫X ∫

t+ℎ

t
)t�(r, x) dr �(dx)

= ∫

t+ℎ

t ∫X
)t�(r, x)�(dx)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶f (r)

dr.

for all ℎ ∈ R. Since f is (by assumption) continuous, this implies

lim
ℎ→0

1
ℎ
(F (t + ℎ) − F (t)) = lim

ℎ→0
1
ℎ ∫

t+ℎ

t
f (r) dr = f (t)

def
= ∫X

)t�(t, x)�(dx).

■■
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15 Integrals with respect to image

measures.

Solutions to Problems 15.1�15.16

Problem 15.1 Solution: The first equality

∫ u d(T (f�)) = ∫ u◦T f d�

is just Theorem 15.1 combined with Lemma 10.8 the formula for measures with a density.
The second equality

∫ u◦T f d� = ∫ u f◦T −1 dT (�)

is again Theorem 15.1.
The third equality finally follows again from Lemma 10.8.

■■

Problem 15.2 Solution: Observe that T� is represented by the n × n diagonal matrix A with entries
�. Since det A = �n, the claim follows from Example 15.3(iii).

■■

Problem 15.3 Solution: Let x, y ∈ R. We have
1[0,1](x − y)1[0,1](y) = 1[−x,−x+1](−y)1[0,1](y)

= 1[x−1,x](y)1[0,1](y)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, x < 0 or x > 2,
1[0,x](y), x ∈ [0, 1],

1[x−1,1], x ∈ [1, 2].

(∗)

This shows that
(1[0,1] ∗ 1[0,1])(x) = ∫R

1[0,1](x − y)1[0,1](y) dy

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, x < 0 or x > 2,
∫ x
0 dy = x, x ∈ [0, 1],

∫ 1x−1 dy = 2 − x, x ∈ [1, 2],
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= x1[0,1](x) + (2 − x)1[1,2](x).

Since convolutions are linear and commutative, we get

(1[0,1] ∗1[0,1] ∗ 1[0,1])(x)

=
(

1[0,1] ∗ (1[0,1] ∗ 1[0,1])
)

(x)

= ∫ 1[0,1](x − y)(y1[0,1](y) + (2 − y)1[1,2](y)) dy

= ∫ y1[0,1](x − y)1[0,1](y) dy + ∫ (2 − y)1[0,1](x − y)1[1,2](y) dy

=∶ I1(x) + I2(x).

Let us work out the two integrals separately. For the first expression we find using (∗)

I1(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, x > 0 or x > 2,
∫ x
0 y =

x2

2 , x ∈ [0, 1],

∫ 11−x y dy =
1
2 (1 − (1 − x)

2), x ∈ [1, 2].

= x2

2
1[0,1](x) +

1
2
(1 − (1 − x)2)1[1,2](x).

A similar calculation for the second integral yields

1[0,1](x − y)1[1,2](y) = 1[x−1,x](y)1[1,2](y) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, x < 1 or x > 3,
1[1,x](y), x ∈ [1, 2],

1[x−1,2](y), x ∈ [2, 3].

This gives

I2(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, x < 1 or x > 3,
∫ x
1 (2 − y) dy = 2(x − 1) −

1
2 (x

2 − 1), x ∈ [1, 2],

∫ 2x−1(2 − y) dy = 2(3 − x) −
1
2 (4 − (1 − x)

2), x ∈ [2, 3]

=
(

2(x − 1) − 1
2
(x2 − 1)

)

1[1,2](x) +
(

2(1 + x) − 1
2
(4 − (1 − x)2)

)

1[2,3](x).

Finally

(1[0,1] ∗ 1[0,1] ∗ 1[0,1])(x) =
x2

2
1[0,1](x) +

(

−x2 + 3x − 3
2

)

1[1,2](x)+
(

2(3 − x) − 1
2
(4 − (1 − x)2)

)

1[2,3](x).

■■

Problem 15.4 Solution: Observe that the assertion is equivalent to saying

(supp u + suppw)c ⊂ (supp(u ∗ w))c .
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Assume that x0 ∈ (supp u + suppw)c . Since this is an open set, there is some r > 0 such that
Br(x0) ⊂ (supp u + suppw)c . Pick any x ∈ Br(x0). For all y ∈ suppw we find x− y ∉ supp u. In
particular,

u(x − y) ⋅w(y) = 0 ∀ y ∈ suppw.

On the other hand, the very definition of the support, gives
u(x − y) ⋅w(y) = 0 ∀ y ∉ suppw.

This implies that u(x − y)w(y) = 0 for all y ∈ Rn. From the definition of the convolution we see
that (u ∗ w)(x) = 0. Since x ∈ Br(x0) is arbitrary, we get x0 ∉ supp(u ∗ w).

■■

Problem 15.5 Solution:

(i) The measurability of u,w entails that (x, y) → u(xy−1)w(y) is again measurable. From
Tonelli’s theorem we see the measurability of x → u ⊛ w(x). In order to show com-
mutativity, we use the transformation theorem (Theorem 15.1) for the linear map z ∶=
Φ(y) ∶= xy−1:

u ⊛ w(x) = ∫(0,∞)
u(xy−1)w(y)dy

y

= ∫(0,∞)
u(z)w(x−1z)dz

z

= w⊛ u(x).

Again by Tonelli’s theorem

∫(0,∞)
u ⊛ w(x)�(dx) = ∫(0,∞)

(

∫(0,∞)
u(xy−1)w(y)dy

y

)

dx
x

= ∫(0,∞)

(

∫(0,∞)
u(xy−1) dx

x

)

w(y) dy
y
. (⋆)

Fix y ∈ (0,∞) and define �y ∶= y−1x. From Theorem 7.10 we know that the image
measure �y(�)(dz) of � is given by y�(dz) gegeben ist, and because of Theorem 15.1 we
get

∫(0,∞)
u(xy−1) dx

x
= y−1 ∫(0,∞)

u(xy−1) dx
xy−1

= y−1 ∫(0,∞)
u(z)

�y(�)(dz)
z

= ∫(0,∞)
u(z)dz

z
. (⋆⋆)

If we insert this into (⋆), we obtain

∫(0,∞)
u ⊛ w(x)�(dx) = ∫(0,∞)

(

∫(0,∞)
u(z)dz

z

)

w(y)dy
y

= ∫(0,∞)
u d� ∫(0,∞)

wd�.
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(ii) Consider first the case p = ∞: As |u(xy−1)| ⩽ ‖u‖L∞(�) for �-a.a. y ∈ (0,∞), we get

|u ⊛ w(x)| ⩽ ∫ |u(xy−1)w(y)|�(dy) ⩽ ‖u‖L∞ ∫ |w(y)|�(dy) = ‖u‖L∞‖w‖1.

This proves ‖u ⊛ w‖L∞ ⩽ ‖u‖L∞‖w‖1.
Now we take p ∈ [1,∞). Note that

�(dy) ∶= 1
‖w‖1

|w(y)|�(dy)

is a probability measure. Jensen’s inequality (for V (x) = xp) yields

|u ⊛ w(x)|p ⩽
(

∫(0,∞)
|u(xy−1)||w(y)|�(dy)

)p

= ‖w‖p1

(

∫(0,∞)
|u(xy−1)| �(dy)

)p

⩽ ‖w‖p1 ∫(0,∞)
|u(xy−1)|p �(dy)

= ‖w‖p−11 ∫(0,∞)
|u(xy−1)|p|w(y)|�(dy),

and from Tonelli’s theorem we get

∫ |u ⊛ w(x)|p d�(x) ⩽ ‖w‖p−11 ∫(0,∞)

(

∫(0,∞)
|u(xy−1)|p|w(y)|�(dy)

)

�(dx)

= ‖w‖p−11 ∫(0,∞)

(

∫(0,∞)
|u(xy−1)|p �(dx)

)

|w(y)|�(dy).

Just as in (⋆⋆) we conclude that

∫(0,∞)
|u(xy−1)|p �(dx)

def
= ∫(0,∞)

|u(xy−1)|p dx
x
= ∫(0,∞)

|u(z)|p dz
z

def
= ∫(0,∞)

|u(z)|p �(dz).

If we insert this result into the estimates from above we see

∫ |u ⊛ w(x)|p d�(x) ⩽ ‖w‖p−11 ∫(0,∞)

(

∫(0,∞)
|u(z)|p �(dz)

)

|w(y)|�(dy)

= ‖w‖p−11 ∫ |u|p d� ∫ |w| d�

= ‖w‖1‖u‖
p
p.

Finally, take pth roots:
‖u ⊛ w‖p ⩽ ‖w‖1‖u‖p.

■■

Problem 15.6 Solution: We have for any C ∈ℬ

T (�)|B(C) = T (�)(B ∩ C)

192



Solution Manual. Last update 18th July 2019

= �
(

T −1(B ∩ C)
)

= �
(

T −1(B) ∩ T −1(C)
)

= �
(

A ∩ T −1(C)
)

= �|A
(

T −1(C)
)

= T (�|A)(C).

■■

Problem 15.7 Solution: By definition, we find for any Borel set B ∈ℬ(Rn)

�x ⋆ �y(B) = ∬ 1B(s + t) �x(ds) �y(dt)

= ∫ 1B(x + t) �y(dt)

= 1B(x + y)

= ∫ 1B(z) �x+y(dz)

which means that �x⋆�y = �x+y. Note that, by Tonelli’s theorem the order of the iterated integrals
is irrelevant.
Similarly, since z + t ∈ B ⇐⇒ t ∈ B − z, we find

�z ⋆ �(B) = ∬ 1B(s + t) �z(ds)�(dt)

= ∫ 1B(z + t)�(dt)

= ∫ 1B−z(t)�(dt)

= �(B − z)

= �−z(�)(B)

where �z(t) ∶= �(t − z) is the shift operator so that �−1−z (B) = B − z.
■■

Problem 15.8 Solution: Since x+ y ∈ B ⇐⇒ x ∈ B − y, we can rewrite formula in 15.4(iii) in the
following way:

� ⋆ �(B) = ∬ 1B(x + y)�(dx) �(dy)

= ∫

[

∫ 1B−y(x)�(dx)
]

�(dy)

= ∫ �(B − y) �(dy).

Similarly we get

� ⋆ �(B) = ∫ �(B − y) �(dy) = ∫ �(B − x)�(dx).
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Thus, if � has no atoms, i.e. if �({z}) = 0 for all z ∈ Rn, we find

� ⋆ �({z}) = ∫ �
(

{z} − y
)

�(dy) = ∫ �
(

{z − y}
⏟⏟⏟

=0

)

�(dy) = 0.

■■

Problem 15.9 Solution: Because of Tonelli’s theorem we can iterate the very definition of ‘convolu-
tion’ of two measures, Definition 15.4(iii), and get

�1 ⋆⋯ ⋆ �n(B) = ∫ ⋯∫ 1B(x1 +⋯ + xn)�1(dx1)⋯�n(dxn)

so that the formula derived at the end of Remark 15.5(ii), page 156, applies and yields

∫ |!|P⋆n(d!)

= ∫ ⋯∫ |!1 + !2 +⋯ + !n|P(d!1)P(d!2)⋯P(d!n)

∗
⩽ ∫ ⋯∫

(

|!1| + |!2| +⋯ + |!n|
)

P(d!1)P(d!2)⋯P(d!n)

=
n
∑

j=1
∫ ⋯∫ |!j|P(d!1)P(d!2)⋯P(d!n)

=
n
∑

j=1
∫ |!j|P(d!j) ⋅

∏

k≠j
∫ P(d!k)

=
n
∑

j=1
∫ |!j|P(d!j)

= n∫ |!1|P(d!1)

where we use the symmetry of the iterated integrals in the integrating measures as well as the fact
that P(Rn) = ∫ P(d!k) = 1. Note that we could have +∞ on either side, i.e. the integrability
condition is only important for the second assertion.
The equality ∫ !P⋆n(d!) = n ∫ !P(d!) follows with same calculation (note that we do not get
an inequality as there is no need for the triangle inequality at point (*) above). The integrability
condition is now needed since the integrands are no longer positive. Note that, since ! ∈ Rn,
the above equality is an equality between vectors in Rn; this is no problem, just read the equality
coordinate-by-coordinate.

■■

Problem 15.10 Solution: Since the convolution p → u⋆p is linear, it is enough to consider monomi-
als of the form p(x) = xk. Thus, by the binomial formula,

u ⋆ p(x) = ∫ u(x − y) yk dy

= ∫ u(y) (x − y)k dy
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=
k
∑

j=0

(

k
j

)

xj ∫ u(y) yk−j dy.

Since supp u is compact, there is some r > 0 such that supp u ⊂ Br(0) and we get for any m ∈ N0,
and in particular for m = k − j or m = k, that

|

|

|

|

∫ u(y)ym dy
|

|

|

|

⩽ ∫supp u
‖u‖∞|y|

m dy

⩽ ∫Br(0)
‖u‖∞r

m dy

= 2r ⋅ rm ⋅ ‖u‖∞

which is clearly finite. This shows that u ⋆ p exists and that it is a polynomial.
■■

Problem 15.11 Solution: That the convolution u ⋆ w is bounded and continuous follows from The-
orem 15.8.
Monotonicity follows from the monotonicity of the integral: if x ⩽ z, then

u ⋆ w(x) = ∫ u(y)
⏟⏟⏟

⩾ 0

⋅w(x − y)
⏟⏞⏟⏞⏟
⩽w(z−y)

dy ⩽ ∫ u(y) ⋅w(z − y) dy = u ⋆ w(y).

■■

Problem 15.12 Solution: (This solution is written for u ∈ Cc(Rn) and w ∈ C∞(Rn)).
Let )i = )∕)xi denote the partial derivative in direction xi where x = (x1,… , xn) ∈ Rn. Since

w ∈ C∞ ⇐⇒ )iw ∈ C∞,

it is enough to show )i(u ⋆ w) = u ⋆ )iw and to iterate this equality. In particular, we find
)�(u ⋆ w) = u ⋆ )�w where

)� = )�1+⋯�n
)�1x1⋯ )�nxn

, � ∈ Nn
0.

Since u has compact support and since the derivative is a local operation (i.e., we need to know a
function only in a neighbourhood of the point where we differentiate), and since we have for any
r > 0

sup
y∈supp u

sup
x∈Br(0)

|

|

|

|

)
)xi
w(x − y)

|

|

|

|

⩽ c(r),

we can use the differentiability lemma for parameter-dependent integrals, Theorem 12.5 to find for
any x ∈ Br∕2(0), say,

)
)xi ∫

u(y)w(x − y) dy = ∫ u(y) )
)xi

w(x − y) dy

= ∫ u(y)
( )
)xi
w
)

(x − y) dy
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= u ⋆ )iw(x).

■■

Problem 15.13 Solution: Let �t be a Friedrichs mollifier. From Lemma 15.10 we know

u ∈ Cc(Rn) ⇐⇒ u ∗ �t ∈ C∞c (R
n).

Since u ∈ Cc(Rn) is uniformly continuous, we find that

lim
t→0

sup
x

|u(x) − u(x − tz)| = 0

and since ∫ �t(y) dy = ∫ �t(x − y) dy = 1 we get

|u(x) − u ∗ �t(x)| =
|

|

|

|

∫ (u(x) − u(y))�t(x − y) dy
|

|

|

|

⩽ ∫ |u(x) − u(y)|t−n�
(x−y

t

)

dy

= ∫ |u(x) − u(x − tz)|�(z) dz

⩽ ∫ sup
x

|u(x) − u(x − tz)|�(z) dz

dom. conv.
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

t→0
0.

In the last step we use the integrable dominating function 2‖u‖∞�(u).
■■

Problem 15.14 Solution: The measurability considerations are just the same as in Theorem 15.6, so
we skip this part.
By assumption,

1
p
+ 1
q
= 1 + 1

r
;

We can rewrite this as
1
r
+

[

1
p
− 1
r

]

⏟⏞⏟⏞⏟
=1− 1

q∈[0,1)

+
[

1
q
− 1
r

]

⏟⏞⏟⏞⏟
=1− 1

p∈[0,1)

= 1. (*)

Now write the integrand appearing in the definition of u ⋆ w(x) in the form

|u(x − y)w(y)| =
[

|u(x − y)|p∕r|w(y)|q∕r
]

⋅
[

|u(x − y)|1−p∕r
]

⋅
[

|w(y)|1−q∕r
]

and apply the generalized Hölder inequality (cf. Problem 13.5) with the exponents from (*):

|u ⋆ w(x)| ⩽ ∫ |u(x − y)w(y)| dy
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⩽
[

∫ |u(x − y)|p|w(y)|q dy
]
1
r
[

∫ |u(x − y)|p dy
]
1
p−

1
r
[

∫ |w(y)|q dy
]
1
q−

1
r
.

Raising this inequality to the rth power we get, because of the translation invariance of Lebesgue
measure,

|u ⋆ w(x)|r ⩽
[

∫ |u(x − y)|p|w(y)|q dy
]

‖u‖r−pp ⋅ ‖w‖r−qq

= |u|p ⋆ |w|q(x) ⋅ ‖u‖r−pp ⋅ ‖w‖r−qq .

Now we integrate this inequality over x and use Theorem 15.6 for p = 1 and the integral

∫ |u|p ⋆ |w|q(x) dx = ‖|u|p ⋆ |w|q‖1 ⩽ ‖u‖pp ⋅ ‖w‖
q
q.

Thus,

‖u ⋆ w‖rr = ∫ |u ⋆ w(x)|r dx ⩽ ‖u‖pp ⋅ ‖w‖
q
q ⋅ ‖u‖

r−p
p ⋅ ‖w‖r−qq = ‖u‖rp ⋅ ‖w‖

r
q

and the claim follows.
■■

Problem 15.15 Solution: For N = 1 the inequality is trivial, for N = 2 it is in line with Problem
15.14 with p = q.

Let us, first of all, give a heuristic derivation of this result which explains how one arrives at the
particular form for the value of p = p(r,N). We may assume thatN ⩾ 2. Set Fj ∶= fj ⋆…⋆fN
for j = 1, 2,…N − 1. Then

‖f1 ⋆⋯ ⋆ fN‖r

⩽ ‖f1‖p‖F2‖q2 = ‖f1‖p‖f2 ⋆ F3‖q2
by Pr. 15.14 where 1

r
+ 1 = 1

p
+ 1

q2
=
(1
p
− 1

)

+ 1
q2
+ 1

⩽ ‖f1‖p‖f2‖p‖F3‖q3 = ‖f1‖p‖f2‖p‖f3 ⋆ F4‖q3
by Pr. 15.14 where 1

r
+ 1 =

(1
p
− 1

)

+ 1
p
+ 1

q3
⏟⏟⏟
= 1
q2
+1

= 2
(1
p
− 1

)

+ 1 + 1
q3

and repeating this procedureN − 2 times we arrive at

‖f1 ⋆⋯ ⋆ fN‖r ⩽ ‖f1‖p⋯ ‖fN−2‖p ⋅ ‖fN−1 ⋆ fN‖qN−1
⩽ ‖f1‖p⋯ ‖fN−2‖p ⋅ ‖fN−1‖p ⋅ ‖fN‖qN

with the condition
1
r
+ 1 = (N − 2)

(1
p
− 1

)

+ 1 + 1
qN−1

= (N − 2)
(1
p
− 1

)

+ 1
p
+ 1
qN
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and since we need qN = p we get
1
r
+ 1 = (N − 2)

(1
p
− 1

)

+ 2
p
= N
p
−N + 2

and rearranging this identity yields
p = Nr

(N − 1)r + 1
.

If you do not like this derivation of if you got lost counting the repetitions, here’s the formal proof
using induction—but with the drawback that one needs a good educated guess what p = p(N, r)
should look like. The start of the induction N = 2 is done in Problem 15.14 (starting at N = 1
won’t help much as we need Young’s inequality forN = 2 anyway...).
The induction hypothesis is, of course,

‖f1 ⋆⋯ ⋆ fM‖t ⩽
M
∏

j=1
‖fj‖� for all M = 1, 2,… , N − 1

where t > 0 is arbitrary and � = Mt
(M−1)t+1 .

The induction step uses Young’s inequality:
‖f1 ⋆ f2 ⋆⋯ ⋆ fN‖r ⩽ ‖f1‖p ⋅ ‖f2 ⋆⋯ ⋆ fN‖q

where p = Nr
(N−1)r+1 and q is given by

1
r
+ 1 = 1

q
+ 1
q
= (N − 1)r + 1

Nr
+ 1
q
= 1 + 1

q
− 1
N
+ 1
Nr

so that
q = Nr

N + r − 1
.

Using the induction hypothesis we now get
‖f1 ⋆⋯ ⋆ fN‖r ⩽ ‖f1‖p ⋅ ‖f2 ⋆⋯ ⋆ fN‖q ⩽ ‖f1‖p ⋅

(

‖f2‖s⋯ ‖fN‖s
)

where s is, because of the induction assumption, given by
s = (N − 1)q

(N − 2)q + 1

=
(N − 1) Nr

N+r−1

(N − 2) Nr
N+r−1 + 1

= (N − 1)Nr
(N − 2)Nr +N + r − 1

= (N − 1)Nr
N2r − 2Nr + r + (N − 1)

= (N − 1)Nr
(N − 1)2r + (N − 1)

= Nr
(N − 1)r + 1

= p

and we are done.
■■
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Problem 15.16 Solution: Note that v(x) = d
dx
(1 − cos x)1[0,2�)(x) = 1(0,2�)(x) sin x. Thus,

(i)

u ⋆ v(x) = ∫

2�

0
1R(x − y) sin y dy = ∫

2�

0
sin y dy = 0 ∀ x.

(ii) Since all functions u, v,w, � are continuous, we can use the usual rules for the (Riemann)
integral and get, using integration by parts and the fundamental theorem of integral calculus,

v ⋆ w(x) = ∫
d
dx
�(x − y) ∫

x

−∞
�(t) dt dx

= ∫
(

− d
dy
�(x − y)

)

∫

y

−∞
�(t) dt dx

= ∫ �(x − y) d
dy ∫

y

−∞
�(t) dt dx

= ∫ �(x − y)�(y) dy

= � ⋆ �(x).

If x ∈ (0, 4�), then x − y ∈ (0, 2�) for some suitable y = y= and even for all y from an
interval (y0 − �, y0 + �) ⊂ (0, 2�). Since � is positive with support [0, 2�], the positivity
follows.

(iii) Obviously,

(u ⋆ v) ⋆ w
(i)
= 0 ⋆ w = 0

while

u ⋆ (v ⋆ w)(x) = ∫ 1R(x − y)v ⋆ w(y) dy

= ∫ v ⋆ w(y) dy

= ∫ � ⋆ �(y) dy

> 0.

Note that w is not an (pth power, p < ∞) integrable function so that we cannot use Fubini’s
theorem to prove associativity of the convolution.

■■
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transformation rule.

Solutions to Problems 16.1�16.12

Problem 16.1 Solution: Since F and Fi are F�-sets, we get

F =
⋃

k∈N
Ck, Fi =

⋃

k∈N
C ik

for closed sets Ck resp. C ik. Since complements of closed sets are open, we find, using the rules
for (countable) unions and intersections that
(i)

n
⋂

i=1
Fi =

n
⋂

i=1

⋃

k∈N
C ik =

⋃

k∈N

n
⋂

i=1
C ik

⏟⏟⏟
closed set

.

(ii) ⋃

i∈N
Fi =

⋃

i∈N

⋃

k∈N
C ik =

⋃

(i,k)∈N×N
C ik

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
countable union!

.

Moreover, ⋂
i∈N

F ci =
⋂

i∈N

⋂

k∈N

[

C ik
]c =

⋂

(i,k)∈N×N

[

C ik
]c

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
countable intersection!

.

(iii) F =
⋃

k∈N
Ck ⇐⇒ F c =

[

⋃

k∈N
Ck

]c

=
⋂

k∈N
Cck

⏟⏟⏟
open

.

(iv) Set c1 ∶= C and Ci = ∅, i ⩾ 2. Then C =
⋃

i∈N
Ci is an F�-set.

■■

Problem 16.2 Solution: Write � = �n andℬ = ℬ(Rn). Fix B ∈ ℬ. According to Lemma 16.12
there are sets F ∈ F� and G ∈ G� such that

F ⊂ B ⊂ G and �(F ) = �(B) = �(G).

Since for closed sets Cj and open sets Uj we have F =
⋃

Cj andG = ⋂

Uj we get for some � > 0
and suitableM =M� ∈ N, N = N� ∈ N that

C1 ∪⋯ ∪ CN ⊂ B ⊂ U1 ∩⋯ ∩ UM
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and
|

|

|

�(U1 ∩⋯ ∩ UM ) − �(B)
|

|

|

⩽ �, (*)
|

|

|

�(B) − �(C1 ∪⋯ ∪ CN )
|

|

|

⩽ �. (**)

Since finite unions of closed sets are closed and finite intersections of open sets are open, (*) proves
outer regularity while (**) proves inner regularity (w.r.t. close sets).
To see inner regularity with compact sets, we note that the closed set C ′ ∶= C1 ∪ ⋯ ∪ CN is
approximated by the following compact sets

Kl ∶= Bl(0) ∩ C ′ ↑ C ′ as l →∞

and, because of the continuity of measures, we get for suitably large L = L� ∈ N that
|

|

|

�(KL) − �(C1 ∪⋯ ∪ CN )
|

|

|

⩽ �

which can be combined with (**) to give
|

|

|

�(KL) − �(B)
|

|

|

⩽ 2�.

This shows inner regularity for the compact sets.
■■

Problem 16.3 Solution: Notation (for brevity): Write � = �n, �̄ = �n, ℬ = ℬ(Rn) and ℬ∗ =
ℬ∗(Rn). By definition, B∗ = B ∪N∗ where N∗ is a subset of aℬ-measurable null set N . (We
indicate ℬ∗-sets by an asterisk, C (with and without ornaments and indices C ′ ...) is always a
closed set and U etc. is always an open set.
Solution 1: Following the hint we get (with the notation of Problem 11.6)

�(B) = �̄(B∗) = �∗(B∗)

= inf
ℬ∋A⊃B∗

�(A) (by 11.6)
= inf
ℬ∋A⊃B∗

inf
U⊃A

�(U ) (by 16.2)
⩽ inf
U ′⊃B∪N

inf
U⊃U ′

�(U ) (as B ∗⊂ B ∪N)
= inf
U ′⊃B∗

�(U ′) (by 16.2)
= �(B ∪N) (by 16.2)
⩽ �(B) + �(N)

= �(B).

Inner regularity (for closed sets) follows similarly,

�(B) = �̄(B∗) = �∗(B∗)
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= sup
ℬ∋A⊂B∗

�(A) (by 11.6)

= sup
ℬ∋A⊂B∗

sup
C⊂A

�(C) (by 16.2)

⩾ sup
C ′⊂B∗

sup
C⊂C ′

�(C)

= sup
C ′⊂B∗

�(C ′) (by 16.2)

⩾ sup
C ′⊂B

�(C ′) (as B ⊂ B∗)

= �(B), (by 16.2)

and inner regularity for compact sets is the same calculation.
There is a more elementary ....
Solution 2: (without Problem 11.6). Using the definition of the completion we get

�̄(B∗) = �(B) = sup
C ′⊂B

�(C ′)

⩽ sup
C⊂B∗

�(C)

⩽ sup
C ′′⊂B∪N

�(C ′′)

= �(B ∪N)

= �(B)

as well as

�̄(B∗) = �(B) = inf
U ′⊃B

�(U ′)

⩽ inf
U⊃B∗

�(U )

⩽ inf
U ′′⊃B∪N

�(U ′′)

= �(B ∪N)

= �(B).

■■

Problem 16.4 Solution:

(i) Using the result of Problem 7.12 we write x, y ∈ C as triadic numbers:

x =
∞
∑

i=1

xi
3i
= 0.x1x2x3… and y =

∞
∑

i=1

yi
3i
= 0.y1y2y3…

where xi, yi ∈ {0, 2}. In order to enforce uniqueness, we only want to have truly infinite
sums, i.e. we use 0.002222… instead of 0.01000… etc.
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Obviously, every z ∈ C − C is of the form z = x − y with x, y ∈ C and so z = 0.z1z2z3…
with zi = xi − yi ∈ {−2, 0, 2}. Thus,

1
2
(z + 1) = 1

2

( ∞
∑

i=1

xi − yi
3i

+
∞
∑

i=1

2
3i

)

= 1
2

∞
∑

i=1

xi − yi + 2
3i

=
∞
∑

i=1

wi

3i
.

By construction,wi =
1
2 (xi−yi+2) ∈

1
2{0, 2, 4} = {0, 1, 2}, i.e. the numbers 12 (z+1)make

up the whole interval [0, 1].
This shows that C − C = [−1, 1].

(ii) Let �(x, y) = x−y as in the hint. This is a Lipschitz (Hölder-1) continuousmap fromR2 → R

and it has the following property: C ×C → �(C,C) = [−1, 1]. But C ×C is a Lebesgue null
set in R2 while �1[−1, 1] = 2. This situation cannot occur in Corollary 16.14.

■■

Problem 16.5 Solution:

(i) Obviously, G ⊂ℬ[0,∞). On the other hand, �(G ) contains all open intervals of the form

(�, �) =
⋃

n∈N

[

� − 1
n
,∞

)

⧵
[

�,∞
)

, 0 ⩽ � < � < ∞ (*)

and all intervals of the form

[0, �) = [0,∞) ⧵ [�,∞), � > 0. (**)

Thus,

�(G ) ⊃ O(R) ∩ [0,∞)

since any open set U ∈ O(R) is a countable union of open intervals,

U =
⋃

�<�,�,�∈Q
(�,�)⊂U

(�, �),

so that U ∩ [0,∞) ∈ O ∩ [0,∞) is indeed a countable union of sets of the form (*) and (**).
Thus,

ℬ[0,∞) = �(O ∩ [0,∞)) ⊂ �(G ) ⊂ℬ[0,∞).

(ii) That � is a measure follows from Lemma 10.8 (for a proof, see the online section ‘additional
material’). Since

�(B) = �(T −11∕5(B)) = T1∕5(�)(B)

where T1∕5(x) = 1
5 ⋅ x, � is an image measure, hence a measure.

Since

�[a,∞) = �[5a,∞) ⩽ �[a,∞) ∀ a ⩾ 0,
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we have �||
|G

⩽ �||
|G
. On the other hand,

�
[ 3
5 ,
4
5

)

= �[3, 4) = 1 > 0 = �
[ 3
5 ,
4
5

)

.

This does not contradict Lemma 16.6 since G is not a semi-ring.
■■

Problem 16.6 Solution: We want to show that
a) �n(x + B) = �n(B), B ∈ℬ(Rn), x ∈ Rn (Theorem 5.8(i));
b) �n(t ⋅ B) = tn�n(B), B ∈ℬ(Rn), t ⩾ 0 (Problem 5.9);
c) A(�n) = |det A−1| ⋅ �n, A ∈ Rn×n, det A ≠ 0 (Theorem 7.10).
From Theorem 16.4 we know that for any C1 diffeomorphism � the formula

�n(�(B)) = ∫B
|detD�| d�n

holds. Thus a), b), c) follow upon setting
a) �(y) = x + y ⇐⇒ D� ≡ 1 ⇐⇒ |detD�| ≡ 1;
b) �(y) = t ⋅ y ⇐⇒ D� ≡ t ⋅ id ⇐⇒ |detD�| ≡ tn;
c) �(y) = A−1y ⇐⇒ D�(y) ≡ A−1 ⇐⇒ |detD�| ≡ |det A|−1.

■■

Problem 16.7 Solution:

(i) The map Φ ∶ R ∋ x → (x, f (x)) is obviously bijective and differentiable with deriv-
ative DΦ(x) = (1, f ′(x)) so that |DΦ(x)|2 = 1 + (f ′(x))2. The inverse of Φ is given
by Φ−1 ∶ (x, f (x)) → x which is clearly differentiable.

(ii) Since |DΦ(x)| = √

1 + (f ′(x))2 is positive and measurable, it is a density function
and � ∶= |DΦ(x)| ⋅ � is a measure, cf. Lemma 10.8, while � = Φ(�) is an image
measure in the sense of Definition 7.7.

(iii) This is Theorem 15.1 and/or Problem 15.1.
(iv) The normal is, by definition, orthogonal to the gradient: DΦ(x) = (1, f ′(x)); obvi-

ously |n(x)| = 1 and

n(x) ⋅DΦ(x) =

(

−f ′(x)
1

)

⋅

(

1
f ′(x)

)

√

1 + (f ′(x))2
= 0.

Further,

Φ̃(x, r) =
⎛

⎜

⎜

⎝

x − rf ′(x)
√

1+[f ′(x)]2

f (x) + r
√

1+[f ′(x)]2

⎞

⎟

⎟

⎠

,
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so that

DΦ̃(x, r) =
(

)Φ̃(x, r)
)(x, r)

)

=
⎛

⎜

⎜

⎝

1 − r )
)x

f ′(x)
√

1+[f ′(x)]2
f ′(x) + r )

)x
1

√

1+[f ′(x)]2

− f ′(x)
√

1+[f ′(x)]2
1

√

1+[f ′(x)]2

⎞

⎟

⎟

⎠

For brevity we write f, f ′, f ′′ instead of f (x), f ′(x), f ′′(x). Now

)
)x

f ′(x)
√

1 + [f ′(x)]2
=
f ′′

√

1 + [f ′]2 − f ′ f ′f ′′
√

1+[f ′]2

1 + [f ′]2

and

)
)x

1
√

1 + [f ′(x)]2
=
− f ′f ′′

√

1+[f ′]2

1 + [f ′]2
.

Thus, detDΦ̃(x, r) becomes

1
√

1 + [f ′]2

(

1 −
r f ′′

√

1 + [f ′]2 − r [f ′]2f ′′
√

1+[f ′]2

1 + [f ′]2

)

+ f ′
√

1 + [f ′]2

(

f ′ −

r f ′f ′′
√

1+[f ′]2

1 + [f ′]2

)

= 1
√

1 + [f ′]2
−
r f ′′ − r [f ′]2f ′′

1+[f ′]2

1 + [f ′]2
+ [f ′]2
√

1 + [f ′]2
−

r [f ′]2f ′′
1+[f ′]2

1 + [f ′]2

= 1 + [f ′]2
√

1 + [f ′]2
− r f ′′

1 + [f ′]2

=
√

1 + [f ′]2 − r f ′′

1 + [f ′]2

If x is from a compact set, say [c, d], we can, because of the continuity of f, f ′ and
f ′′, achieve that for sufficiently small values of |r| < � we get that detDΦ̃ > 0, i.e. Φ̃
is a local C1-diffeomorphism.

(v) The set is a ‘tubular’ neighbourhood of radius r around the graph Γf for x ∈ [c, d].
Measurability follows, since Φ̃ is a diffeomorphism, from the fact that the set C(r) is
the image of the cartesian product of measurable sets.

(vi) Because of part (iv) we have, for fixed x and sufficiently small values of r, that the
determinant is positive so that

lim
r↓0

1
2r ∫(−r,r)

|

|

|

detDΦ̃(x, s)||
|

�1(ds)

= lim
r↓0

1
2r ∫(−r,r)

|

|

|

|

√

1 + (f ′(x))2 − s f ′′(x)
1 + (f ′(x))2

|

|

|

|

�1(ds)

= lim
r↓0

1
2r ∫(−r,r)

(

√

1 + (f ′(x))2 − s f ′′(x)
1 + (f ′(x))2

)

�1(ds)
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= lim
r↓0

1
2r ∫(−r,r)

√

1 + (f ′(x))2 �1(ds)

− lim
r↓0

1
2r ∫(−r,r)

s f ′′(x)
1 + (f ′(x))2

�1(ds)

=
√

1 + (f ′(x))2 − f ′′(x)
1 + (f ′(x))2

lim
r↓0

1
2r ∫(−r,r)

s �1(ds)

=
√

1 + (f ′(x))2

= |

|

|

detDΦ̃(x, 0)||
|

.

(vii) We have
1
2r ∫R2

1C(r)(x, y) �2(dx, dy)

= 1
2r ∫R2

1Φ̃(Φ−1(C)×(−r,r))(x, y) �
2(dx, dy)

= 1
2r ∫R2

1Φ−1(C)×(−r,r)(z, s)
|

|

|

detDΦ̃(z, s)||
|

�2(dz, ds) (Thm 16.4)

= ∫R
1Φ−1(C)(z)

[

1
2r ∫(−r,r)

|

|

|

detDΦ̃(z, s)||
|

�1(ds)
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
←←←←←←←←←←←←←→
r↓0

|detDΦ̃(z,0)|

�1(dz). (Tonelli)

Since Φ−1(C) is a bounded subset ofR, we can use the result of part (vii) and domin-
ated convergence and the proof is finished.

(viii) This follows from (i)–(iii) and the fact that
|

|

|

detDΦ̃(x, 0)||
|

=
√

1 + (f ′(x))2

and the geometrical meaning of the weighted area 1
2r �

2(C(r))—recall that C(r) was a
tubular neighbourhood of the graph.

■■

Problem 16.8 Solution:

(i) |detDΦ(x)| is positive andmeasurable, hence a density and, by Lemma 10.8, |detDΦ|⋅
�d is a measure. Therefore, Φ(|detDΦ| ⋅ �d) is an image measure in the sense of
Definition 7.7.
Using the rules for densities and integrals w.r.t. imagemeasures we get (cf. e.g. Theorem
15.1 and/or Problem 15.1)

∫M
u d�M = ∫M

u dΦ
(

|detDΦ| ⋅ �d
)

= ∫Φ−1(M)
u◦Φ ⋅ |detDΦ| d�d .

(ii) This is the formula from part (i) with Φ = �r; observe that �r(Rn) = Rn.
(iii) The equality

∫ u d�n = ∫(0,∞)∫{‖x‖=1}
u(r x) rn−1 �(dx) �1(dr)
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is just Theorem 16.22. The equality

∫(0,∞)∫{‖x‖=r}
u(x) �(dx) �1(dr)

= ∫(0,∞)∫{‖x‖=1}
u(r x) rn−1 �(dx) �1(dr)

follows from part (ii).
■■

Problem 16.9 Solution: We have
Γ
(1
2

)

= ∫(0,∞)
y−1∕2 e−y �(dy).

Using the change of variables y = �(x) = x2, we get D�(x) = 2x and
Γ
( 1
2

)

= 2∫(0,∞)
e−x

2
�(dx) = 2∫(−∞,∞)

e−x
2
�(dx)

16.16
=

√

�.

■■

Problem 16.10 Solution: Write Φ = (Φ1,Φ2,Φ3). Then

DΦ(r, �, !) =
⎛

⎜

⎜

⎜

⎝

)Φ1
)r

)Φ1
)�

)Φ1
)!

)Φ2
)r

)Φ2
)�

)Φ2
)!

)Φ3
)r

)Φ3
)�

)Φ3
)!

⎞

⎟

⎟

⎟

⎠

=
⎛

⎜

⎜

⎜

⎝

cos � cos! −r sin � cos! −r cos � sin!
sin � cos! r cos � cos! −r sin � sin!
sin! 0 r cos!

⎞

⎟

⎟

⎟

⎠

Developing according to the bottom row we calculate for the determinant
detDΦ(r, �, !)

= sin! det

(

−r sin � cos! −r cos � sin!
r cos � cos! −r sin � sin!

)

+ r cos! det

(

cos � cos! −r sin � cos!
sin � cos! r cos � cos!

)

= sin!
(

r2 sin2 � cos! sin! + r2 cos2 � cos! sin!
)

+ r cos!
(

r cos2 � cos2 ! + r sin2 � cos2 !
)

= r2 sin2 ! cos! + r2 cos! cos2 !

= r2 cos!

where we use repeatedly the elementary relation sin2 � + cos2 � = 1.
Thus,

∭
R3

u(x, y, z) d�3(x, y, z)
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= ∭
Φ−1(R3)

u◦Φ(r, �, !) |detDΦ(r, �, !)| d�3(r, �, !)

= ∫

∞

0 ∫

2�

0 ∫

�∕2

−�∕2
U (r cos � cos!, r sin � cos!, r sin!) r2 cos!dr d� d!.

■■

Problem 16.11 Solution:

(i) We change in
Γ(x) = ∫

∞

0
e−ttx−1 dt

variables according to u2 = t, and get

Γ(x) = 2∫

∞

0
e−u

2
u2x−1 du.

Using Tonelli’s theorem we find

Γ(x)Γ(y) = 4
(

∫

∞

0
e−u

2
u2x−1 du

)(

∫

∞

0
e−v

2
v2y−1 dv

)

= 4∫(0,∞)2
e−u

2−v2u2x−1v2y−1 d(u, v).

(ii) We have to show that B(x, y)Γ(x + y) = Γ(x)Γ(y). Using polar coordinates in (i) we see

Γ(x)Γ(y) = 4∫

∞

r=0 ∫

2�

�=0
e−r

2
r2x+2y−1(cos�)2x−1(sin�)2y−1 d�dr

= 4
(

∫

∞

r=0
e−r

2
r2x+2y−1 dr

)

(

∫

�∕2

�=0
(cos�)2x−1(sin�)2y−1 d�

)

. (⋆)

Setting s ∶= r2 we see

∫

∞

r=0
e−r

2
r2x+2y−1 dr = 1

2 ∫

∞

s=0
e−ss(x+y)−1 ds = 1

2
Γ(x + y).

Change variables in the second integral of (⋆) according to t = cos2 � and use sin2 � +
cos2 � = 1. This yields

∫

�∕2

�=0
(cos�)2x−1(sin�)2y−1 d� = 1

2 ∫

1

0
t2x−1(1 − t)2y−1 dt = 1

2
B(x, y).

■■

Problem 16.12 Solution: We introduce planar polar coordinates as in Example 16.15:

(x, y) = (r cos �, r sin �), r > 0, � ∈ [0, 2�).
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Thus,

∬
‖x‖2+‖y‖2<1

xm yn d�2(x, y)

= ∫

1

0 ∫

2�

0
rn+m+1 cosm � sinn � dr d�

=
(

∫

1

0
rn+m+1 dr

)(

∫

2�

0
cosm � sinn � d�

)

= rm+n+2

m + n + 2
|

|

|

|

r=1

r=0

(

∫

2�

0
cosm � sinn � d�

)

= 1
m + n + 2 ∫

2�

0
cosm � sinn � d�.

(*)

Consider the integral
1

m + n + 2 ∫

2�

0
cosm � sinn � d�;

Since sine and cosine are periodic and since we integrate over a whole period, we can also write
1

m + n + 2 ∫

�

−�
cosm � sinn � d�;

If n is odd, sinn � is odd while cosm � is always even. Thus, the integral equals, for odd n, zero.
Since the l.h.s. of the expression (*) is symmetric in m and n, so is the r.h.s. and we get

∬
‖x‖2+‖y‖2<1

xm yn d�2(x, y) = 0

whenever m or n or both are odd.
If both m and n are even, we get

∬
‖x‖2+‖y‖2<1
x>0, y>0

xm yn d�2(x, y) = ∬
‖x‖2+‖y‖2<1
±x>0, ±y>0

xm yn d�2(x, y)

for any choice of signs, thus

∬
‖x‖2+‖y‖2<1

xm yn d�2(x, y) = 4 ∬
‖x‖2+‖y‖2<1
x>0, y>0

xm yn d�2(x, y).

Introducing planar polar coordinates yields, as seen above, for even m and n,

4 ∬
‖x‖2+‖y‖2<1
x>0, y>0

xm yn d�2(x, y) = 4
m + n + 2 ∫

�∕2

0
cosm � sinn � d�

= 4
m + n + 2 ∫

1

0
(1 − t2)

m−1
2 (t2)

n−1
2 t dt
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where we use the substitution t = sin � and cos � =
√

1 − sin2 � =
√

1 − t2. A further substitution
s = t2 yields

= 2
m + n + 2 ∫

1

0
(1 − s)

m−1
2 s

n−1
2 ds

= 2
m + n + 2 ∫

1

0
(1 − s)

m+1
2 −1s

n+1
2 −1 ds

= 2
m + n + 2

B
(m+1

2 , n+12
)

which is Euler’s Beta function. There is a well-known relation between the Euler Beta- and Gamma
functions:

B(x, y) = Γ(x)Γ(y)
Γ(x + y)

(*)

so that, finally,

∬
‖x‖2+‖y‖2<1

xm yn d�2(x, y) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 m or n odd;
2

m+n+2

Γ
(m+1

2

)

Γ
( n+1
2

)

Γ
( n+m+2

2

) else

=
Γ
(m+1

2

)

Γ
( n+1
2

)

Γ
( n+m+4

2

)

where we also use the rule that xΓ(x) = Γ(x + 1).
Let us briefly sketch the proof of (*): our calculation shows that

B(x, y) = 2∫

�∕2

0
sin2x−1 � cos2y−1 � d�;

multiplying this formula with r2x+2y−1 e−r2 , integrating w.r.t. r over (0,∞) and changing variables
according to s = r2 yields on the one hand

∫

∞

0
B(x, y) r2x+2y−1 e−r2 dr = 1

2 ∫

∞

0
B(x, y) sx+y−1 e−s ds

= 1
2
B(x, y) Γ(x + y)

while, on the other hand, we get by switching from polar to cartesian coordinates,

∫

∞

0
B(x, y) r2x+2y−1 e−r2 dr

= 2∫

∞

0 ∫

�∕2

0
sin2x−1 � cos2y−1 � r2x+2y−1 e−r2 dr d�

= 2∫

∞

0 ∫

�∕2

0
(r sin �)2x−1(r cos �)2y−1 e−r2 r dr d�

= 2∬(0,∞)×(0,∞)
�2x−1 �2y−1 e−�

2−�2 d� d�

= 2∫(0,∞)
�2x−1 e−�

2
d� ∫(0,∞)

�2y−1 e−�
2
d�
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= 1
2 ∫(0,∞)

sx−1 e−s ds∫(0,∞)
ty−1 e−t dt

= 1
2
Γ(x)Γ(y)

with the obvious applications of Tonelli’s theorem and, in the penultimate equality, the obvious
substitutions.

■■
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17 Dense and determining sets.

Solutions to Problems 17.1�17.9

Problem 17.1 Solution: Let f ∈ p(�) and fix � > 0. It is enough to show that there is some ℎ ∈ 
such that ‖f −ℎ‖p ⩽ �. Since is dense in p(�), there exists some g ∈  satisfying ‖f −g‖p ⩽
�∕2. On the other hand, as  is dense in , there is some ℎ ∈  such that ‖g − ℎ‖p ⩽ �∕2. Now
the triangle inequality gives

‖f − ℎ‖p ⩽ ‖f − g‖p + ‖g − ℎ‖p ⩽
�
2
+ �
2
.

■■

Problem 17.2 Solution:

(i) Continuity follows from the continuity of the function x → d(x,A), cf. (17.1). Clearly,
0 ⩽ uk ⩽ 1 and uk|K = 1 and u|U c

k = 0. Since UK ↓ K , we get uk ↓ 1K . Since Uk is
closed and bounded, it is clear that Uk is compact, i.e. supp uk is compact.

(ii) This follows from (i) and monotone convergence.
(iii) We have �(K) = �(K) for all compact sets K ⊂ Rn and the compact sets generate

the Borel �-algebra. In particular, this holds for [−k, k]n ↑ Rn, so that the conditions
for the uniqueness theorem for measures (Theorem 5.7) are satisfied. We conclude that
� = �.

(iv) Since each x has a compact neighbourhood, we can choose k so large that B1∕k(x)
becomes compact. In particular,K ⊂

⋃

x∈K B1∕k(x)(x) is an open cover. We can choose
each k(x) so large, that B1∕k(x)(x) has a compact closure. Since K is compact, we find
finitely many xi such that K ⊂

⋃

i B1∕k(xi)(xi) = Uk where k ∶= maxi ki. In particular,
Uk ⊂

⋃

i B1∕(xi)(xi) is compact. This produces a sequence of Uk ↓ K . The rest follows
almost literally as in the previous steps.

■■

Problem 17.3 Solution:

(i) We have to show that ‖�ℎf‖pp = ‖f‖p for all p ∈ p(dx). This is an immediate con-
sequence of the invariance of Lebesgue measure under translations:

‖�ℎf‖
p
p = ∫R

|f (x − ℎ)|p dx = ∫R
|f (y)|p dy = ‖f‖pp.
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(ii) We show the assertion first for f ∈ Cc(R). If f ∈ Cc(R), then K ∶= supp f is compact.
Pick R > 0 in such a way that K + B1(0) ⊂ BR(0). Since limℎ→0 f (x − ℎ) = f (x) and

|f (x − ℎ) − f (x)| ⩽ 2‖f‖∞1BR(0)(x) ∈ p(dx)

for any ℎ < 1, we can use dominated convergence to get
‖�ℎf − f‖pp = ∫ |f (x − ℎ) − f (x)|p dx ←←←←←←←←←←←←←←←←←→

ℎ→0
0.

Now take f ∈ p(dx). Since Cc(R) is dense in p(dx), cf. Theorem 17.8, there is a
sequence (fn)n∈N ⊂ Cc(R) such that ‖fn − f‖p → 0. From part (i) we get

‖�ℎf − f‖p ⩽ ‖�ℎ(f − fn)‖p
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

⩽‖fn−f‖p

+‖�ℎfn − fn‖p + ‖fn − f‖p

←←←←←←←←←←←←←←←←←→
ℎ→0

2‖fn − f‖p ←←←←←←←←←←←←←←←←←←←←→n→∞
0.

This finishes the proof of the first assertion. The second claim follows in a similar way.
Consider first f ∈ Cc(R) and K ∶= supp f . Since K is compact, there is some R > 0
with (ℎ +K) ∩K = ∅1 for all ℎ > R. If ℎ > R, then

|f (x − ℎ) − f (x)|p = |f (x − ℎ)|p1K (x + ℎ) + |f (x)|p1K (x)

and so
‖�ℎf − f‖pp = ∫K+ℎ

|f (x − ℎ)|p dx + ∫K
|f (x)|p dx

= ∫K
|f (y)|p dy + ∫K

|f (x)|p dx

= 2‖f‖pp.

This proves the assertion for f ∈ Cc(R), and the general case follows via density as in the
first part of (ii).

■■

Problem 17.4 Solution:

(i) Continuity is an immediate consequence of the dominated convergence theorem: assume
that (xn)n∈N is a sequence converging to x ∈ R. Since 1[xn−ℎ,xn+ℎ] → 1[x−ℎ,x+ℎ] a.e. and
f ∈ 1(dx), we see thatMℎf (xn)→Mℎf (x) as n→∞.
Contractivity ofMℎ follows from

∫ |Mℎf (x)| dx =
1
2ℎ ∫

|

|

|

|

|

∫

x+ℎ

x−ℎ
f (t) dt

|

|

|

|

|

dx

⩽ 1
2ℎ ∫

ℎ

−ℎ ∫
|f (x + t)| dx

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
∫ |f (y)| dy=‖f‖1

dt ⩽ ‖f‖1

(use Tonelli’s theorem to interchange the order of integrations).
1We use the notation ℎ +K ∶= {ℎ + x; x ∈ K}.
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(ii) Assume first that f ∈ Cc(R). Because of the continuity of the function f we find

|Mℎf (x) − f (x)| ⩽
1
2ℎ ∫

ℎ

−ℎ
|f (x + t) − f (x)| dx ⩽ sup

t∈[−ℎ,ℎ]
|f (x + t) − f (x)| ←←←←←←←←←←←←←←←←←→

ℎ→0
0

for all x ∈ R. Since the support of f , K ∶= supp f , is compact, there is some R > 0
such that K +B1(0) ⊆ BR(0). For ℎ < 1 we getMℎf (x) = 0 = f (x) if x ∉ BR(0). Since
|Mℎf (x)| ⩽ |f (x)| for x ∈ R, we get

|Mℎf (x) − f (x)| = |Mℎf (x) − f (x)|1BR(0)(x) ⩽ 2‖f‖∞1BR(0)(x) ∈ 1(dx).

An application of the dominated convergence theorem reveals

‖Mℎf − f‖1 = ∫ |Mℎf (x) − f (x)| dx
ℎ→0
←←←←←←←←←←←←←←←←←→ 0,

i.e. the claim is true for any f ∈ Cc(R). Now we take a general f ∈ 1(dx). Because of
Theorem 17.8 there is a sequence (fn)n∈N ⊂ Cc(R) such that ‖fn − f‖1 → 0. Therefore,

‖Mℎf − f‖1 ⩽ ‖Mℎ(f − fn)‖1
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

=‖fn−f‖1

+‖Mℎfn − fn‖1 + ‖fn − f‖1

←←←←←←←←←←←←←←←←←→
ℎ→0

2‖fn − f‖1 ←←←←←←←←←←←←←←←←←←←←→n→∞
0.

■■

Problem 17.5 Solution:

(i) Let A ∈ ℬ(X) such that f ∶= 1A ∈ p(�). Clearly, �(A) < ∞ and because of the
outer regularity of � there is an open set U ⊂ X such that A ⊂ U and �(U ) < ∞.
Literally as in the proof of Lemma 17.3 we can construct some �� ∈ CLip(X) ∩ p(�)
with ‖f − ��‖p ⩽ � (just replace in the proof Cb(X) with CLip(X)).

(ii) If f ∈ p(�), then the Sombrero lemma shows that there is a sequence of simple func-
tions (fn)n∈N satisfying 0 ⩽ fn ⩽ f , fn ↑ f . Using the monotone convergence
theorem, we see ∫ (f − fn)p d� ↓ 0; in particular, there is some n ∈ N such that
‖fn − f‖p ⩽ �. Using linearity and the result of part (i), we get some �� ∈ CLip(X)
such that ‖fn − ��‖p ⩽ �. Therefore,

‖f − ��‖p ⩽ ‖f − fn‖p + ‖fn − ��‖p ⩽ 2�.

(iii) We use the decomposition f = f+ − f−. Since f+, f− ∈ p(�), part (ii) furnishes
functions �,  ∈ CLip(X) ∩ p(�) such that ‖f+ − �‖p ⩽ � and ‖f− −  ‖p ⩽ �.
Consequently,

‖f − (� −  )‖p ⩽ ‖f+ − �‖p + ‖f− −  ‖p ⩽ 2�.

■■
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Problem 17.6 Solution: A set U ⊂ X is said to be relatively compact if it closure U is compact.
(i) Let (xn)n∈N be a countable dense subset of X. By assumption, each xn has a relatively

compact open neighbourhood: xn ∈ Vn and V n is compact. Since B1∕k(xn) ⊂ Vn for
sufficiently large values of k ⩾ k0(xn), we see that the balls B1∕k(xn), k ⩾ k0(xn), are
also relatively compact. Thus,

{B1∕k(xn) ∶ n ∈ N, k ⩾ k0(xn)} =∶ {Un; n ∈ N}

is a sequence of relatively compact, open sets. For any open set U ⊂ X we find

U =
⋃

n∈N
Un⊂U

Un.

(The inclusion ‘⊃’ is obvious. In order to see ‘⊂’ we observe that for any x ∈ U there
is some r > 0 with Br(x) ⊂ U . Since (xn)n∈N is dense, we may choose n ∈ N and
k ⩾ k0(xn) such that B1∕k(xn) ⊂ Br(x) ⊂ U .)

(ii) The sets Kn ∶= U 1 ∪⋯ ∪ U n are compact and increase towards X.
(iii) Assume thatU ⊂ X is an open set such that �(U ) <∞ and let (Un)n∈N be the sequence

from part (i). Because of (i), there is a subsequence (Un(k))k∈N ⊂ (Un)n∈N such that
U =

⋃

k Un(k). Set Wn ∶=
⋃n
k=1 Un(k) and observe that Wn ∈ . Since Wn ↑ U ,

Beppo Levi’s theorem shows that

‖1Wn
− 1U‖p ←←←←←←←←←←←←←←←←←←←←→n→∞

0.

This tells us that 1U ∈ .
(iv) First we show that � is outer regular. Set

Gn ∶=
n
⋃

k=1
Uk.

Obviously, the Gn are open sets, Gn ↑ X and �(Gn) < ∞ – here we use that the Uk are
relatively compact and that � is finite on compact sets. This means that the assumptions
of Theorem H.3 are satisfied, and we see that � is outer regular.
Let B ∈ ℬ(X), �(B) < ∞ and fix � > 0. Since � is outer regular, there is a sequence
of open sets (Un)n∈N such that Un ⊃ B and �(Un) < ∞. By monotone convergence,
‖1Un − 1B‖p → 0 as n→∞. Pick n ∈ N such that ‖1Un − 1B‖p ⩽ �. Because of (iii),
there is some D ∈  with ‖1Un − 1D‖p ⩽ �. Consequently,

‖1B − 1D‖p ⩽ ‖IB − 1Un‖p + ‖1Un − 1D‖p ⩽ 2�.

(v) By definition,  ⊂ p(�), i.e. it is enough to show that for every f ∈ p(�) and
� > 0 there is some D ∈  such that ‖f − 1D‖p ⩽ �. Using the Sombrero lemma
(Corollary 8.9) and the dominated convergence theorem we can construct a sequence
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of simple functions (fn)n∈N ⊂ p(�) such that ‖f −fn‖p → 0. If n is sufficiently large,
we have ‖f − fn‖p ⩽ �. Since fn is of the form

fn(x) =
N
∑

j=1
cj1Bj (x)

where cj ∈ R, Bj ∈ ℬ(X), j = 1,… , N , we can use part (iv) to get D ∈  with
‖fn − 1D‖p ⩽ �. With the triangle inequality we see that ‖f − 1D‖p ⩽ 2�. The
separability of p(�) now follows from the fact that  is a countable set.

■■

Problem 17.7 Solution:

(i) Assume first that A is an open set. Without loss of generality A ≠ ∅. Fix � > 0. Since
{

x ∈ A ∶ d(x,Ac) < 1
n

}

↓ ∅ as n→∞

the continuity of measures furnishes someN ∈ N such that

�
{

d(⋅, Ac) < 1
n

}

< � ∀n ⩾ N.

Define �n(x) ∶= min{nd(x,Ac), 1}. Clearly, �n ∈ Cb(X) and ‖��‖∞ ⩽ 1 = ‖1A‖∞.
Since 0 ⩽ �n ⩽ 1A ∈ p we even have �n ∈ p(�). Moreover,

{1A ≠ �n} ⊂
{

d(⋅, Ac) < 1
n

}

;

therefore, �{1A ≠ �n} ⩽ � for all n ⩾ N . Using dominated convergence gives ‖1A −
�n‖p ←←←←←←←←←←←←←←←←←←←←→

n→∞
0. If n ⩾ N is large enough, we get ‖1A − �n‖p ⩽ �. For such n, the

functions �n satisfy all requirements of the theorem.
In order to show the claim for any Borel set A ∈ ℬ(X), we proceed as in the proof of
Lemma 17.3: let U ⊂ X, �(U ) <∞, and define

D ∶= {A ∈ℬ(U ) ∶ ∀� > 0 ∃�� ∈ Cb(X)∩p(�) satisfying the assertion for f = 1A }.

As in the proof of Lemma 17.3 we see thatD is a Dynkin system. By construction, the
open sets are contained in D , and soℬ(U ) ⊂ D .
If A ∈ ℬ(X) is an arbitrary Borel set with 1A ∈ p(�), we have �(A) < ∞. Since �
is outer regular, there exists an open set U ⊂ X such that A ⊂ U and �(U ) <∞. Since
A ∈ℬ(U ) ⊂ D , the claim follows.

(ii) Let f ∈ p(�), 0 ⩽ f ⩽ 1, and fix � > 0. Without loss of generality we may assume
that ‖f‖∞ = 1, otherwise we would use f∕‖f‖∞. The (proof of the) Sombrero lemma
(Theorem 8.8) shows that

fn ∶=
n2n−1
∑

k=0

k
2n
1{ k

2n ⩽f<
k+1
2n

} + n1{f>n}
0 ⩽ f ⩽ 1
=

2n−1
∑

k=0

k
2n
1{ k

2n ⩽f<
k+1
2n

}, n ∈ N,
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monotonically converges to f . With f0 ∶= 0 we get

f = lim
n→∞

(fn − f0) = lim
n→∞

n
∑

j=1
(fj − fj−1) =

∑

j⩾1
(fj − fj−1) =

∑

j⩾1

1
2j
�j

for �j ∶= 2j(fj − fj−1). We claim that

�j(x) ∈ {0, 1} ∀x ∈
{

fj−1 =
k
2j−1

}

.. (⋆⋆)

Indeed: By definition, fj attains on
{

fj−1 =
k
2j−1

}

=
{

k
2j−1 ⩽ f < k+1

2j−1

}

only the val-
ues 2k2j and 2k+1

2j . In the first case, we have �j = 0, in the latter �j = 1. Thus, �j(x) = 1
happens if, and only if,

x ∈
{

fj =
2k + 1
2j

}

=
{2k + 1

2j
⩽ f < 2k + 2

2j
}

.

Therefore, we can write Aj ∶= {�j = 1} in the following form

Aj =
2n−1−1
⋃

k=0

{2k + 1
2j

⩽ f < 2k + 2
2j

}

.

Since �j = 1Aj , we get
f =

∑

j⩾1

1
2j
1Aj .

Observe that 1Aj ⩽ 2jf ∈ p(�). Because of part (i), there is for every j ⩾ 1 a function
�j,� ∈ Cb(X) ∩ p(�) such that

‖�j,� − �j‖p ⩽
�
2j
, �{�j,� ≠ �j} ⩽

�
2j

and ‖�j,�‖∞ ⩽ ‖�j‖∞ ⩽ 1.

The function �� ∶= ∑

j⩾1
�j,�
2j enjoys all required properties:

• �� is continuous (since it is the uniform limit of continuous functions):
‖

‖

‖

‖

‖

‖

�� −
n
∑

j=1

�j,�
2j

‖

‖

‖

‖

‖

‖∞

⩽
∞
∑

j=n+1

1
2j
‖�j,�‖∞ ⩽

∞
∑

j=n+1

1
2j

←←←←←←←←←←←←←←←←←←←←→
n→∞

0.

• ‖��‖∞ ⩽
∑

j⩾1
‖�j,�‖∞
2j ⩽

∑

j⩾1
1
2j = 1 = ‖f‖∞.

• ‖�� − f‖p ⩽
∑

j⩾1
1
2j ‖�j,� − �j‖p ⩽ �

∑

j⩾1
1
2j ⩽ �. In particular, �� ∈ p(�).

• �{�� ≠ f} ⩽
∑

j⩾1 �{�j,� ≠ �j} ⩽
∑

j⩾1 �2−j = �.
(iii) Observe, first of all, that the theorem holds for all g ∈ p(�) with 0 ⩽ g ⩽ ‖g‖∞ <∞;

for this, apply part (ii) to g∕‖g‖∞. Without loss of generality we may assume for such
g that �� ⩾ 0; otherwise we would consider �̃� ∶= �� ∨ 0.
Let f ∈ p(�) and ‖f‖∞ < ∞. We write f = f+ − f− and, because of the preceding
remark, there are functions ��,  � ∈ Cb(X) ∩ p(�), �� ⩾ 0,  � ⩾ 0, such that

‖��‖∞ ⩽ ‖f+‖∞, �
{

f+ ≠ ��
}

⩽ � and ‖f+ − ��‖p ⩽ �
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and
‖ �‖∞ ⩽ ‖f−‖∞, �

{

f− ≠  �
}

⩽ � and ‖f− −  �‖p ⩽ �.

For Φ� ∶= �� −  � ∈ Cb(X) ∩ p(�) we find

�{Φ� ≠ f} ⩽ �{�� ≠ f+} + �{ � ≠ f−} ⩽ 2�

as well as
‖Φ�‖∞ ⩽ max{‖f+‖∞, ‖f−‖∞} = ‖f‖∞

(this step requires that �� ⩾ 0 and  � ⩾ 0). The triangle inequality yields

‖f − Φ�‖p ⩽ ‖f+ − ��‖p + ‖f− −  �‖p ⩽ 2�.

Consequently, Φ� satisfies the conditions of the theorem for f .
(iv) Fix f ∈ p(�) and � > 0. Using the Markov inequality we get

�{|f | ⩾ R} ⩽ 1
Rp ∫

|f |p d�.

In particular, we can pick a sufficiently large R > 0 such that �{|f | ⩾ R} ⩽ �. Using
monotone convergence, we see

∫{|f |>R}
|f |p d� < �

if R > 0 is large. Setting fR ∶= (−R) ∨ f ∧ R, we can use (iii) to construct a function
�� ∈ Cb(X) ∩ p(�) with

‖��‖∞ ⩽ ‖fR‖∞, �
{

fR ≠ ��
}

⩽ �
Rp

and ‖fR − ��‖p ⩽ �.

Obviously, ‖��‖∞ ⩽ ‖f‖∞. Moreover,

‖�� − f‖pp

= ∫
{|f |⩽R}

|�� − f |p d� + ∫
{|f |>R}
∩{��=fR}

|�� − f |p d�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶I1

+ ∫
{|f |>R}
∩{��≠fR}

|�� − f |p d�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶I2

⩽ ‖�� − fR‖pp + I1 + I2.

Let us estimate I1 and I2 separately. Since fR|{|f |>R} = R, we get

I1 = ∫{f>R}∩{��=fR}
(f − R)p d� + ∫{f<−R}∩{��=fR}

(−R − f )p d�

⩽ ∫{f>R}∩{��=fR}
f p

⏟⏟⏟
|f |p

d� + ∫{f<−R}∩{��=fR}
(−f )p
⏟⏟⏟

|f |p

d�

⩽ ∫{|f |>R}
|f |p d� < �.
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With the elementary estimate

|a + b|p ⩽ C(p)(ap + bp) ∀a, b ⩾ 0, p ⩾ 1 (♯)

(in fact, C(p) = 2p−1) we get

I2 ⩽ C(p)∫{|f |>R}∩{��≠fR}
|��|

p d� + C(p)∫{|f |>R}∩{��≠fR}
|f |p d�

⩽ C(p)‖��‖p∞�{�� ≠ fR} + C(p)∫{|f |>R}
|f |p d�

⩽ C(p)Rp �
Rp

+ C(p)�.

Therefore,
‖�� − f‖pp ⩽ �p + � + 2C(p)�.

Since � > 0 is arbitrary, ‖�� − f‖p is as small as we want it to be. Finally,

�{f ≠ ��} ⩽ �{fR ≠ ��} + �{|f | ⩾ R} ⩽ 2�.

This shows that �� enjoys all required properties.
Remark: (♯) follows from Hölder’s inequality

|

|

|

|

|

|

n
∑

j=1
xj ⋅ yj

|

|

|

|

|

|

⩽

( n
∑

j=1
|xj|

p

)
1
p

⋅

( n
∑

j=1
|yj|

q

)
1
q

for x, y ∈ Rn and conjugate indices p, q ⩾ 1. If we take, in particular, d = 2, x = (a, b),
y = (1, 1), then

|a ⋅ 1 + b ⋅ 1| ⩽ (|a|p + |b|p)
1
p ⋅ 2

1
q .

Raising both sides to the pth power proves the estimate.
■■

Problem 17.8 Solution: We see immediately that ∫ b
a p(x)f (x) dx = 0 for all polynomials p. Fix

g ∈ C[a, b] and � > 0. ByWeierstraß’ theorem, there is some polynomial p such that ‖g−p‖∞ ⩽ �.
Therefore,

|

|

|

|

|

∫

b

a
g(x)f (x) dx

|

|

|

|

|

=
|

|

|

|

∫

b

a
(g(x) − p(x))f (x) dx + ∫

b

a
p(x)f (x) dx

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
=0

|

|

|

|

⩽ ∫

b

a
|p(x) − g(x)|
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

⩽�

|f (x)| dx

⩽ � ∫

b

a
|f (x)| dx.

From this we conclude that

∫

b

a
g(x)f (x) dx = 0 ∀g ∈ C[a, b].
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Define measures �± by �±(dx) ∶= 1[a,b](x)1{±f>0}(x) dx. Then ∫ g d�+ = ∫ g d�− for all
g ∈ C[a, b]. According to Theorem 17.12, C[a, b] is a determining set, and so �+ = �−. This is
only possible if � = 0, hence f = 0 Lebesgue a.e.

■■

Problem 17.9 Solution:

(i) First of all, we note that it is enough to know that the polynomials are uniformly dense
in the set C[−1, 1]. This follows immediately from the observation that any function in
C[0, 1] can be mapped onto C[a, b] using the affine transform a + t(b − a), t ∈ [0, 1] –
and vice versa. Fix u ∈ C[−1, 1] and define a sequence of polynomials (pn)n∈N by

pn(x) ∶=
1
cn

(

x2

16
− 1

)n

, x ∈ R,

where cn ∶= ∫ 4−4(x
2∕16−1)n dx. Since u ∈ C[−1, 1], there is some ũ ∈ C(R) such that

ũ(x) = 0 for |x| > 2 and ũ(x) = u(x) for x ∈ [−1, 1]. Define p̃n(x) ∶= pn(x)1[−4,4](x)
and

un(x) ∶= ũ ⋆ p̃n(x) = ∫ ũ(x − y)p̃n(y) dy, x ∈ R.

We find
un(x) = ∫ ũ(x − y)pn(y) dy ∀x ∈ [−2, 2],

since
|x| ⩽ 2 ⇐⇒ ũ(x − y) = 0 ∀|y| > 2.

Using the fact that

un(x) = ∫ ũ(y)pn(x − y) dy, x ∈ [−2, 2]

we see that un|[−2,2] is a polynomial. Let us show that un → ũ converges uniformly –
and since ũ|[−1,1] = u, the claim follows. Using that p̃n ⩾ 0 and ∫ p̃n dx = 1 we get

|

|

un(x) − ũ(x)|| =
|

|

|

|

∫ (ũ(x − y) − ũ(x))p̃n(y) dy
|

|

|

|

⩽ ∫[− 1
R ,

1
R

]
|ũ(x − y) − ũ(x)|p̃n(y) dy

+ ∫R⧵
[

− 1
R ,

1
R

]
|ũ(x − y) − ũ(x)|p̃n(y) dy

=∶ I1(x) + I2(x)

for all R > 0. Let us bound I1 and I2 separately. Since ũ(x) = 0 for |x| > 2, the
function ũ is uniformly continuous and we get

I1(x) ⩽ sup
y∈

[

− 1
R ,

1
R

]

|ũ(x − y) − ũ(x)|∫[− 1
R ,

1
R

]
p̃n(y) dy
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⩽ sup
y∈

[

− 1
R ,

1
R

]

|ũ(x − y) − ũ(x)|

←←←←←←←←←←←←←←←←←←←←←←→
R→∞

0

uniformly for all x. Because of the boundedness of ũ we see that

I2(x) ⩽ 2‖ũ‖∞ ∫R⧵
[

− 1
R ,

1
R

]
p̃n(y) dy.

Since p̃n(y) ↓ 0 for all y ≠ 0, we can use themonotone convergence theorem to conclude
that I2 ←←←←←←←←←←←←←←←←←←←←→n→∞

0 uniformly in x. This proves the claim.
(ii) Fix u ∈ Cc[0,∞). Since u has compact support, u(x) = 0 for large x; in particular,

u◦(− log)(x) = 0 if x is small. Therefore,
⎧

⎪

⎨

⎪

⎩

u◦(− log)(x), x ∈ (0, 1]

0, x = 0,

defines a continuous function on [0, 1]. According to (i), there is a sequence of polyno-
mials (pn)n∈N with pn → u◦(− log) uniformly.

(iii) For p(x) ∶= xn we obviously have p(e−t) = e−nt = �n(t) and, by assumption,

∫ p(e−t)�(dt) = ∫ �n(t)�(dt) = ∫ �n(t) �(dt) = ∫ p(e−t) �(dt). (⋆)

Using the linearity of the integral, this equality extends to arbitrary polynomials p.
Assume that u ∈ Cc[0,∞) and (pn)n∈N as in (ii). Since pn converges uniformly to
u◦(− log), we can interchange integration and limit to get

∫ u d� = ∫ (u◦(− log))(e−t)�(dt)

= lim
n→∞∫ pn(e−t)�(dt)

(⋆)
= lim

n→∞∫ pn(e−t) �(dt)

= ∫ (u◦(− log))(e−t) �(dt)

= ∫ u d�.

■■
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18 Hausdor� measure.

Solutions to Problems 18.1�18.7

Problem 18.1 Solution: This is clear from the monotonicity of the infimum and the fact that there
are more P -�-covers than C -�-covers, i.e. we have


�
�,P (A) ⩽ 

�
�,C (A).

■■

Problem 18.2 Solution: From the proof of Corollary 18.10 we know, using the monotonicity of
measures


�
(A) = �(G) = lim

k→∞
�(Uk)

Uk ⊃ A
⩾ inf

{

�(U ) ∶ U ⊃ A, U open} U ⊃ A
⩾ 

�
(A).

When using the monotonicity we must make sure that �(Uk) < ∞ – this we can enforce by
Uk ⇝ Uk ∩ U (where U is the open set with finite Hausdorff measure).
For counting measure this is clearly violated: Any open set U ⊃ A ∶= {a} has infinitely many
points! Nevertheless A is itself a G�-set.

■■

Problem 18.3 Solution: By Corollary 18.10 there are open sets Ui such that H ∶=
⋂

i Ui ⊃ B and
�(H ⧵ B) = 0 or �(H) = �(B). Now we can write each Ui as an F�-set:

Ui =
⋃

Br(x)⊂Ui,x∈Ui

Br∕2(x)

is indeed a countable union of closed sets, since Ui ⊂ X contains a countable dense subset. So we
have

Ui =
⋃

k
Fik for closed sets Fik.

Without loss of generality we may assume that the sets Fik increase in k, otherwise we would
consider Fi1 ∪⋯ ∪ Fik. By the continuity of measure (here we require the measurability of B!)
we have

lim
k→∞

�(B ∩ Fik) = �(B ∩ Ui) = �(B).
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In particular, for every � > 0 there is some k(i) with

�(B ⧵ Fik(i)) ⩽ �∕2i, i ∈ N.

Consider the closed set F =
⋂

i Fik(i) and observe that

�(F ) ⩾ �(F ∩ B) ⩾ �(B) −
∑

i
�(B ⧵ Fik(i)) ⩾ �(B) −

∑

i

�
2i
= �(B) − �.

Since F ⊂
⋂

i Ui, we get

�(F ⧵ B) ⩽ �
(

⋂

i
Ui ⧵ B

)

= �(H ⧵ B) = 0.

By Corollary 18.10, the set F ⧵ B is contained in a G�-set G = ⋂

i Vi (where the Vi are open sets)
such that �(G) = 0 = �(F ⧵ B). Thus,

F ⧵ G = F ∩
⋃

i
V c
i =

⋃

i
F ∩ V c

i
⏟⏟⏟
closed

is an F�-set inside B – we have F ⧵ G ⊂ F ⧵ (F ⧵ B) ⊂ B – and

�(F ⧵ G) ⩾ �(F ) −�(G) ⩾ �(B) − �.

Now consider � = 1
n
and take unions of the thus obtained F�-sets. But, clearly, countable unions

of F�-sets are still F� .
■■

Problem 18.4 Solution: Fix A ⊂ Rn. We have to show that for any Q ⊂ Rn the equality

#Q = #(Q ∩ A) + #(Q ⧵ A)

holds. We distinguish between two cases.
Case 1: #Q = ∞. Then at least one of the terms #(Q ∩ A), #(Q ⧵ A) on the right-hand side must
be infinite, so the equality is clear.
Case 2: #Q <∞. Then both sets (Q∩A), (Q⧵A) are finite and, as such, they are metrically separ-
ated. Therefore we can use the fact that 0

(A) = #(A) is a metric outer measure (Theorem 18.5)
to get equality.

■■

Problem 18.5 Solution: Use Lemma 18.17 to see 0 ⩽ dim B ⩽ dim R
n as B ⊂ Rn. From

Example 18.18 we know that dim R
n = n.

IfB contains an open setU (or a set of non-zero Lebesgue measure), we seen(B) ⩾ n(U ) > 0;
intersect with a large open ball K to make sure that n(B ∩ K) < ∞ and U ∩ K ⊂ B ∩ K . This
shows n = dim(B ∩K) ⩽ dim(B) ⩽ n.

■■

224



Solution Manual. Last update 18th July 2019

Problem 18.6 Solution: By self-similarity, we see for the Sierpinski triangle of generation i, S i−1
and its follow-up stage S i = S i1 ∪ S

i
2 ∪ S

i
3 that the S ik’s are scaled versions of S with a factor 12 .

So,

s(S i−1) = s(S i1) +s(S i2) +s(S i3) = 3 ⋅ 2
−ss(S i−1)

and dividing bys(S i−1) and solving the equality 1 = 3 ⋅ 2−s ⇐⇒ 2s = 3 ⇐⇒ s = log 3∕ log 2

Koch’s snowflake S has in each subsequent generation stage 4 new parts, each scaled by 1∕3, so

s(S) = s(S1) +s(S2) +s(S3) +s(S4) = 4 ⋅ 3−ss(S)

and dividing by s(S) and solving the equality 1 = 4 ⋅ 3−s ⇐⇒ 3s = 4 ⇐⇒ s = log 4∕ log 3.
■■

Problem 18.7 Solution: Let (Si)i∈N be an �-cover of A. Then we have
∞
∑

i=1
�(diamUi) =

∞
∑

i=1

�(diamUi)
 (diamUi)

 (diamUi)

⩽
∞
∑

i=1
sup
x⩽�

�(x)
 (x)

 (diamUi)

= sup
x⩽�

�(x)
 (x)

∞
∑

i=1
 (diamUi).

Taking the inf over all admissible �-covers shows


�
� (A) ⩽ supx⩽�

�(x)
 (x)


 
� (A) ⩽ supx⩽�

�(x)
 (x)


 
(A).

Letting � → 0 yields


�
(A) = lim

�→0

�
� (A) ⩽ lim�→0 supx⩽�

�(x)
 (x)


 
(A) = lim sup

x→0

�(x)
 (x)


 
(A) = 0.

■■
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19 The Fourier transform.

Solutions to Problems 19.1�19.9

Problem 19.1 Solution:

(a) By definition,

1̂[−1,1](�) =
1
2� ∫ 1[−1,1](x)e−i x� dx

= 1
2�

[

−e
−i x�

i �

]1

x=−1

= 1
2�

1
i �

(

ei � − e−i �
)

= 1
�
sin �
�

for � ≠ 0. Here we use that sin � = Im ei� = 1
2i (e

i� − e−i �). For � = 0 we have

1̂[−1,1](0) =
1
2� ∫ 1[−1,1](x) dx =

1
�
.

(Note that sin �
�

→ 1 as � → 0, i.e. the Fourier transform is continuous at � = 0 – as one would
expect.)

(b) The convolution theorem, Theorem 19.11, shows that f̂ ∗ g = (2�)f̂ ⋅ ĝ. Because of part (a)
we get

ℱ (1[−1,1] ∗ 1[−1,1])(�) = (2�)
(

1
�
sin �
�

)2
= 2
�
sin2 �
�2

.

(c) We get from the definition that

ℱ (e−(⋅)1[0,∞)(⋅))(�) =
1
2� ∫

∞

0
e−xe−i x� dx

= 1
2� ∫

∞

0
e−x(1+i �) dx

= − 1
2�

1
1 + i �

[

e−x(1+i �)
]∞
x=0

= 1
2�

1
1 + i �

.

(d) Obviously, we have

∫ e−i x�e−|x| = ∫(−∞,0)
e−i x�ex dx + ∫(0,∞)

e−i x�e−x dx
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= ∫(0,∞)
ei y�e−y dy + ∫(0,∞)

e−i x�e−x dx.

Thus,

ℱ (e−|⋅|)(�) = ℱ (e−⋅1[0,∞))(−�) +ℱ (e−⋅1[0,∞))(�)
(c)
= 1
2�

(

1
1 − i �

+ 1
1 + i �

)

= 1
�

1
1 + �2

.

(e) From (d) and ℱ ◦ℱ u(x) = (2�)−1u(−x) (cf. Corollary 19.24) we find

ℱ
(

1
1 + x2

)

(�)
(d)
= � ⋅ ℱ ◦ℱ (e−|⋅|)(�) = 1

2
e−|−�| = 1

2
e−|�|.

(f) Note that

∫[−1,1]
(1 − |x|)e−i x� dx = ∫[−1,1]

e−i x� dx + ∫[−1,0]
xe−i x� dx − ∫[0,1]

xe−i x� dx

= ∫[−1,1]
e−i x� dx + ∫[0,1]

(−y)ei y� dy − ∫[0,1]
xe−i x�

= ∫[−1,1]
e−i x� dx − ∫[0,1]

x (ei x� + e−i x�)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

2 cos(x�)

dx.

The first expression is as in part (a). For the second integral we use integration by parts:

∫

1

0
x cos(x�) dx =

[

x
sin(x�)
�

]1

x=0
− 1
� ∫

1

0
sin(x�) dx

= sin(�)
�

− 1
�

[

cos(x�)
�

]1

x=0

= sin(�)
�

− cos(�)
�2

+ 1
�2
.

Thus,

ℱ (1[−1,1](1 − | ⋅ |))(�) = 1
�
sin �
�

− 1
�

(

sin �
�

− cos �
�2

+ 1
�2

)

= 1
�
1 − cos �

�2
.

(g) By definition,

ℱ

( ∞
∑

k=0

tk

k!
e−t�k

)

(�) = 1
2� ∫ e−i x�

∞
∑

k=0

tk

k!
e−t�k(dx) =

1
2�

∞
∑

k=0

tk

k!
e−te−i k� .

Since e−i k� = (e−i �)k, we conclude that

ℱ

( ∞
∑

k=0

tk

k!
e−t�k

)

(�) = 1
2�

∞
∑

k=0

(te−i �)k

k!
e−t = 1

2�
e−tete

−i � = 1
2�
et(e

−i �−1).
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(h) The same calculation as in (g) yields

ℱ

( k
∑

n=0

(

n
k

)

pkqn−k�k

)

(�) = 1
2� ∫ e−i x�

n
∑

k=0

(

n
k

)

pkqn−k�k(dx)

= 1
2�

n
∑

k=0

(

n
k

)

pkqn−ke−i �k

= 1
2�

n
∑

k=0

(

n
k

)

(pe−i �)kqn−k

= 1
2�

(

pe−i� + q
)n .

In the final step we use the binomial theorem.
■■

Problem 19.2 Solution: Observe that for complex numbers u, v ∈ C
|u + v|2 = (u + v)(u + v)

= (u + v)(ū + v̄)

= uū + uv̄ + vū + vv̄

= |u|2 + 2Re uv̄ + |v|2

and so, setting v⇝ −v

|u − v|2 = |u|2 − 2Re uv̄ + |v|2

and so, setting v⇝ iv

|u + iv|2 = |u|2 + 2 Im uv̄ − |v|2

and so, setting v⇝ −iv

|u − iv|2 = |u|2 − 2 Im uv̄ − |v|2

And this gives
|u + v|2 − |u − v|2 + i|u + iv|2 − i|u − iv|2 = 4Re uv̄ + 4i Im uv̄ = 4uv̄.

Thus, we have the following ‘polarization’ formula

∫ uv̄ dx = 1
4

[

∫ |u + v|2 dx − ∫ |u − v|2 dx + i∫ |u + iv|2 dx − i∫ |u − iv|2 dx
]

= 1
4
[

‖u + v‖22 − ‖u − v‖22 + i‖u + iv‖
2
2 − i‖u − iv‖

2
2
]

and now the claim follows directly from the statement of Plancherel’s theorem.

Alternative solution: Mimic the proof of Theorem 19.20: We have u, v, û, v̂ ∈ L2(�n) (as a result
of Theorem 19.20), and so u ⋅ v̄ and û ⋅ v̂ are integrable. Therefore,

∫ û(�)v̂(�) d� = (2�)−n ∫ û(�)v̌(�) d�
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19.12
= (2�)−n ∫ u(x)ℱ

[

v̌
]

(x) dx

19.9
= (2�)−n ∫ u(x)v(x) dx.

■■

Problem 19.3 Solution: Assume that �̃ = �. We have

�(�) = ∫ e−ix� �(dx)

�̃ = �
= ∫ e−ix� �̃(dx)

15.1
= ∫ e−i(−x)� �(dx)

= ∫ e−ix� �(dx)

= ∫ e−ix� �(dx)

= �(�).

Therefore, � is real-valued. On the other hand, the above calculation shows that

�(�) = ∫ e−ix��̃(dx).

This means that � = � entails ℱ � = ℱ �̃, and so � = �̃ because of the injectivity of the Fourier
transform.

■■

Problem 19.4 Solution: From linear algebra we know that a symmetric positive definite matrix has
a unique symmetric positive square root, i.e. there is some B ∈ Rn×n which is symmetric and
positive definite such that B2 = A. Since det(B2) = (det B)2, we see that det B =

√

det A > 0.
Now we change coordinates according to y ∶= Bx

∫ e−i⟨x,�⟩e−⟨x,Ax⟩ dx = ∫ e−i⟨x,�⟩e−⟨Bx,Bx⟩ dx

= 1
det B ∫ e−i⟨B

−1y,�⟩e−|y|
2
dy

= 1
√

det A ∫ e−i⟨y,B
−1�⟩e−|y|

2
dy.

If we set
g1∕2(x) ∶=

1
�n∕2

exp
(

−|x|2
)

,

cf. Example 19.2(iii), then the calculation from above gives

ℱ (e−⟨⋅,A⋅⟩)(�) = �n∕2
√

det A
ℱ (g1∕2)

(

B−1�
)

.
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Example 19.2(iii) now shows

ℱ (e−⟨⋅,A⋅⟩)(�) = �n∕2
√

det A
1

(2�)n
exp

(

− |B
−1�|2

4

)

.

Finally, since B−1 = (B−1)⊤,

|B−1�|2 = ⟨B−1�, B−1�⟩ = ⟨�, (B−1B−1
⏟⏞⏟⏞⏟

A−1

)�⟩,

we infer that
ℱ (e−⟨⋅,A⋅⟩)(�) = 1

√

det A
1
2n∕2

1
(2�)n∕2

exp
(

−
⟨�, A−1�⟩

4

)

.

■■

Problem 19.5 Solution: gt(x) = (2�t)−1∕2e−x2∕2t and ĝt(�) = (2�)−1e−t�2∕2. By Plancherel’s the-
orem (Theorem 19.20, plus polarization) or by Problem 19.2 we see that

∫ û(�)e−t|�|2∕2 d� = (2�)∫ û(�)ĝt(�) d�

= ∫ u(x)gt(x) dx

= ∫ u(x)(2�t)−1∕2e−x2∕2t dx

= (2�)−1∕2 ∫ u(ty)e−y2∕2 dy

⩽ c‖u‖∞.

(In fact, c = 1, see Example 14.11). Now let t ↑ 0 using monotone convergence and use that, by
assumption, û ⩾ 0.
The same argument holds for L2-functions since gt ∈ L2.

■■

Problem 19.6 Solution: We follow the hint and find using Fubini’s theorem

2
(R
2

)n

∫

1∕R

−1∕R
⋯∫

1∕R

−1∕R ∫Rn
(1 − ei⟨x,�⟩)�(dx) d�1… d�d

= 2∫Rn

(R
2

)n

∫

1∕R

−1∕R
⋯∫

1∕R

−1∕R
(1 − ei⟨x,�⟩) d�1… d�d �(dx)

= 2∫Rn

R
2 ∫

1∕R

−1∕R
… R

2 ∫

1∕R

−1∕R
(1 − ei⟨x,�⟩) d�1… d�d �(dx)

= 2∫Rn

(

1 − R
2 ∫

1∕R

−1∕R
… R

2 ∫

1∕R

−1∕R
ei⟨x,�⟩ d�1… d�d

)

�(dx)

= 2∫Rn

(

1 −
n
∏

n=1

R
2 ∫

1∕R

−1∕R
eixn�n d�n

)

�(dx)
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= 2∫Rn

(

1 −
n
∏

n=1

R
2

[

eixn�n
ixn

]�n=1∕R

�n=−1∕R

)

�(dx)

= 2∫Rn

(

1 −
n
∏

n=1

eixn∕R − e−ixn∕R
2ixn∕R

)

�(dx)

= 2∫Rn

(

1 −
n
∏

n=1

sin(xn∕R)
xn∕R

)

�(dx)

⩾ 2∫Rn⧵[−2R,2R]n

(

1 −
n
∏

n=1

sin(xn∕R)
xn∕R

)

�(dx).

In the last step we use that the integrand is positive since | sin y∕y| ⩽ 1. Observe that
x ∈ Rn ⧵ [−2R, 2R]n ⇐⇒ ∃n = 1,… , n ∶ |xn| > 2R

and so
n
∏

n=1

sin(xn∕R)
xn∕R

⩽ 1
2

hence

2
(R
2

)n

∫

1∕R

−1∕R
⋯∫

1∕R

−1∕R ∫Rn
(1 − ei⟨x,�⟩)�(dx) d�1… d�d

⩾ 2∫Rn⧵[−2R,2R]n

(

1 −
n
∏

n=1

sin(xn∕R)
xn∕R

)

�(dx)

⩾ 2∫Rn⧵[−2R,2R]n

(

1 − 1
2

)

�(dx)

⩾ ∫Rn⧵[−2R,2R]n
�(dx).

Remark. A similar inequality exists for the Fourier transform (instead of the inverse Fourier
transform). This has the form

� (Rn ⧵ [−2R, 2R]n) ⩽ 2(�R)n ∫[−1∕R,1∕R]n
(

�̂(0) − Re �̂(�)
)

d�.

■■

Problem 19.7 Solution:

(i) Let �1,… , �n ∈ Rn and �1,… , �n ∈ C. From the definition of the Fourier transform
we get

n
∑

i,k=1
�(�j − �k)�j �̄k =

1
(2�)n

n
∑

j,k=1
�j �̄k ∫ e−i x(�j−�k) d�(x)

= 1
(2�)n

n
∑

j,k=1
�j �̄k ∫ e−i x�je−i x�k d�(x)

= 1
(2�)n ∫

( n
∑

j=1
�je

−i x�j

)( n
∑

k=1
�ke−i x�k

)

d�(x)
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= 1
(2�)n ∫

|

|

|

|

|

|

n
∑

j=1
�je

−i x�j
|

|

|

|

|

|

2

d�(x) ⩾ 0.

Note that this already implies that �(−�) = �(�). The argument is as follows: If we
have for a matrix (ajk) that∑jk ajk�j �̄j ⩾ 0, then

0 ⩽
∑

jk
ajk�j �̄k =

∑

jk
ajk�j �̄k =

∑

jk
ajk�̄j�k =

∑

kj
akj �̄k�j

which means that ajk = akj . Apply this to the matrix ajk = �(�j − �k) with m = 2 and
�1 = � and �2 = 0 to infer that �(�) = �(−�).

(ii) We want to use the differentiability lemma for parameter-dependent integrals. For this
we define

u(�, x) ∶= 1
(2�)n

e−i x� .

Since � is a finite measure and |u(x, �)| ⩽ (2�)−n, we find u(�, ⋅) ∈ L1(�). Moreover,

|)�ju(�, x)| = (2�)
−d
|xj| ⩽ (2�)−d|x|

⩽ (2�)−d
(

1[−1,1](x) + |x|m1R⧵[−1,1](x)
)

=∶ w(x) ∈ L1(�)

is an integrable majorant. With Theorem 12.5 we find

)�j�(�) = )�j ∫ u(�, x)�(dx) = 1
(2�)n ∫

(−ixj)e−i x��(dx).

Iterating this argument, we see that )�� exists for any � ∈ Nn
0 such that |�| ⩽ m.

(iii) We follow the hint and consider first the case d = 1 and n = 1. We can rewrite the
expression �(2ℎ) − 2�(0) + �(−2ℎ) using Fourier transforms:

�(2ℎ) − 2�(0) + �(−2ℎ) = 1
2� ∫ (e−i 2ℎx − 2 + ei 2ℎx)�(dx)

= 1
� ∫ (cos(2ℎx) − 1)�(dx).

L’Hospital’s theorem applies and gives
1 − cos(2y)

4y2
y→0
←←←←←←←←←←←←←←←←←→

1
2
.

Now we can use Fatou’s lemma

∫ x2 1
2
�(dx) = ∫ x2 lim

ℎ→0

1 − cos(2ℎx)
4(ℎx)2

�(dx)

⩽ lim inf
ℎ→0

1
4ℎ2 ∫

(1 − cos(2ℎx))�(dx)

= −� lim inf
ℎ→0

1
4ℎ2

(

�(2ℎ) − 2�(0) + �(−2ℎ))

= −��′′(0) <∞.

233



R.L. Schilling: Measures, Integrals & Martingales

If n ⩾ 1, we use induction. Assume that � ∈ C2n(R) and that the assertion has been
proved for n−1. Since� ∈ C2n(R)⇒ � ∈ C2(n−1), we see by the induction assumption
that ∫ |x|2(n−1) d�(x) <∞. Thus, �(dx) ∶= x2(n−1)�(dx) is a measure and

�̂(�) = 1
2� ∫ x2(n−1)e−i x� d�(x)

= 1
2�

1
(−i)2(n−1)

d2(n−1)

d�2(n−1) ∫
e−i x� d�(x).

Consequently, we see that �̂ ∈ C2(R). The first part of the proof (n = 1) gives

∫ |x|2n d�(x) = ∫ |x|2 d�(x) <∞.

If d ⩾ 1, then we set �j(x) ∶= xj , x ∈ Rn, j ∈ {1,… , d}. Apply the case d = 1 to the
measures �j(�).

(iv) Assume that z ∈ Cn. IfK ∶= supp� is compact, then we get, because of the continuity
of e−i zx, thatM ∶= supx∈K |e−i zx| <∞. From

∫ u d� = ∫supp�
u d� for any u ⩾ 0

we conclude that
∫ |e−i zx| d�(x) ⩽M�(Rn) <∞,

i.e.
�(z) = 1

(2�)n ∫
e−i zx d�(x)

is well-defined. Setting

un(x) ∶=
1

(2�)n
n
∑

k=0

(−i zx)k

k!
, x ∈ Rn,

we get

|un(x)| ⩽
1

(2�)n
n
∑

k=0

|zx|k

k!
⩽ 1
(2�)n

e|zx| ⩽ 1
(2�)n

sup
x∈K

e|zx| <∞.

Since � is a finite measure, we can use the dominated convergence theorem to get

�(z) = ∫ lim
n→∞

un(x)�(dx)

= lim
n→∞∫ un(x) d�(x)

= 1
(2�)n

∞
∑

k=0

1
k! ∫

(zx)k d�(x).

This proves that � is analytic.
■■
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Problem 19.8 Solution: Note that ei x∕n n→∞
←←←←←←←←←←←←←←←←←←←←→ 1 for all x ∈ R. On the other hand, we gather from

∫B e
ix∕n dx = 0 that 1Bei⋅∕n ∈ 1(dx). As |ei x∕n| = 1, we get �1(B) < ∞. By dominated

convergence
0 = lim

n→∞∫B
ei x∕n dx = ∫B

lim
n→∞

ei x∕n

⏟⏞⏞⏟⏞⏞⏟
1

dx = �1(B).

Alternative solution: Set f (x) ∶= 1B(x); by assumption, f̂ (1∕n) = 0. Since the Fourier trans-
form is continous, cf. 19.3, we get

f̂ (0) = lim
n→∞

f̂
(1
n

)

= 0.

On the other hand, f̂ (0) = (2�)−1�1(B).
■■

Problem 19.9 Solution:

(i) ⇐: Since �(R ⧵ 2�
�
Z) = 0 we find

� =
∑

j∈Z
pj� 2�

� Z

with pj ∶= �(2�� j). From the definition of the Fourier transform we get

�̂(�) = 1
2� ∫ e−i x��(dx)

= 1
2�

∑

j∈Z
pj exp

[

−i
(

2�
�
j
)

�
]

for all � ∈ R. Setting � = �, we see
�̂(�) = 1

2�
∑

j∈Z
pj exp(−i2�j)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

1

= 1
2�

∑

j∈Z
pj exp(−i 0) = �̂(0).

⇒: From �̂(�) = �̂(0) we conclude
2�(�̂(0) − �̂(�)) = ∫ (1 − e−i x�)�(dx) = 0.

In particular, ∫ (1 − e−i x�)�(dx) ∈ R, i.e.

∫ (1 − e−i x�)�(dx) = Re∫ (1 − e−i x�)�(dx) = ∫ (1 − cos(x�))�(dx) = 0.

Since 1 − cos(x�) ⩾ 0, this implies
� {x ∈ R; 1 − cos(x�) > 0} = 0.

Consequently,
0 = � {x ∈ R; cos(x�) ≠ 1} = �

(

R ⧵ 2�
�
Z

)

.

235



R.L. Schilling: Measures, Integrals & Martingales

(ii) Because of |�̂(�1)| = �̂(0) there is some z1 ∈ R such that

�̂(�1) = �̂(0)ei z1�1 .

Therefore,
1
2� ∫ e−i �1(x+z1) �(dx) = �̂(0).

Observe that the left-hand side is just the Fourier transform of the measure �(B) ∶= �(B−
z1), B ∈ℬ(R), and so

�̂(�1) = �̂(0) = �̂(0).

From part (i) we get that �(R ⧵ 2�
�1
Z) = 0. This is the same as

�
{

R ⧵
(

z1 +
2�
�1
Z

)}

= 0.

Using the same argument we find some z2 ∈ R, such that

�
{

R ⧵
(

z2 +
2�
�2
Z

)}

= 0.

Setting
A ∶=

(

z1 +
2�
�1
Z

)

∩
(

z2 +
2�
�2
Z

)

we see that �(R ⧵ A) = 0. Let us show that A contains at most one element: Assume, on
the contrary, that there are two distinct points in A, then there are n, n′ ∈ Z and m,m′ ∈ Z
such that

z1 +
2�
�1
n = z2 +

2�
�2
n′,

z1 +
2�
�1
m = z2 +

2�
�2
m′.

Subtracting these identities, we get
2�
�1
(n − m) = 2�

�2
(n′ − m′)

⇒
�2
�1
= n′ − m′

n − m
∈ Q.

This is clearly contradicting the assumption �1
�2
∉ Q.

■■

236



20 The Radon�Nikodým theorem.

Solutions to Problems 20.1�20.9

Problem 20.1 Solution: The assumption � ⩽ � immediately implies � ≪ �. Indeed,
�(N) = 0 ⇐⇒ 0 ⩽ �(N) ⩽ �(N) = 0 ⇐⇒ �(N) = 0.

Using the Radon–Nikodým theorem we conclude that there exists a measurable function f ∈
+(A ) such that � = f ⋅ �. Assume that f > 1 on a set of positive �-measure. Without loss
of generality we may assume that the set has finite measure, otherwise we would consider the
intersection Ak ∩ {f > 1} with some exhausting sequence Ak ↑ X and �(Ak) <∞.
Then, for sufficiently small � > 0 we know that �({f ⩾ 1 + �}) > 0 and so

�({f ⩾ 1 + �}) = ∫{f⩾1+�}
f d�

⩾ (1 + �)∫{f⩾1+�}
d�

⩾ (1 + �)�({f ⩾ 1 + �})

⩾ �({f ⩾ 1 + �})

which is impossible.
■■

Problem 20.2 Solution: Because of our assumption both � ≪ � and � ≪ � which means that we
know

� = f� and � = g�

for positive measurable functions f, g which are a.e. unique. Moreover,
� = f� = f ⋅ g�

so that f ⋅ g is almost everywhere equal to 1 and the claim follows.
Because of Problem 20.4 (which is just Corollary 25.6) it is clear that f, g < ∞ a.e. and, by the
same argument, f, g > 0 a.e.
Note that we do not have to specify w.r.t. which measure we understand the ‘a.e.’ since their null
sets coincide anyway.

■■
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Problem 20.3 Solution: Take Lebesgue measure � ∶= �1 on (R,ℬ(R)) and the function f (x) ∶=
x +∞ ⋅ 1[0,1]c (x). Then f ⋅ � is certainly not �-finite.

■■

Problem 20.4 Solution: See the proof of Corollary 25.6.
■■

Problem 20.5 Solution: See the proof of Theorem 25.9.
■■

Problem 20.6 Solution: (i) If F is AC, continuity is trivial, just takeN = 2 in the very definition of
AC functions.
To see that F is also BV, we take � = 1 and choose � > 0 such that for any subcollection a ⩽
x1 < y1 < ⋯ < xN < yN ⩽ b with ∑

n(yn − xn) < � we have ∑n |F (yn) − F (xn)| < 1. Let
M = [(b−a)∕�]+1 and ai = a+i(b−a)∕M for i = 0, 1,… ,M . Clearly, ai−ai−1 = (b−a)∕M < �
and, in particular, V (f, [ai−1, ai]) < 1 for all i = 0, 1,…M . Thus,

V (f ; [a, b]) ⩽
M
∑

i=1
V (f, [ai−1, ai]) < M.

(ii) Following the hint, we see that f is increasing. Define g ∶= F − f . We have to show that g is
increasing. Let x < y. Obviously,

V (f ; [a, x]) + F (y) − F (x) ⩽ V (f ; [a, x]) + |F (y) − F (x)| ⩽ V (f ; [a, y])

(since the points x < y can be added to extend any partition of [a, x] to give a partition of [a, y]).
This gives g(x) ⩽ g(y).
(iii) Fix � > 0 and pick R = R(�) in such a way that

∫{|f |>R}
|f | d� < �

2
.

This is possible since f is integrable: use, e.g. monotone convergence. Now pick x1 < y1 < x2 <
y2 < ⋯ < xN < yN with ∑N

n=1 |yn − xn| < � where � = �(�) ∶= �∕(2R) with the R we’ve just
chosen. Then

|F (yn) − F (xn)| ⩽ ∫[xn,yn)
|f (t)| �(dt)

= ∫[xn,yn)∩{|f |⩽R}
|f (t)| �(dt) + ∫[xn,yn)∩{|f |>R}

|f (t)| �(dt).

Summing over n = 1,… , N gives
N
∑

n=1
|F (yn) − F (xn)| ⩽ R

N
∑

n=1
|yn − xn| +

N
∑

n=1
∫[xn,yn)∩{|f |>R}

|f | d�. ⩽ R� + ∫{|f |>R}
|f | d� ⩽ �.
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(iv) Write F = f1 − f2 with fi increasing (see part (ii)). From (ii) we know that we can pick
f1(x) = V (F , [a, x]). Since F is absolutely continuous, so is f1, hence f2. This follows from the
observation that

V (F , [a, y]) − V (F , [a, x]) = V (F , [x, y]) ∀ x < y.

Since the fi are continuous, the set-functions �i[a, x) ∶= fi(x)−fi(a) are pre-measures and extend
to measures on the Borel �-algebra – see also Problem 6.1.
Now let N be a Lebesgue null-set. For every � > 0 we can cover N by finitely many intervals
[xi, yi] such that ∑i(yi − xi) < �. Without loss of generality we can make the intervals non-
overlapping and their length is still < �. Since the fi are AC, we find for every � some � such
that

∑

n
|fi(yn) − fi(xn)| < �.

In particular,

�i(N) ⩽
∑

n
�i([xn, yn]) < �,

which shows that the Lebesgue null-set is also a �i-null set, i.e. �i ≪ � and therefore the claim
follows from the Radon–Nikodým theorem.

■■

Problem 20.7 Solution: This problem is somewhat ill-posed. We should first embed it into a suitable
context, say, on the measurable space (R,ℬ(R)). Denote by � = �1 one-dimensional Lebesgue
measure. Then

� = 1[0,2]� and � = 1[1,3]�

and from this it is clear that

� = 1[1,2]� + 1(2,3]� = 1[1,2]� + 1(2,3]�

and from this we read off that

1[1,2]� ≪ �

while

1(2,3]�⊥�.

It is interesting to note how ‘big’ the null-set of ambiguity for the Lebesgue decomposition is—it
is actually R ⧵ [0, 3] a, from a Lebesgue (i.e. �) point of view, huge and infinite set, but from a
�-�-perspective a negligible, namely null, set.

■■
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Problem 20.8 Solution: Since we deal with a bounded measure we can use F (x) ∶= �(−∞, x) rather
than the more cumbersome definition for F employed in Problem 6.1 (which is good for locally
finite measures!).
With respect to one-dimensional Lebesgue measure � we can decompose � according to Theorem
20.4 into

� = �◦ + �⊥ where �◦ ≪ �, �⊥⊥�.

Now define �2 ∶= �◦ and F2 ∶= �◦(−∞, x). We have to prove property (2). For this we observe
that �◦ is a finite measure (since �◦ ⩽ � and that, therefore, �◦ = f ⋅� with a function f ∈ L1(�).
Thus, for every R > 0

F (yj) − F (xj) = �◦(xj , yj)

= ∫(xj ,yj )
f (t) �(dt)

= ∫{f<R}∩(xj ,yj )
f (t) �(dt) + ∫{f⩾R}∩(xj ,yj )

f (t) �(dt)

⩽ R∫(xj ,yj )
�(dt) + ∫{f⩾R}∩(xj ,yj )

f (t) �(dt).

Summing over j = 1, 2,… , N gives
N
∑

j=1
|F2(yj) − F2(xj)| ⩽ R ⋅ � + ∫{f⩾R}

f (t) �(dt)

since⨃j(xj , yj) ⊂ R. Now we choose for given � > 0
• First R = R(�) such that ∫{f⩾R} f (t) �(dt) ⩽ �∕2

• and then � ∶= �∕(2R)
to confirm that

N
∑

j=1
|F2(yj) − F2(xj)| ⩽ �

this settles b).
Now consider the measure �⊥. Its distribution function F⊥(x) ∶= �⊥(−∞, x) is increasing, left-
continuous but not necessarily continuous. Such a function has, by Lemma 14.14 at most countably
many discontinuities (jumps), which we denote by J . Thus, we can write

�⊥ = �1 + �3

with the jump (or saltus) ΔF (y) ∶= F (y+) − F (y−) if y ∈ J .

�1 ∶=
∑

y∈J
ΔF (y) ⋅ �y, and �3 ∶= �⊥ − �1;
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�1 is clearly a measure (the sum being countable) with �1 ⩽ �⊥ and so is, therefore, �2 (since the
defining difference is always positive). The corresponding distribution functions are

F1(x) ∶=
∑

y∈J ,y<x
ΔF (y)

(called the jump or saltus function) and

F2(x) ∶= F⊥(x) − F1(x).

It is clear that F2 is increasing and, more importantly, continuous so that the problem is solved.
It is interesting to note that our problem shows that we can decompose every left- or right-continuous
monotone function into an absolutely continuous and singular part and the singular part again into
a continuous and discontinuous part:

g = gac + gsc + gsd

where
g —is a monotone left- or right-continuous function;
gac —is a monotone absolutely continuous (and in particular continuous) function;
gsc —is a monotone continuous but singular function;
gsd —is a monotone discontinuous (even: pure jump), but nevertheless left- or right-continuous,

and singular function.
■■

Problem 20.9 Solution:

(i) In the following picture F1 is represented by a black line, F2 by a grey line and F3 is a dotted
black line.

(ii),(iii) The construction of the Fn’s also shows that

|Fn(x) − Fn+1(x)| ⩽
1
2n+1

since we modify Fn only on a set Iln+1 by replacing a diagonal line by a combination of
diagonal-flat-diagonal and all this happens only within a range of 2−n units. Since the flat bit
is in the middle, we get that the maximal deviation between Fn and Fn+1 is at most 12 ⋅ 2−n.
Just look at the pictures!
Thus the convergence of Fn → F is uniform, i.e. it preserves continuity and F is continuous
as all the Fn’s are. That F is increasing is already inherited from the pointwise limit of the
Fn’s:

x < y ⇐⇒ ∀ n ∶ Fn(x) ⩽ Fn(y)

⇐⇒ F (x) = lim
n
Fn(x) ⩽ limn Fn(y) = F (y).
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(iv) Let C denote the Cantor set. Then for x ∈ [0, 1]⧵C we find n and l such that x ∈ Iln (which
is an open set!) and, since on those pieces Fn and F do not differ any more

Fn(x) = F (x) ⇐⇒ F ′(x) = F ′n(x) = 0

where we use that Fn|Iln is constant. Since �(C) = 0 (see Problem 7.12) we have �([0, 1] ⧵
C) = 1 so that F ′ exists a.e. and satisfies F ′ = 0 a.e.

(v) We have Iln = (al, bl) (we suppress the dependence of al, bl on n with, because of our
ordering of the middle-thirds sets (see the problem):

a1 < b1 < a2 <⋯ < a2n−1 < b2n−1

and
2n−1
∑

l=1

[

F (bl) − F (al)
]

= F (b2n−1) − F (a1) ←←←←←←←←←←←←←←←←←←←←→n→∞
F (1) − F (0) = 1

while (with the convention that a0 ∶= 0)
2n−1
∑

l=1
(al − bl−1) ←←←←←←←←←←←←←←←←←←←←→n→∞

0.

This leads to a contradiction since, because of the first equality, the sum
2n−1
∑

l=1

[

F (al) − F (bl−1)
]

will never become small.
■■
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21 Riesz representation theorems.

Solutions to Problems 21.1�21.7

Problem 21.1 Solution:

(i) Let f ∈ Lp(�) and g ∈ Lq(�) such that ‖g‖q ⩽ 1. Hölder’s inequality (13.5) gives
‖f ⋅ g‖1 ⩽ ‖f‖p‖g‖q ⩽ ‖f‖p.

Therefore
‖f‖p ⩾ sup

{

∫ fg d� ∶ g ∈ Lq(�), ‖g‖q ⩽ 1
}

.

For the converse inequality ‘⩽’ we use g ∶= sgn(f ) ⋅ |f |p−1. Since q = p
p−1 , we have

|g|q = |f |(p−1)q = |f |p ∈ L1(�),

and so g ∈ Lq(�) and ‖g‖q = ‖f‖p∕qp . Setting g̃ ∶= g∕‖g‖q ∈ Lq(�)we find ‖g̃‖q ⩽ 1
as well as

∫ fg̃ d� = 1
‖g‖q ∫

|f |p d� = 1
‖f‖p∕qp

‖f‖pp = ‖f‖(p(1−1∕q)p = ‖f‖p.

In the last stepe we use 1
p
+ 1

q
= 1.

(ii) Let  ⊂ Lq(�) be a dense subset. Since  ⊂ Lq(�) we obviously have
‖f‖p ⩾ sup

{

∫ fg d� ∶ g ∈ , ‖g‖q ⩽ 1
}

.

Converesly, let � > 0. Because of (i) there is some g ∈ Lq(�), ‖g‖q ⩽ 1 such that

∫ fg d� ⩾ ‖f‖p − �.

Since  is dense, there is some ℎ ∈  with ‖g − ℎ‖q ⩽ �. The Hölder inequality now
shows

∫ fℎ d� = ∫ f (ℎ − g) d� + ∫ fg d�

⩾ −‖f‖p‖ℎ − g‖q + ∫ fg d�

⩾ −‖f‖p� + ∫ fg d�

⩾ −‖f‖p� + ‖f‖p − �

= ‖f‖p(1 − �) − �.

Letting � → 0 proves the claim.
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(iii) If fg ∈ L1(�) for all g ∈ Lq(�), then If (g) ∶= ∫ |f |g d� is a positive linear functional
on Lq(�). From Theorem 21.5 we know that there exists a unique f̃ ∈ Lq(�) such that

If (g) = ∫ f̃ g d� ∀g ∈ Lq(�).

Therefore, f = f̃ ∈ Lq(�).
■■

Problem 21.2 Solution:

(i) We use a classical diagonal argument (as in the proof of Theorem 21.18). Let (gn)n∈N
denote an enumeration of q. Hölder’s inequality (13.5) tells us

|

|

|

|

∫ ungi d�
|

|

|

|

⩽ ‖un‖p‖gi‖q ⩽
(

sup
n∈N

‖un‖p

)

‖gi‖q

for all i, n ∈ N. If i = 1, the sequence (∫ ung1 d�)n∈N is bounded. Therefore, the
Bolzano–Weierstraß theorem shows the existence of a subsequence (u1n)n∈N such that
the limit

lim
n→∞∫ u1ng1 d�

exists. We pick recursively subsequences (ui+1n )n∈N ⊂ (uin)n∈N such that the limits

lim
n→∞∫ ui+1n gi+1 d�

exist. Because of the recursive thinning, we see that

lim
n→∞∫ uingk d�

exists for all k = 1, 2,… , i. Thus, for the diagonal sequence vn ∶= unn the limits
limn→∞ ∫ vngi d� exist for each i ∈ N.

(ii) Let g ∈ Lq(�) and (un(i))i∈N be the diagonal sequence constructed in (i). Since R is
complete, it is enough to show that (∫ un(i)g d�

)

i∈N is a Cauchy sequence. Fix � > 0.
By assumption,q is dense inLq(�), i.e. there exists some ℎ ∈ q such that ‖g−ℎ‖q ⩽
�. Part (i) shows that we can takeN ∈ N with

|

|

|

|

∫ un(i)ℎ d� − ∫ un(k)ℎ d�
|

|

|

|

⩽ � ∀i, k ⩾ N. (⋆)

Hölder’s inequality and the triangle inequality show
|

|

|

|

∫ un(i)g d� − ∫ un(k)g d�
|

|

|

|

=
|

|

|

|

∫ (un(i) − un(k))(g − ℎ) d� + ∫ (un(i) − un(k))ℎ d�
|

|

|

|

⩽
|

|

|

|

∫ (un(i) − un(k))(g − ℎ) d�
|

|

|

|

+
|

|

|

|

∫ (un(i) − un(k))ℎ d�
|

|

|

|

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
⩽� b/o (⋆)
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⩽ ‖un(i) − un(k)‖p‖g − ℎ‖q + �

⩽ (‖un(i)‖p + ‖un(k)‖p)‖g − ℎ‖q + �

⩽ 2 sup
n∈N

‖un‖p‖g − ℎ‖q + �

⩽
(

2 sup
n∈N

‖un‖p + 1
)

�

for any i, k ⩾ N . This proves that (∫ un(i)g d�
)

i∈N is Cauchy.
(iii) Without loss of generality we may assume that the limits

I(g) ∶= lim
i→∞∫ u+n(i)g d�, and J (g) ∶= lim

i→∞∫ u−n(i)g d�

exist for all g ∈ Lq(�). Indeed: From (i),(ii) we see that there is a subsequence such
that I(g) exists for all g ∈ Lq(�). Thinning out this subsequence once again, we see
that J (g) exists for all g ∈ Lq(�). Since I and J are positive linear functionals on
Lq(�), Theorem 21.5 proves that there are unique functions v,w ∈ Lq(�), v,w ⩾ 0
representing these functionals:

I(g) = ∫ vg d� and J (g) = ∫ wg d�.

Therefore,
lim
i→∞∫ un(i)g d� = lim

i→∞∫ u+n(i)g d� − limi→∞∫ u−n(i)g d�

= ∫ (v −w)g d�.

The claim follows if we use u ∶= v −w ∈ Lq(�).
■■

Problem 21.3 Solution:

(i) By Problem 19.7(i) or 21.4(a), �̂k is positive semidefinite, i.e. for any choice of m ∈ N,
�1,… , �m ∈ C and �1,… , �m ∈ Rn we have

m
∑

i,k=1
�̂k(�i − �k)�i�̄k ⩾ 0.

Since limi→∞ �̂i(�) = �(�), we see
m
∑

i,k=1
�(�i − �k)�i�̄k ⩾ 0.

Since �̂i(−�) = �̂i(�), this also holds for the limit
�(−�) = lim

i→∞
�̂i(−�) = lim

i→∞
�̂i(�) = �(�) ∀� ∈ Rn.

This shows that � is positive semidefinite. If m = 1 resp. m = 2, we see that the matrices
(

�(0)
)

and
(

�(0) �(−�)
�(�) �(0)

)
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are positve hermitian for all � ∈ Rn. Since determinants of positive hermitian matrices
are positive, we find �(0) ⩾ 0 and

0 ⩽ �(0)2 − �(�)�(−�) = �(0)2 − �(�)�(�) = �(0)2 − |�(�)|2.

(ii) First of all we show that the limit exists. Pick u ∈ C∞c (Rn). Because of Theorem 19.23,
−1u ∈ (Rn) and we can use Plancherel’s theorem (Theorem 19.12), to get

∫ u d�i = ∫  (−1u) d�i = ∫ −1u(�)�̂i(�) d�.

Since |�̂i(�)| ⩽ �̂i(0) → �(0) is uniformly bounded, we can use dominated convergence
and find that

Λ(u) ∶= lim
i→∞∫ u d�i = ∫ −1u(�)�(�) d�

is well-defined. The linearity of Λ follows from the linearity of the integral Moreover, if
u ⩾ 0, then

Λu = lim
i→∞∫ u d�i ⩾ 0.

(iii) The continuity of Λ follows from

|Λu| ⩽ lim sup
i→∞ ∫ |u| d�i ⩽ ‖u‖∞ lim sup

i→∞
�i(Rn)
⏟⏟⏟
(2�)n�̂i(0)

= (2�)n�(0)‖u‖∞.

SinceC∞c (Rn) is uniformly dense inCc(Rn), (see Problem 15.13, the proof resembles the
argument of Theorem 15.11), we can extend Λ to a positive linear functional on Cc(Rn):
For u ∈ Cc(Rn) we take (ui)i∈N ⊂ C∞c (Rn), such that ‖ui − u‖∞ → 0. Since

|Λ(ui) − Λ(uk)| = |Λ(ui − uk)| ⩽ (2�)n�(0)‖ui − uk‖∞,

we conclude that (Λui)i∈N is a Cauchy sequence in R. Therefore, the limit Λu ∶=
limi→∞ Λui exists and defines a positive linear functional on Cc(Rn). By Riesz’s rep-
resentation theorem, Theorem 21.8, there exists a unique regular measure representing
the functional Λ

Λu = ∫ u d� ∀u ∈ Cc(Rn).

(iv) Let � > 0. Since � is continuous at � = 0, there is some � > 0 such that

|�(�) − �(0)| < � ∀|�| ⩽ �.

Because of Lévy’s truncation inequality, Problem 19.6,

�i(Rn ⧵ [−R,R]n) ⩽ 2(R�)n ∫[−1∕R,1∕R]n
(�̂i(0) − Re �̂i(�)) d�

(note that �̌i(�) = (2�)n�̂i(−�)). With the dominated convergence theorem we get

lim sup
i→∞

�i(Rn ⧵ [−R,R]n) ⩽ 2(R�)n ∫[−1∕R,1∕R]n
(�(0) − Re�(�)) d�
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⩽ 2(2�)n�

for R ⩾ 1
�
. In particular we find for i ⩾ n0(�), �i(Rn ⧵ [−R,R]n) ⩽ 3(2�)n�. In order to

get �i(Rn ⧵ [−R,R]n) ⩽ 3(2�)n� for i = 1,… , n0(�), we can increase R, if needed.
(v) Let (�k)k∈N ⊂ Cc(Rn) be a sequence of functions such that 0 ⩽ �k ⩽ 1 and �k ↑ 1Rn

(use, e.g. Urysohn functions, cf. page 239, or construct the �k directly). Because of (iii)
we have

∫ �k d� = Λ(�k) ⩽ (2�)n�(0).

The monotone convergence theorem shows that � is a finite measure:
�(Rn) = sup

k∈N∫ �k d� ⩽ (2�)n�(0).

Moreover,M ∶= supi∈N �i(Rn) < ∞ since �i(Rn) = (2�)n�̂i(0) → �(0). It remains to
show that �i converges weakly to �. First of all,

∫ u d�i ←←←←←←←←←←←←←←←←←←←→i→∞ ∫ u d� ∀u ∈ Cc(Rn). (⋆)
Let u ∈ Cc(Rn). Since C∞c (Rn) is dense in Cc(Rn), there is a sequence (fk)k∈N ⊂
C∞c (R

n) such that ‖fk − u‖∞ → 0. Thus,
|

|

|

|

∫ u d�i − ∫ u d�
|

|

|

|

⩽
|

|

|

|

∫ (u − fk) d�i
|

|

|

|

+
|

|

|

|

∫ fk d�i − ∫ fk d�
|

|

|

|

+
|

|

|

|

∫ (fk − u) d�
|

|

|

|

⩽ ‖u − fk‖∞�i(Rn) +
|

|

|

|

∫ fk d�i − ∫ fk d�
|

|

|

|

+ ‖fk − u‖∞�(Rn)

⩽ ‖u − fk‖∞(M + �(Rn)) +
|

|

|

|

∫ fk d�i − ∫ fk d�
|

|

|

|

(ii)
←←←←←←←←←←←←←←←←←←←→
i→∞

‖u − fk‖∞(M + �(Rn)) ←←←←←←←←←←←←←←←←←←←←→
k→∞

0.

Assume that f ∈ Cb(Rn). For � > 0, Party (iv) shows that there is some R > 0 such that
with K ∶= [−R,R]n

�i(Kc
n ) = �i(R

n ⧵K) ⩽ �.

Without loss of generality we may assume that �(Rn ⧵ K) ⩽ �. Pick � ∈ Cc(Rn),
0 ⩽ � ⩽ 1 and �|K = 1. Then

|

|

|

|

∫ f d�i − ∫ f d�
|

|

|

|

⩽
|

|

|

|

∫ f� d�i − ∫ f� d�
|

|

|

|

+
|

|

|

|

∫ (1 − �)f d�i + ∫ (1 − �)f d�
|

|

|

|

⩽
|

|

|

|

∫ f� d�i − ∫ f� d�
|

|

|

|

+ ‖f‖∞

(

∫ 1Kc d�i + ∫ 1Kc d�
)

⩽
|

|

|

|

∫ f� d�i − ∫ f� d�
|

|

|

|

+ 2‖f‖∞�.

Since f ⋅ � ∈ Cc(Rn), the first term on the right vanishes as i→∞, cf. (iii). So,
lim sup
i→∞

|

|

|

|

∫ f d�i − ∫ f d�
|

|

|

|

⩽ 2‖f‖∞� ←←←←←←←←←←←←←←←←←→�→0
0.
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(vi) Let (�k)k∈N be a weakly convergent sequence of finite measures. Define f (x) ∶= e−ix⋅� ,
� ∈ Rn, we get

�̂k(�) =
1

(2�)n ∫
e−ix⋅� d�k(x) ←←←←←←←←←←←←←←←←←←←←→k→∞

1
(2�)n ∫

e−ix⋅� �(dx) = �̂(�),

i.e. the Fourier transforms converge pointwise. From part (iv) we know that the sequence
(�k)k∈N is tight. For � > 0 there is some R > 0 such that �k(Rn ⧵ K) ⩽ � for K ∶=
[−R,R]n. Without loss of generality we can enlarge R to make sure that �(Rn ⧵K) ⩽ �,
too. Because of the (uniform) continuity of the function R ∋ r → eir on compact sets,
there is some � > 0 such that

|ei(�−�)⋅x − 1| ⩽ � ∀|� − �| < �, x ∈ K.

If k ∈ N, �, � ∈ Rn with |� − �| < �, then we see

|�̂k(�) − �̂k(�)| ⩽
1

(2�)n ∫
|ei�⋅x − ei�⋅x|�k(dx) =

1
(2�)n ∫

|ei(�−�)⋅x − 1|�k(dx)

= 1
(2�)n ∫K

|ei(�−�)⋅x − 1|
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

⩽�

�k(dx) +
1

(2�)n ∫Kc
|ei(�−�)⋅x − 1|
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

⩽2

�k(dx)

⩽
�k(Rn)
(2�)n

� + 2
(2�)n

�i(Kc)

⩽ 1
(2�)n

(M + 2)�

where M ∶= supk∈N �k(Rn) < ∞. This proves the equicontinuity of the sequence
(�̂k)k∈N.

(vii) Let � ∈ Rn and � > 0. Use equicontinuity of the sequence (�̂k)k∈N to pick some � > 0.
Since �̂ is continuous, we can ensure that � is such that

|�̂(�) − �̂(�)| ⩽ � ∀|� − �| ⩽ �.

This entails for all � ∈ Rn satisfying |� − �| ⩽ �:

|�̂k(�) − �̂(�)| ⩽ |�̂k(�) − �̂k(�)|
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

⩽�

+|�̂k(�) − �̂(�)| + |�̂(�) − �̂(�)|
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

⩽�

⇐⇒ sup
�∈B�(�)

|�̂k(�) − �̂(�)| ⩽ 2� + |�̂k(�) − �̂(�)| ←←←←←←←←←←←←←←←←←←←←→k→∞
2� ←←←←←←←←←←←←←←←←←→

�→0
0.

Here we use that �̂k converges pointwise to �̂, cf. (vi). The calculation shows that �̂k con-
verges locally uniformly to �̂. Since locally uniform convergence is the same as uniform
convergence on compact sets, we are done.

■■

Problem 21.4 Solution:
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(i) Since � is a finite measure, the continuity of �̂ follows directly from the continuity
lemma, Theorem 12.4 (cf. also 19.3). In order to show positive definiteness, pick m ∈
N, �1,… , �m ∈ Rn and �1,… , �m ∈ C. We get

m
∑

j,k=1
�(�j − �k)�j �̄k =

1
(2�)n

m
∑

j,k=1
�j �̄k ∫ e−ix⋅(�j−�k) �(dx)

= 1
(2�)n

m
∑

j,k=1
�j �̄k ∫ e−ix⋅�je−ix⋅�k �(dx)

= 1
(2�)n ∫

( m
∑

j=1
�je

−ix⋅�j

)( m
∑

k=1
�ke−ix⋅�k

)

�(dx)

= 1
(2�)n ∫

|

|

|

|

|

|

m
∑

j=1
�je

−ix⋅�j
|

|

|

|

|

|

2

�(dx) ⩾ 0.

(ii) Form = 1 and � = 0 the definition of positive definiteness implies that the matrix (�(0))
is positive definite; in particular, �(0) ⩾ 0.
If we have for a matrix (aik) that∑ik aik�i�̄j ⩾ 0, then

0 ⩽
∑

ik
aik�i�̄k =

∑

ik
aik�i�̄k =

∑

ik
aik�̄i�k =

∑

ki
aki�̄k�i

which means that aik = aki. Apply this to the matrix aik = �(�i − �k) with m = 2 and
�1 = � and �2 = 0 to infer that �(�) = �(−�). Moreover, the matrix

(

�(0) �(−�)
�(�) �(0)

)

is positive semidefinite; in particular its determinant is positive:

0 ⩽ �(0)2 − �(−�)�(�).

Since �(−�) = �(�), we get the inequality as claimed.
(iii) Because of |�(�)| ⩽ �(0) we see that

|

|

|

|

∬ �(� − �)
(

eix⋅�e−2�|�|
2
)

(

eix⋅�e−2�|�|2
)

d� d�
|

|

|

|

⩽ |�(0)|∬

(

e−2�|�|
2
e−2�|�|

2
)

d� d� < ∞,

i.e. �� is well-defined. Let us show that �� ⩾ 0. For this we cover Rn with countably
many disjoint cubes (Iki )i∈N with side-length 1∕k and we pick any �ki ∈ Iki . Using the
dominated convergence theorem and the positive definiteness of the function � we get

��(x) = lim
k→∞

∑

m,j∈N
∫Ikm ∫Ikj

�(�km − �
k
j )
(

eix⋅�
k
j e−2�|�

k
j |
2)(

eix⋅�kme−2�|�km|2
)

d� d�

= lim
k→∞

∑

m,j∈N
�(�kj − �

k
m)

(

k−neix⋅�
k
j e−2�|�

k
j |
2)(

k−neix⋅�
k
j e−2�|�

k
j |
2
)
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⩾ 0.

Because of the parallelogram identity

2|�|2 + 2|�|2 = |� − �|2 + |� + �|2

we obtain

��(x) = ∬

(

eix⋅�
(

eix⋅�e−2�|�|2−2�|�|2
)

)

d� d�

= ∬

(

eix⋅(�−�)e−|�−�|
2−|�+�|2

)

d� d�.

Changing variables according to
(

t
s

)

∶=

(

� − �
� + �

)

=

(

idn − idn
idn idn

)(

�
�

)

=∶ A

(

�
�

)

leads to

��(x) =
1

|det A| ∬
�(t)eix⋅te−�(|t|2+|s|2) dt ds

= 1
c ∫

�(t)e−�|t|2eix⋅t dt

= 1
c ∫

��(t)eix⋅t dt. (⋆)

(iv) Define
gt(x) ∶=

1
(2�t)n∕2

exp
(

− |x|
2

2t

)

.

Applying Theorem 19.12 for the finite measure �(dx) ∶= e−t|x|2 dx yields

∫ ��(x)e
− t
2 |x|

2
dx

(⋆)
= 1
c ∫

−1(��)(x)e
− t
2 |x|

2
dx = 1

c ∫
��(�)−1(e

− t
2 |⋅|

2
)(�) d�

for all t > 0 (observe: �� ∈ L1(Rn)). Example 19.2(iii) shows (gt)(x) = (2�)−n exp(−t|x|2∕2).
Therefore, −1(e− t

2 |⋅|
2
)(�) = (2�)ngt(�). Since |�(�)| ⩽ �(0) and ∫ gt(x) dx = 1 we

thus get

∫ ��(x)e
− t
2 |x|

2
dx = (2�)n

c ∫ ��(�)gt(�) d� ⩽
(2�)n

c
�(0).

Fatou’s lemma (Theorem 9.11) finally shows

∫ ��(x) dx = ∫ lim
k→∞

��(x)e
− 1
2k |x|

2
dx

⩽ lim inf
k→∞ ∫ ��(x)e

− 1
2k |x|

2
dx

⩽ (2�)n

c
�(0).

Since �� ⩾ 0, see (iii), this means that �� ∈ L1(Rn).
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(v) Parts (iii) and (iv) show that �̂� = �� for the finite measure ��(dx) ∶= c��(x) dx. Since
�� → �, Lévy’s continuity theorem (Problem 21.3) shows that there exists a measure
� which is the weak limit of the family �� as � → 0 and �̂ = �.

■■

Problem 21.5 Solution:

(i) Since uniform convergence preserves continuity, we see that every u ∈ Cc(X) is con-
tinuous. By construction, the set {|u| ⩾ �} is compact since there is some u� ∈ Cc(X)
such that ‖u − u�‖∞ < �. This means that u vanishes at infinity. In particular Cc(X) ⊂
C∞(X).
Conversely, if u ∈ C∞(X) and � > 0, there is some compact set K� such that |u| ⩽ �
outside ofK�. Nowwe use Urysohn’s lemma and construct a function �� ∈ Cc(X) such
that 1K� ⩽ �� ⩽ 1. Then we get u� ∶= ��u ∈ Cc(X) as well as

|u − u�| = (1 − ��)|u| ⩽ �

uniformly for all x.
(ii) It is obvious that C∞(X) is a vector space and that ‖∙‖∞ is a norm in this space. The

completeness follows from part (i) since C∞(X) = Cc(X) = Cc(X).
(iii) Let u ∈ C∞(X) and � > 0. Urysohn’s lemma shows that there is a � ∈ Cc(X),

0 ⩽ � ⩽ 1, such that |u| ⩽ � on the set {� < 1} = {� = 1}c . Therefore,
|

|

|

|

∫ u d�n − ∫ u d�
|

|

|

|

⩽
|

|

|

|

∫ u� d�n − ∫ u� d�
|

|

|

|

+
|

|

|

|

∫ u(1 − �) d�n − ∫ u(1 − �) d�
|

|

|

|

⩽
|

|

|

|

∫ u� d�n − ∫ u� d�
|

|

|

|

+ �
[

�n(X) + �(X)
]

21.16
⩽

|

|

|

|

∫ u� d�n − ∫ u� d�
|

|

|

|

+ 2� sup
m∈N

�m(X).

Since u� ∈ Cc(X), we find as n→∞

lim sup
n→∞

|

|

|

|

∫ u d�n − ∫ u d�
|

|

|

|

⩽ 2� sup
m∈N

�m(X) ←←←←←←←←←←←←←←←←←→�→0
0.

■■

Problem 21.6 Solution:

(i) First we consider u ∈ C∞c (R
n). According to Theorem 19.23, −1u ∈ (Rn), and

Plancherel’s theorem (Theorem 19.12) gives

∫ u d�i = ∫  (−1u) d�i = ∫ −1u(�)�̂i(�) d�.
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Since |�̂i(�)| ⩽ �̂i(0) → �(0) is uniformly bounded, we can use the dominated conver-
gence theorem to see

Λ(u) ∶= lim
i→∞∫ u d�i = ∫ −1u(�)�(�) d�

i.e. Λ(u) is well-defined. Moreover,

�i(Rn) = (2�)n�̂i(0) ←←←←←←←←←←←←←←←←←←←→i→∞
(2�)n�(0),

i.e.M ∶= supi �i(Rn) < ∞. Assume now that u ∈ Cc(X). Since C∞c (Rn) is dense in
Cc(Rn) (with respect to uniform convergence, cf. Problem 15.13), there is a sequence
(uk)k∈N ⊂ C∞c (R

n) such that ‖uk − u‖∞ → 0. Thus,
|

|

|

|

∫ u d�i − ∫ u d�j
|

|

|

|

⩽
|

|

|

|

∫ (u − uk) d�i
|

|

|

|

+
|

|

|

|

∫ (u − uk) d�j
|

|

|

|

+
|

|

|

|

∫ uk d�i − ∫ uk d�j
|

|

|

|

⩽ ‖u − uk‖∞
(

�i(Rn) + �j(Rn)
)

+
|

|

|

|

∫ uk d�i − ∫ uk d�j
|

|

|

|

⩽ 2‖u − uk‖∞M +
|

|

|

|

∫ uk d�i − ∫ uk d�j
|

|

|

|

←←←←←←←←←←←←←←←←←←←←←←←←→
i,j→∞

2‖u − uk‖∞M ←←←←←←←←←←←←←←←←←←←←→
k→∞

0.

This shows that ( ∫ u d�i
)

i∈N is a Cauchy sequence in R. Thus, the limit Λ(u) ∶=
limi→∞ ∫ u d�i exists. Since convergent sequences are bounded, we see

sup
i∈N

|

|

|

|

∫ u d�i
|

|

|

|

<∞.

Since u ∈ Cc(Rn) ⇐⇒ |u| ∈ Cc(Rn), we get

sup
n∈N∫ |u| d�i <∞ ∀u ∈ Cc(Rn),

i.e. the sequence (�i)i∈N is vaguely bounded. According to Theorem 21.18, (�i)i∈N has
a vaguely convergent subsequence �n(i) → �.

(ii) We can use part (i) for any subsequence of (�i)i∈N. We will show the the subsequential
limits do not depend on the subsequence. Pick any two subsequences (�n(i))i∈N and
(�m(i))i∈N of (�i)n∈N and assume that �n(i)

v
←←←←←←←←←←→ �, �m(i)

v
←←←←←←←←←←→ �. By definition, we find

for all u ∈ Cc(Rn)

lim
i→∞∫ u d�n(i) = ∫ u d�,

lim
i→∞∫ u d�m(i) = ∫ u d�.

On the other hand, we have seen in (i) that Λ(u) = limi→∞ ∫ u d�i. Thus,

∫ u d� = Λ(u) = ∫ u d�.
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Since this holds for all u ∈ Cc(Rn), we can use the regularity of the measures � and
� to conclude that � = �. Since the limit does not depend on the subsequence, we
already have vague convergence of the full sequence (�i)i∈N. (Compare this with the
following subsequence principle: A sequence (ai)i∈N ⊂ R converges if, and only if,
every subsequence of (ai)i∈N has a convergent subsequence, and all subsequential limits
coincide.)

(iii) In view of Theorem 21.17 it is enough to show that the sequence (�i)i∈N is tight
Fix � > 0. Since � is continuous at � = 0, there is some � > 0 such that

|�(�) − �(0)| < � ∀|�| ⩽ �.

From Lévy’s truncation inequality, Problem 19.6, we get

�i(Rn ⧵ [−R,R]n) ⩽ 2(R�)n ∫[−1∕R,1∕R]n
(�̂i(0) − Re �̂i(�)) d�

(observe, that �̌i(�) = (2�)n�̂i(−�)). Now we can use dominated convergence to get

lim sup
i→∞

�i(Rn ⧵ [−R,R]n) ⩽ 2(R�)n ∫[−1∕R,1∕R]n
(�(0) − Re�(�)) d�

⩽ 2(2�)n�

for all R ⩾ 1
�
. In particular, we find �i(Rn ⧵ [−R,R]n) ⩽ 3(2�)n� for i ⩾ n0(�). In

order to ensure �i(Rn ⧵ [−R,R]n) ⩽ 3(2�)n� for i = 1,… , n0(�), we can enlarge R, if
need be.

■■

Problem 21.7 Solution: Since

∫B
u d�n = ∫B∩supp u

u d�n

we can assume, without loss of generality, thatB is contained in a compact set. Denote byK ∶= B
the closure of B and by U ∶= B◦ the open interior of B. Moreover, we can assume that u ⩾ 0 –
otherwise we consider u± separately.
According to Urysohn’s lemma (Lemma B.2 or (21.6) & (21.7)), there are sequences (wk)k∈N ⊂
Cc(X), (vk)k∈N ⊂ Cc(X), 0 ⩽ vk ⩽ 1, 0 ⩽ wk ⩽ 1, with wk ↑ 1U and vk ↓ 1K . By assumption
�n

v
←←←←←←←←←←→ � and so

∫B
u d�n ⩽ ∫K

u d�n ⩽ ∫ u ⋅ vk d�n ←←←←←←←←←←←←←←←←←←←←→n→∞ ∫ u ⋅ vk d�.

Beppo Levi’s theorem implies

lim sup
n→∞ ∫B

u d�n ⩽ inf
k∈N∫ u ⋅ vk d� = ∫K

u d�.
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Similarly, we get from

∫B
u d�n ⩾ ∫U

u d�n ⩾ ∫ u ⋅wk d�n ←←←←←←←←←←←←←←←←←←←←→n→∞ ∫ u ⋅wk d�.

and the monotone convergence theorem

lim inf
n→∞ ∫B

u d�n ⩾ sup
k∈N∫ u ⋅wk d� = ∫U

u d�.

Finally, since �(K ⧵ U ) = �()B) = 0, we see that

lim sup
n→∞ ∫B

u d�n ⩽ ∫K
u d� = ∫U

u d� ⩽ lim inf
n→∞ ∫B

u d�n.

■■
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22 Uniform integrability and Vitali's

convergence theorem.

Solutions to Problems 22.1�22.17

Problem 22.1 Solution: First, observe that

lim
j
uj(x) = 0 ⇐⇒ lim

j
|uj(x)| = 0.

Thus,

x ∈ {lim
j
uj = 0} ⇐⇒ ∀ � > 0 ∃N� ∈ N ∀ j ⩾ N� ∶ |uj(x)| ⩽ �

⇐⇒ ∀ � > 0 ∃N� ∈ N ∶ sup
j⩾N�

|uj(x)| ⩽ �

⇐⇒ ∀ � > 0 ∃N� ∈ N ∶ x ∈ { sup
j⩾N�

|uj| ⩽ �}

⇐⇒ ∀ � > 0 ∶ x ∈
⋃

N∈N
{sup
j⩾N

|uj| ⩽ �}

⇐⇒ ∀ k ∈ N ∶ x ∈
⋃

N∈N
{sup
j⩾N

|uj| ⩽ 1∕k}

⇐⇒ x ∈
⋂

k∈N

⋃

N∈N
{sup
j⩾N

|uj| ⩽ 1∕k}.

Equivalently,

{lim
j
uj = 0}c =

⋃

k∈N

⋂

N∈N
{sup
j⩾N

|uj| > 1∕k}.

By assumption and the continuity of measures,

�
(

⋂

N∈N
{sup
j⩾N

|uj| > 1∕k}
)

= lim
N
�
(

{sup
j⩾N

|uj| > 1∕k}
)

= 0

and, since countable unions of null sets are again null sets, we conclude that

{lim
j
uj = 0} has full measure.

■■

Problem 22.2 Solution: Note that

x ∈
{

sup
j⩾k

|uj| > �
}

⇐⇒ sup
j⩾k

|uj(x)| > �
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⇐⇒ ∃ j ⩾ k ∶ |uj(x)| > �

⇐⇒ x ∈
⋃

j⩾k
{|uj| > �}

and since
⋃

j⩾k
{|uj| > �} ↓

⋂

k∈N

⋃

j⩾k
{|uj| > �}

def
= lim sup

j→∞
{|uj| > �}

we can use the continuity of measures to get

lim
k
�
(

sup
j⩾k

|uj| > �
)

= lim
k
�
(

⋃

j⩾k
{|uj| > �}

)

= �
(

⋂

k∈N

⋃

j⩾k
{|uj| > �}

)

.

This, and the result of Problem 22.1 show that either of the following two equivalent conditions

lim
k→∞

�
(

sup
j⩾k

|uj| ⩾ �
)

= 0 ∀ � > 0;

�
(

lim sup
j→∞

{|uj| ⩾ �}
)

= 0 ∀ � > 0;

ensure the almost everywhere convergence of limj uj(x) = 0.
■■

Problem 22.3 Solution:

• Assume first that uj → u in �-measure, that is,

∀ � > 0, ∀A ∈ A , �(A) <∞ ∶ lim
j
�
(

{|uj − u| > �} ∩ A
)

= 0.

Since

|uj − uk| ⩽ |uj − u| + |u − uk| ∀j, k ∈ N

we see that

{|uj − uk| > 2�} ⊂ {|uj − u| > �} ∪ {|u − uk| > �}

(since, otherwise |uj −uk| ⩽ �+ � = 2�). Thus, we get for every measurable set Awith finite
�-measure that

�
(

{|uj − uk| > 2�} ∩ A
)

⩽ �
[

({|uj − u| > �} ∩ A) ∪ ({|uk − u| > �} ∩ A)
]

⩽ �
[

{|uj − u| > �} ∩ A
]

+ �
[

{|uk − u| > �} ∩ A
]

and each of these terms tend to infinity as j, k→∞.
• Assume now that |uj − uk| → 0 in �-measure as j, k → ∞. Let (Al)l be an exhausting

sequence such that Al ↑ X and �(Aj) <∞.
The problem is to identify the limiting function.
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Fix l. By assumption, we can chooseNj ∈ N, j ∈ N, such that

∀m, n ⩾ Nj ∶ �
(

{|um − un| > 2−j} ∩ Al
)

< 2−j .

(Note thatNj may depend on l, but we suppress this dependency as l is fixed.) By enlarging
Nj , if needed, we can always assume that

N1 < N2 <⋯ < Nj < Nj+1 →∞.

Consequently, there is an exceptional set Ej ⊂ Al with �(Ej ∩ Al) < 2−j such that

|uNj+1
(x) − uNj

(x)| ⩽ 2−j ∀ x ∈ Al ⧵ Ej

and, if E∗i ∶=
⋃

j⩾iEj we have �(Ei ∩ Al) ⩽ 2 ⋅ 2−i as well as

|uNj+1
(x) − uNj

(x)| ⩽ 2−j ∀ j ⩾ i, ∀ x ∈ Al ⧵ E∗i .

This means that
∑

j
(uNj+1

− uNj
) converges uniformly for x ∈ Al ⧵ E∗i

so that limj uNj
exists uniformly onAl ⧵E∗i for all i. Since �(E∗i ∩Al) < 2 ⋅2−i we conclude

that

lim
j
uNj
1Al = u

(l)1Al exists almost everywhere

for some u(l). Since, however, a.e. limits are unique (up to a null set, that is) we know that
u(l) = u(m) a.e. onAl∩Am so that there is a (up to null sets) unique limit function u satisfying

lim
j
uNj

= u exists a.e., hence in measure by Lemma 22.4. (*)

Thus, we have found a candidate for the limit of our Cauchy sequence. In fact, since

|uk − u| ⩽ |uk − uNj
| + |uNj

− u|

we have

�({|uk − u| > �} ∩ Al)

⩽ �({|uk − uNj
| > �} ∩ Al) + �({|uNj

− u| > �} ∩ Al)

and the first expression on the right-hand side tends to zero (as k,N(j)→∞) because of the
assumption, while the second term tends to zero (asN(j)→∞) because of (*))

■■

Problem 22.4 Solution:
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(i) This sequence converges in measure to f ≡ 0 since for � ∈ (0, 1)

�(|fn,j| > �) = �[(j − 1)∕n, j∕n] =
1
n
←←←←←←←←←←←←←←←←←←←←→
n→∞

0.

This means, however, that potential a.e. and p-limits must be f ≡ 0, too. Since for
every x

lim inf fn,j(x) = 0 <∞ = lim sup fn,j

the sequence cannot converge at any point.
Also the p-limit (if p ⩾ 1) does not exist, since

∫ |fn,j|
p d� = np�[(j − 1)∕n, j∕n] = np−1.

(ii) As in (i) we see that gn
�
←←←←←←←←←←←→ g ≡ 0. Similarly,

∫ |gn|
p d� = np�(0, 1∕n) = np−1

so that the p-limit does not exist. The pointwise limit, however, exists since

lim
n→∞

n1(0,n)(x) = 0.

for every x ∈ (0, 1).
(iii) The shape of gn is that of a triangle with base [0, 1∕n]. Thus, for every � > 0,

�(|ℎn| > �) ⩽ �[0, 1∕n] = 1
n

which shows that ℎn
�
←←←←←←←←←←←→ ℎ ≡ 0. This must be, if the respective limits exist, also the

limiting function for a.e. and p-convergence. Since

∫ |ℎn|
p d� = apn

1
2 �[0, 1∕n] =

apn
2n

we have p-convergence if, and only if, the sequence apn∕n tends to zero as n→∞.
We have, however, always a.e. convergence since the support of the function ℎn is
[0, 1∕n] and this shrinks to {0} which is a null set. Thus,

lim
n
an(1 − nx)+ = 0

except, possibly, at x = 0.
■■

Problem 22.5 Solution: We claim that
(i) auj + bwj → au + bw;
(ii) max(uj , wj)→ max(u,w);
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(iii) min(uj , wj)→ min(u,w);
(iv) |uj| → |u|.

Note that

|auj + bwj − au − bw| ⩽ |a||uj − u| + |b||wj −w|

so that

{|auj + bwj − au − bw| > 2�} ⊂ {|uj − u| > �∕|a|} ∪ {|wj −w| > �∕|b|}.

This proves the first limit.
Since, by the lower triangle inequality,

||uj| − |u|| ⩽ |uj − u|

we get

{||uj| − |u|| > �} ⊂ {|uj − u| > �}

and |uj| → |u| follows.
Finally, since

max uj , wj =
1
2

(

uj +wj + |uj −wj|
)

we get max uj , wj → max u,w by using rules (i) and (iv) several times. The minimum is treated
similarly.

■■

Problem 22.6 Solution: The hint is somewhat misleading since this construction is not always pos-
sible (or sensible). Just imagine R with the counting measure. Then X�f would be all of R...
What I had in mind when giving this hint was a construction along the following lines:
Consider Lebesgue measure � in R and define f ∶= 1F +∞1F c where F = [−1, 1] (or any other
set of finite Lebesgue measure). Then � ∶= f ⋅ � is a not �-finite measure. Moreover, Take any
sequence un

�
←←←←←←←←←←→ u converging in �-measure. Then

�({|un − u| > �} ∩ A) = �({|un − u| > �} ∩ A)

since all sets A with �(A) <∞ are contained in F and �(F ) = �(F ) <∞. Thus, un
�
←←←←←←←←←←←→ u.

However, changing u arbitrarily on 1F c also yields a limit point in �-measure since, as mentioned
above, all sets of finite �-measure are within F .
This pathology cannot happen in a �-finite measure space, cf. Lemma 22.6.

■■

Problem 22.7 Solution:
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(i) Fix � > 0. Then

∫ |u − uj| d� = ∫A
|u − uj| d�

= ∫A∩{|u−uj |⩽�}
|u − uj| d� + ∫A∩{|u−uj |>�}

|u − uj| d�

⩽ ∫A∩{|u−uj |⩽�}
� d� + ∫A∩{|u−uj |>�}

(|u| + |uj|) d�

⩽ ��(A) + 2C �
(

A ∩ {|u − uj| > �}
)

←←←←←←←←←←←←←←←←←←←←→
j→∞

��(A)

←←←←←←←←←←←←←←←←←→
�→0

0.

(ii) Note that uj converges almost everywhere and in �-measure to u ≡ 0. However,

∫ |uj| d� = �[j, j + 1] = 1 ≠ 0

so that the limit—if it exists—cannot be u ≡ 0. Since this is, however, the canonical
candidate, we conclude that there is no 1 convergence.

(iii) The limit depends on the set A which is fixed. This means that we are, essentially,
dealing with a finite measure space.

■■

Problem 22.8 Solution: A pseudo-metric is symmetric (d2) and satisfies the triangle inequality (d3).
(i) First we note that ��(�, �) ∈ [0, 1] is well-defined. That it is symmetric (d2) is obvi-

ous. For the triangle inequality we observe that for three random variables �, �, � and
numbers �, � > 0 we have

|� − � | ⩽ |� − �| + |� − � |

implying that
{|� − � | > � + �} ⊂ {|� − �| > �} ∪ {|� − � | > �}

so that
P(|� − � | > � + �) ⩽ P(|� − �| > �) + P(|� − � | > �).

If � > �P(�, �) and � > �P(�, �) we find
P(|� − � | > � + �) ⩽ P(|� − �| > �) + P(|� − � | > �) ⩽ � + �

which means that
�P(�, �) ⩽ � + �.

Passing to the infimum of all possible �- and �-values we get
�P(�, �) ⩽ �P(�, �) + �P(�, �).
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(ii) Assume first that �P(�j , �) ←←←←←←←←←←←←←←←←←←←←→j→∞
0. Then

�P(�j , �) ←←←←←←←←←←←←←←←←←←←←→j→∞
0 ⇐⇒ ∃ (�j)j ⊂ R+ ∶ P(|� − �j| > �j) ⩽ �j

⇐⇒ ∀ � > �j ∶ P(|� − �j| > �) ⩽ �j .

Thus, for given � > 0 we pick N = N(�) such that � > �j for all j ⩾ N (possible as
�j → 0). Then we find

∀ � > 0 ∃N(�) ∈ N ∀ j ⩾ N(�) ∶ P(|� − �j| > �) ⩽ �j ;

this means, however, that P(|� − �j| > �) ←←←←←←←←←←←←←←←←←←←←→j→∞
0 for any choice of � > 0.

Conversely, assume that �j
P
←←←←←←←←←←←←→ 0. Then

∀ � > 0 ∶ lim
j
P(|� − �j| > �) = 0

⇐⇒ ∀ �, � > 0 ∃N(�, �) ∀ j ⩾ N(�, �) ∶ P(|� − �j| > �) < �

⇐⇒ ∀ � > 0 ∃N(�) ∀ j ⩾ N(�) ∶ P(|� − �j| > �) < �

⇐⇒ ∀ � > 0 ∃N(�) ∀ j ⩾ N(�) ∶ �P(�, �j) ⩽ �

⇐⇒ lim
j
�P(�, �j) = 0.

(iii) We have

�(�j , �k) ←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→j,k→∞
0

(ii)
⇐⇒ �j − �k

P
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
j,k→∞

0

P22.3
⇐⇒ ∃ � ∶ �k

P
←←←←←←←←←←←←←←←←←←←←→
k→∞

�

(ii)
⇐⇒ ∃ � ∶ �(�, �k) ←←←←←←←←←←←←←←←←←←←←←←←←←→k→∞

0

(iv) Note that for x, y > 0
x + y

1 + x + y
= x
1 + x + y

+ y
1 + x + y

⩽ x
1 + x

+ y
1 + y

and

(x + y) ∧ 1 =
⎧

⎪

⎨

⎪

⎩

x + y = (x ∧ 1) + (y ∧ 1) if x + y ⩽ 1;
1 ⩽ (x ∧ 1) + (y ∧ 1) if x + y ⩾ 1.

This means that both gP and dP satisfy the triangle inequality, that is (d3). Symmetry,
i.e. (d2), is obvious.
Moreover, since for all x ⩾ 0

x
1 + x

⩽ x ∧ 1 ⩽ 2 x
1 + x

263



R.L. Schilling: Measures, Integrals & Martingales

(consider the cases x ⩽ 1 and x ⩾ 1 separately), we have

gP(�, �) ⩽ dP(�, �) ⩽ 2gP(�, �)

which shows that gP and dP have the same Cauchy sequences. Moreover, for all � ⩽ 1,

P(|� − �| > �) = P(|� − �| ∧ 1 > �)

⩽ 1
� ∫

|� − �| ∧ 1 dP

= 1
�
dP(�, �)

so that (because of (iii)) any dP Cauchy sequence is a �P Cauchy sequence. And since
for all � ⩽ 1 also

dP(�, �) = ∫
|�−�|>�

|� − �| ∧ 1 dP + ∫
|�−�|⩽�

|� − �| ∧ 1 dP

⩽ ∫
|�−�|>�

1 dP + ∫
|�−�|⩽�

� dP

⩽ P(|� − �| > �) + �,

all �P Cauchy sequences are dP Cauchy sequences, too.
■■

Problem 22.9 Solution:

(i) Fix � > 0. We have

∫ |un − u| ∧ 1A d� = ∫{|un−u|⩽�}
|un − u| ∧ 1A d� + ∫{|un−u|>�}

|un − u| ∧ 1A d�

⩽ ��(A) + �({|un − u| > �} ∩ A).

Letting first n→∞ and then � → 0 yields

lim sup
n ∫ |un − u| ∧ 1A d� ⩽ ��(A) ←←←←←←←←←←←←←←←←←→

�→0
0.

(ii) WLOG we show that (un)n contains an a.e. convergent subsequence. Let (Ak)k be as in
the hint and fix i. By (i) we know that |u − un| ∧ 1Ai → 0 in L1. By Corollary 13.8 we
see that there is a subsequence u(i)n such that |u − u(i)n | ∧ 1Ai → 0 almost everywhere.
Now take repeatedly subsequences as i ⇝ i + 1 ⇝ i + 2 ⇝ … etc. and then take the
diagonal sequence. This will furnish a subsequence (u′′n )n ⊂ (un)n which converges a.e.
to u on⋃iAi = X.

(iii) We are now in the setting of Corollary 13.8: |un|, |u| ⩽ w for somew ∈ p(�) and un
�
←←←←←←→

u. Thus, every subsequence (u′n)n ⊂ (un)n converges in measure to the same limit u and
by (ii) there is some (u′′n )n ⊂ (u′n)n such that u′′n

a.e.
←←←←←←←←←←←←←→ u. Now we can use the dominated

convergence theorem (Theorem 12.2 or Theorem 13.9) to show that limn ‖u′′n −u‖p = 0.
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Assume now that un does not converge to u in Lp. This means that lim supn ‖un−u‖p >
0, i.e. there is some subsequence such that lim infn ‖u′n − u‖p > 0. On the other hand,
there is some (u′′n )n ⊂ (u′n)n such that

0 = lim
n
‖u′′n − u‖p ⩾ lim infn

‖u′n − u‖p > 0

and this is a contradiction.
■■

Problem 22.10 Solution: Note that the sets Aj are of finite �-measure. Observe that the functions
fj ∶= u1Aj

• converge in �-measure to f ≡ 0:

�({|fj| > �} ∩ Aj) ⩽ �(Aj) ←←←←←←←←←←←←←←←←←←←←→j→∞
0.

• are uniformly integrable:

sup
j ∫{|fj |>|u|}

|fj| d� = 0

since |fj| = |u1Aj | ⩽ |u| and |u| is integrable.
Therefore, Vitali’s Theorem shows that fj → 0 in 1 so that ∫ fj d� = ∫Aj u d� → 0.

■■

Problem 22.11 Solution:

(i) Trivial. More interesting is the assertion that
A sequence (xn)n ⊂ R converges to 0 if, and only if, every subsequence (xnk)k contains
some sub-subsequence (x̃nk)k which converges to 0.
Necessity is again trivial. Sufficiency: assume that (xn)n does not converge to 0. Then
the sequence (min{|xn|, 1})n is bounded and still does not converge to 0. Since this
sequence is bounded, it contains a convergent subsequence (xnk)kwith some limit � ≠ 0.
But then (xnk)k cannot contain a sub-subsequence (x̃nk)k which is a null sequence.

(ii) If un
�
←←←←←←←←←←←→ u, then every subsequence unk

�
←←←←←←←←←←←→ u. Thus, using the argument from the proof

of Problem 22.3 we can extract a sub-subsequence (ũnk)k ⊂ (unk)k such that

lim
k
ũnk(x)1A(x))u(x)1A(x) almost everywhere. (*)

Note that (unless we are in a �-finite measure space) the exceptional set may depend on
the testing set A.
Conversely, assume that every subsequence (unk)k ⊂ (un)n has a sub-subsequence (ũnk)k
satisfying (*). Because of Lemma 22.4 we have

lim
k
�
(

{|ũnk − u| > �} ∩ A
)

= 0.
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Assume now that un does not converge in �-measure on A to u. Then

xn ∶= �({|un − u| > �} ∩ A) ↛ 0.

Since the whole sequence (xn)n is bounded (by �(A)) there exists some subsequence
(xnk)k given by (unk)k such that

xnk = �({|unk − u| > �} ∩ A)→ � ≠ 0.

This contradicts, however, the fact that xnk has itself a subsequence converging to zero.
(iii) Fix some set A of finite �-measure. All conclusions below take place relative to resp.

on this set only.
If un

�
←←←←←←←←←←←→ uwe have for every subsequence (unk)k a sub-subsequence (ũnk)k with ũnk → u

a.e. Since Φ is continuous, we get Φ◦ũnk → Φ◦u a.e.
Thismeans, however, that every subsequence (Φ◦unk)k of (Φ◦un)n has a sub-subsequence
(Φ◦ũnk)k which converges a.e. to Φ◦u. Thus, part (ii) says that Φ◦un

�
←←←←←←←←←←←→ Φ◦u.

■■

Problem 22.12 Solution: Since  and  are uniformly integrable, we find for any given � > 0
functions f�, g� ∈ 1+ such that

sup
f∈ ∫{|f |>f�}

|f | d� ⩽ � and sup
g∈ ∫{|g|>g�}

|g| d� ⩽ �.

We will use this notation throughout.
(i) Since f ∶= |f1| +⋯ + |fn| ∈ 1+ we find that

∫{|fj |>f}
|fj| d� = ∫∅

|fj| d� = 0

uniformly for all 1 ⩽ j ⩽ n. This proves uniform integrability.
(ii) Instead of {f1,… , fN} (which is uniformly integrable because of (i)) we show that

 ∪  is uniformly integrable.
Set ℎ� ∶= f� + g�. Then ℎ� ∈ 1+ and

{|w| ⩾ f� + g�} ⊂ {|w| ⩾ f�} ∩ {|w| ⩾ g�}

which means that we have

∫{|w|>ℎ�}
|w| d� ⩽

⎧

⎪

⎨

⎪

⎩

∫{|w|>f�} |w| d� ⩽ � if w ∈ 

∫{|w|>g�} |w| d� ⩽ � if w ∈ .

Since this is uniform for all w ∈  ∪ , the claim follows.
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(iii) Set ℎ� ∶= f� + g� ∈ 1+. Since |f + g| ⩽ |f | + |g| we have

{|f + g| > ℎ�} ⊂ {|f | > ℎ�} ∪ {|g| > ℎ�}

=
[

{|f | > ℎ�} ∩ {|g| > ℎ�}
]

∪
[

{|f | > ℎ�} ∩ {|g| ⩽ ℎ�}
]

∪
[

{|f | ⩽ ℎ�} ∩ {|g| > ℎ�}
]

which implies that

∫
{|f+g|>ℎ�}

|f + g| d�

⩽ ∫
{|f |>ℎ�}
∩{|g|>ℎ�}

(

|f | + |g|
)

d� + ∫
{|f |>ℎ�}
∩{|g|⩽ℎ�}

|f | ∨ |g| d� + ∫
{|f |⩽ℎ�}
∩{|g|>ℎ�}

|f | ∨ |g| d�

= ∫
{|f |>ℎ�}
∩{|g|>ℎ�}

|f | d� + ∫
{|f |>ℎ�}
∩{|g|>ℎ�}

|g| d� + ∫
{|f |>ℎ�}
∩{|g|⩽ℎ�}

|f | d� + ∫
{|f |⩽ℎ�}
∩{|g|>ℎ�}

|g| d�

⩽ ∫
{|f |>ℎ�}

|f | d� + ∫
{|g|>ℎ�}

|g| d� + ∫
{|f |>ℎ�}

|f | d� + ∫
{|g|>ℎ�}

|g| d�

⩽ ∫
{|f |>f�}

|f | d� + ∫
{|g|>g�}

|g| d� + ∫
{|f |>f�}

|f | d� + ∫
{|g|>g�}

|g| d�

⩽ 4�

uniformly for all f ∈  and g ∈ .
(iv) This follows from (iii) if we set

• t ⇝  ,
• (1 − t) ⇝ ,
• tf� ⇝ f�,
• (1 − t)f� ⇝ g�,

and observe that the calculation is uniform for all t ∈ [0, 1].
(v) Without loss of generality we can assume that is convex, i.e. coincides with its convex

hull.
Let u be an element of the1-closure of (the convex hull of) . Then there is a sequence

(fj)j ⊂  ∶ lim
j
‖u − fj‖1 = 0.

We have, because of |u| ⩽ |u − fj| + |fj|,

{|u| > f�} ⊂ {|u − fj| > f�} ∪ {|fj| > f�}

=
[

{|u − fj| > f�} ∩ {|fj| > f�}
]

∪
[

{|u − fj| > f�} ∩ {|fj| ⩽ f�}
]
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∪
[

{|u − fj| ⩽ f�} ∩ {|fj| > f�}
]

that

∫
{|u|>f�}

|u| d�

⩽ ∫
{|u−fj |>f�}
∩{|fj |>f�}

|u| d� + ∫
{|u−fj |>f�}
∩{|fj |⩽f�}

|u| d� + ∫
{|u−fj |⩽f�}
∩{|fj |>f�}

|u| d�

⩽ ∫
{|u−fj |>f�}
∩{|fj |>f�}

|u − fj| d� + ∫
{|u−fj |>f�}
∩{|fj |>f�}

|fj| d�

+ ∫
{|u−fj |>f�}
∩{|fj |⩽f�}

|u − fj| ∨ |fj| d� + ∫
{|u−fj |⩽f�}
∩{|fj |>f�}

|u − fj| ∨ |fj| d�

⩽ ‖u − fj‖1 + ∫
{|fj |>f�}

|fj| d� + ‖u − fj‖1 + ∫
{|fj |>f�}

|fj| d�

⩽ 2 ‖u − fj‖1 + 2�

←←←←←←←←←←←←←←←←←←←←→
j→∞

2�.

Since this holds uniformly for all such u, we are done.
■■

Problem 22.13 Solution: By assumption,

∀ � > 0 ∃w� ∈ 1+ ∶ sup
f∈ ∫{|f |>w�}

|f | d� ⩽ �.

Now observe that

∫{sup1⩽j⩽k |fj |>w�}
sup
1⩽j⩽k

|fj| d�

⩽
k
∑

l=1
∫{sup1⩽j⩽k |fj |>w�}∩{|fl|=sup1⩽j⩽k |fj |}

|fl| d�

⩽
k
∑

l=1
∫{|fl|>w�}

|fl| d�

⩽
k
∑

l=1
�

= k �.

Therefore,

∫ sup
1⩽j⩽k

|fj| d�

⩽ ∫{sup1⩽j⩽k |fj |⩽w�}
sup
1⩽j⩽k

|fj| d� + ∫{sup1⩽j⩽k |fj |>w�}
sup
1⩽j⩽k

|fj| d�
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⩽ ∫ w� d� + k�

and we get

lim
k→∞

1
k ∫ sup

1⩽j⩽k
|fj| d� ⩽ lim

k→∞
1
k ∫ w� d� + � = �

which proves our claim as � > 0 was arbitrary.
■■

Problem 22.14 Solution: Since the function u ≡ R,R > 0, is integrable w.r.t. the probabilitymeasure
P, we get

∫{|uj |>R}
|uj| dP ⩽ ∫{|uj |>R}

|uj|
|uj|p−1

Rp−1
dP

= 1
Rp−1 ∫{|uj |>R}

|uj|
p dP

⩽ 1
Rp−1 ∫

|uj|
p dP

⩽ 1
Rp−1

sup
k ∫ |uk|

p dP

= 1
Rp−1

sup
k

‖uk‖
p
p

which converges to zero as R→∞. This proves uniform integrability.
Counterexample:

Vitali’s theorem implies that a counterexample should satisfy

uj
P

←←←←←←←←←←←←←←←←←←←←→
j→∞

u, ‖uj‖1 = 1, uj does not converge in 1.

Consider, for example, the probability space ((0, 1),ℬ(0, 1), dx) and the sequence

uj ∶= j ⋅ 1(0,1∕j).

Then uj → 0 pointwise (everywhere!), hence in measure. This is also the expected 1 limit, if it
exists. Moreover,

‖uj‖1 = ∫ uj dx = 1

which means that uj cannot converge in 1 to the expected limit u ≡ 0, i.e. it does not converge in
1.
Vitali’s theorem shows now that (uj)j cannot be uniformly integrable.
We can verify this fact also directly: for R > 0 and all j > R we get

∫{|uj |>R}
|uj| dx = ∫ uj dx = 1
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which proves
sup
j ∫{|uj |>R}

|uj| dx = 1 ∀R > 0

and (uj)j cannot be uniformly integrable (in view of the equivalent characterizations of uniform
integrability on finite measure spaces, cf. Theorem 22.9)

■■

Problem 22.15 Solution: We have
∞
∑

j=k
j �(j < |f | ⩽ j + 1) =

∞
∑

j=k
∫{j<|f |⩽j+1}

j d�

⩽
∞
∑

j=k
∫{j<|f |⩽j+1}

|f | d�

= ∫{|f |>k}
|f | d�,

and, since 2j ⩾ j + 1 for all j ∈∈ N, also

2
∞
∑

j=k
j �(j < |f | ⩽ j + 1) =

∞
∑

j=k
2j �(j < |f | ⩽ j + 1)

=
∞
∑

j=k
∫{j<|f |⩽j+1}

2j d�

⩾
∞
∑

j=k
∫{j<|f |⩽j+1}

|f | d�

= ∫{|f |>k}
|f | d�.

This shows that

∫{|f |>k}
|f | d� ⩽ 2

∞
∑

j=k
j �(j < |f | ⩽ j + 1) ⩽ 2∫{|f |>k}

|f | d�

and this implies

sup
f∈ ∫{|f |>k}

|f | d� ≃ sup
f∈

∞
∑

j=k
j �(j < |f | ⩽ j + 1).

This proves the claim (since we are in a finite measure space where u ≡ k is an integrable function!)
■■

Problem 22.16 Solution: Fix � > 0. By assumption there is some w = w� ∈ 1+ such that

sup
i ∫{|fi|>w}

|fi| d� ⩽ �.

Since |ui| ⩽ |fi| we infer that {|ui| > w} ⊂ {|fi| > w}, and so

∫{|ui|>w}
|ui| d� ⩽ ∫{|fi|>w}

|fi| d� ⩽ � uniformly for all i ∈ I .

■■
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Problem 22.17 Solution: Let g ∈ 1+(�). Then

0 ⩽ ∫ (|u| − g ∧ |u|) d� = ∫{|u|⩾g}
(|u| − g) d� ⩽ ∫{|u|⩾g}

|u| d�.

This implies that uniform integrability of the family  implies that the condition of Problem 22.17
holds. On the other hand,

∫{|u|⩾g}
|u| d� = ∫{|u|⩾g}

(2|u| − |u|) d�

⩽ ∫{|u|⩾g}
(2|u| − g) d�

⩽ ∫{2|u|⩾g}
(2|u| − g) d�

= 2∫{|u|⩾ 1
2 g}

(

|u| − 1
2 g

)

d�

= 2∫{|u|⩾ 1
2 g}

(

|u| −
[1
2 g

]

∧ |u|
)

d�

and since g ∈ 1 if, and only if, 12 g ∈ 1, we see that the condition given in Problem 22.17 entails
uniform integrability.

In finite measure spaces this conditions is simpler: constants are integrable functions in finite
measure spaces; thus we can replace the condition given in Problem 22.17 by

lim
R→∞

sup
u∈ ∫ (|u| − R ∧ |u|) d� = 0.

■■
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23 Martingales.

Solutions to Problems 23.1�23.16

Problem 23.1 Solution: Since A0 = {∅, X} an A0-measurable function u must satisfy {u = s} = ∅
or = X, i.e. all A0-measurable functions are constants.
So if (uj)j∈N0

is a martingale, u0 is a constant and we can calculate its value because of the mar-
tingale property:

∫X
u0 d� = ∫X

u1 d� ⇐⇒ u0 = �(X)−1 ∫X
u1 d�. (*)

Conversely, since A0 = {∅, X} and since

∫∅
u0 d� = ∫∅

u1 d�

always holds, it is clear that the calculation and choice in (*) is necessary and sufficient for the
claim.

■■

Problem 23.2 Solution: We consider only the martingale case, the other two cases are similar.
(a) Sinceℬj ⊂ Aj we get

∫A
uj d� = ∫A

uj+1 d� ∀A ∈ Aj

⇐⇒ ∫B
uj d� = ∫B

uj+1 d� ∀B ∈ℬj

showing that (uj ,ℬj)j is a martingale.
(b) It is clear that the above implication cannot hold if we enlargeAj to becomeCj . Just consider

the following ‘extreme’ case (to get a counterexample): Cj = A for all j. Any martingale
(uj ,C )j must satisfy,

∫A
uj d� = ∫A

uj+1 d� ∀A ∈ A .

Considering the sets A ∶= {uj < uj+1} ∈ A and A′ ∶= {uj > uj+1} ∈ A we conclude that

0 = ∫{uj>uj+1}
(uj − uj+1) d� ⇐⇒ �({uj > uj+1}) = 0

and, similarly �({uj < uj+1}) = 0 so that uj = uj+1 almost everywhere and for all j. This
means that, if we start with a non-constant martingale (uj ,Aj)j , then this can never be a
martingale w.r.t. the filtration (Cj)j .
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■■

Problem 23.3 Solution: For the notation etc. we refer to Problem 4.15. Since the completion A j is
given by

A j = �(Aj ,N ), N ∶=
{

M ⊂ X ∶ ∃N ∈ A , N ⊃ M, �(N) = 0
}

we find that for all A∗j ∈ A ∗
j there exists some Aj ∈ Aj such that

A∗j ⧵ Aj ∪ Aj ⧵ A
∗
j ∈ N .

Writing �̄ for the unique extension of � onto A (and thus onto A j for all j) we get for A∗j , Aj as
above

|

|

|

|

|

|

∫A∗j
uj d�̄ − ∫Aj

uj d�
|

|

|

|

|

|

=
|

|

|

|

|

|

∫A∗j
uj d�̄ − ∫Aj

uj d�̄
|

|

|

|

|

|

=
|

|

|

|

∫ (1A∗j − 1Aj )uj d�̄
|

|

|

|

⩽ ∫
|

|

|

1A∗j
− 1Aj

|

|

|

uj d�̄

= ∫ 1A∗j ⧵Aj∪Aj⧵A
∗
j
uj d�̄

⩽ ∫ 1Nuj d� = 0

for a suitable �-null-setN ⊃ A∗j ⧵ Aj ∪ Aj ⧵ A
∗
j . This proves that

∫A∗j
uj d�̄ = ∫Aj

uj d�

and we see easily from this that (uj ,A ∗
j )j is again a (sub-, super-)martingale if (uj ,Aj)j is a (sub-,

super-)martingale.
■■

Problem 23.4 Solution: To see that the condition is sufficient, set k = j + 1. For the necessity,
assume that k = j + m. Since Aj ⊂ Aj+1 ⊂ ⋯ ⊂ Aj+m = Ak we get from the submartingale
property

∫A
uj d� ⩽ ∫A

uj+1 d� ⩽ ∫A
uj+2 d� ⩽⋯ ⩽ ∫A

uj+m d� = ∫A
uk d�.

For supermartingales resp. martingales the conditions obviously read:

∫A
uj d� ⩾ ∫A

uk d� ∀ j < k, ∀A ∈ Aj

resp.

∫A
uj d� = ∫A

uk d� ∀ j < k, ∀A ∈ Aj .

■■
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Problem 23.5 Solution: We have Sj = {A ∈ Aj ∶ �(A) < ∞} and we have to check conditions
(S1)–(S3) for a semiring, cf. page 39. Indeed

∅ ∈ Aj , �(∅) = 0 ⇐⇒ ∅ ∈ Sj ⇐⇒ (S1);

and

A,B ∈ Sj ⇐⇒ A ∩ B ∈ Aj , �(A ∩ B) ⩽ �(A) <∞

⇐⇒ A ∩ B ∈ Sj ⇐⇒ (S2);

and

A,B ∈ Sj ⇐⇒ A ⧵ B ∈ Aj , �(A ⧵ B) ⩽ �(A) <∞

⇐⇒ A ⧵ B ∈ Sj ⇐⇒ (S3).

Since Sj ⊂ Aj also �(Sj) ⊂ Aj . On the other hand, if A ∈ Aj with �(A) = ∞ we can, because
of �-finiteness find a sequence (Ak)k ⊂ A0 ⊂ Aj such that �(Ak) < ∞ and Ak ↑ X. Thus,
Ak ∩ A ∈ Sj for all k and A = ⋃

k(Ak ∩ A). This shows that Aj ⊂ �(Sj).
The rest of the problem is identical to remark 23.2(i) when combined with Lemma 16.6.

■■

Problem 23.6 Solution: Using Lemma 17.2 we can approximate uj ∈ 2(Aj) by simple functions in
(Aj), i.e. with functions of the form flj =

∑

m c
l,m
j 1Al,mj

(the sum is a finite sum!) where clj ∈ R
and Alj ∈ Aj . Using the Cauchy–Schwarz inequality we also see that

∫ (flj − uj)uj d� ⩽ ‖flj − uj‖L2 ⋅ ‖uj‖L2
l→∞
←←←←←←←←←←←←←←←←←←←←←←←→
j fixed 0.

Using the martingale property we find for j ⩽ k:

∫ 1Al,mj
uk d� = ∫ 1Al,mj

uj d� ∀l, m

and therefore

∫ flj uk d� = ∫ flj uj d� ∀l

and since the limit l →∞ exists

∫ ujuk d� = liml ∫ flj uk d� = liml ∫ flj uj d� = ∫ u2j d�.

■■

Problem 23.7 Solution: Since the fj’s are bounded, it is clear that (f ∙ u)k is integrable. Now take
A ∈ Ak. Then

∫A
(f ∙ u)k+1 d� = ∫A

k+1
∑

j=1
fj−1(uj − uj−1) d�
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= ∫A
(f ∙ u)k + fk(uk+1 − uk) d�

= ∫A
(f ∙ u)k d� + ∫ (1A ⋅ fk)(uk+1 − uk) d�

Using Remark 23.2(iii) we find

∫ (1A ⋅ fk)(uk+1 − uk) d� = ∫ 1A ⋅ fkuk+1 d� − ∫ 1A ⋅ fkuk d�

= ∫ 1A ⋅ fkuk d� − ∫ 1A ⋅ fkuk d�

= 0

and we conclude that

∫A
(f ∙ u)k+1 d� = ∫A

(f ∙ u)k d� ∀A ∈ Ak.

■■

Problem 23.8 Solution:

(i) Note that

S2n+1 − S
2
n = (Sn + �n+1)

2 − S2n = �
2
n+1 + �n+1Sn.

If A ∈ An, then 1ASn is independent of �n+1 and we find, therefore,

∫A
(S2n+1 − S

2
n ) dP = ∫A

�2n+1 dP + ∫A
�n+1Sn dP

⩾ ∫A
�n+1Sn dP

= ∫ �n+1(1ASn) dP

= ∫ �n+1 dP

⏟⏞⏞⏞⏟⏞⏞⏞⏟
=0

∫ 1ASn dP

= 0.

(ii) Observe, first of all, that due to independence

∫ S2n dP =
n
∑

j=1
∫ �2j dP +

∑

j≠k
∫ �j�k dP

= n∫ �21 dP +
∑

j≠k
∫ �j dP

⏟⏞⏟⏞⏟
=0

∫ �k dP

= n∫ �21 dP
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so that � ∶= ∫ �21 dP is a reasonable candidate for the assertion. Using the calculation of
part (i) of this problem we see

[S2n+1 − �(n + 1)] − [S
2
n − �n] = �

2
n+1 + �n+1Sn − �

and integrating over ∫A… dP for any A ∈ An gives, just as in (i), because of independence
of 1A and �n+1 resp. 1ASn and �n+1

∫A

(

[S2n+1 − �(n + 1)] − [S
2
n − �n]

)

dP

= ∫ 1A ⋅ �
2
n+1 dP + ∫ �n+1 dP∫ 1A ⋅ Sn dP − � ∫A

dP

= P(A)∫ �2n+1 dP − � ∫A
dP

= 0

since �1 and �n+1 are identically distributed implying that � = ∫ �2n+1 dP = ∫ �21 dP.
■■

Problem 23.9 Solution: As in Problem 23.8 we find

Mn+1 −Mn = �2n+1 + Sn�n+1 − �
2
n+1.

Integrating over A ∈ An yields

∫A
(Mn+1 −Mn) dP

= ∫A
�2n+1 dP + ∫A

Sn�n+1 dP − �2n+1 ∫A
dP

= P(A)∫Ω
�2n+1 dP

⏟⏞⏞⏞⏟⏞⏞⏞⏟
= �2n+1

+∫A
Sn dP∫Ω

�n+1 dP

⏟⏞⏞⏞⏟⏞⏞⏞⏟
=0

−�2n+1P(A)

= 0,

where we use the independence of 1A and �n+1 resp. of 1ASn and �n+1 and the hint given in the
statement of the problem.

■■

Problem 23.10 Solution: We find that for A ∈ An

∫A
un+1 d� = ∫A

(un + dn+1) d� = ∫A
un d� + ∫A

dn+1 d� = ∫A
un d�

which shows that (un,An)n is amartingale, hence (u2n,An)n is a submartingale—cf. Example 23.3(vi).
Now

∫ u2n d� =
∑

j ∫ d2j d� + 2
∑

j<k
∫ djdk d�

277



R.L. Schilling: Measures, Integrals & Martingales

but, just as in Problem 23.6, we can approximate dj by Aj-measurable simple functions (flj )l∈N
which shows, since ∫A dk d� = 0 for any A ∈ Aj and k > j:

∫ djdk d� = liml ∫ flj dk d� = 0.

■■

Problem 23.11 Solution: For A ∈ An we find

∫A

[(

1 − p
p

)Sn+1
−
(

1 − p
p

)Sn]

dP

= ∫A

(

1 − p
p

)Sn[(1 − p
p

)�n+1
− 1

]

dP

= ∫A

(

1 − p
p

)Sn
dP ⋅ ∫Ω

[(

1 − p
p

)�n+1
− 1

]

dP

where we use that 1A
( 1−p

p

)Sn and ( 1−p
p

)�n+1 − 1 are independent, see formulae (23.6) and (23.7).
But since �n+1 is a Bernoulli random variable we find

∫Ω

[(

1 − p
p

)�n+1
− 1

]

dP

=
[(

1 − p
p

)1
− 1

]

⋅ p +
[(

1 − p
p

)−1
− 1

]

⋅ (1 − p)

= [1 − 2p] + [2p − 1]

= 0.

The integrability conditions for martingales are obviously satisfied.
■■

Problem 23.12 Solution: A solution in a more general context can be found in Example 25.4 on page
297 of the textbook.

■■

Problem 23.13 Solution: By definition, a supermartingale satisfies

∫A
uj d� ⩾ ∫A

uj+1 d� ∀j ∈ N, A ∈ Aj .

If we take A = X and if uk = 0, then this becomes

0 = ∫X
uk d� ⩾ ∫X

uk+1 d� ⩾ 0

and since, by assumption, uk+1 ⩾ 0, we conclude that uk+1 = 0.
■■
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Problem 23.14 Solution: By definition,
A ∈ A� ⇐⇒ A ∈ A and ∀ j ∶ A ∩ {� ⩽ j} ∈ Aj .

Thus,
• ∅ ∈ A� is obvious;
• if A ∈ A� , then

Ac ∩ {� ⩽ j} = {� ⩽ j} ⧵ A = {� ⩽ j}
⏟⏟⏟
∈Aj

⧵ (A ∩ {� ⩽ j})
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

∈Aj

∈ Aj

thus Ac ∈ A� .
• if Al ∈ A� , l ∈ N, then

[

⋃

l

Al

]

∩ {� ⩽ j} =
⋃

l

[

Al ∩ {� ⩽ j}
]

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
∈Aj

∈ Aj

thus⋃Al ∈ A� .
■■

Problem 23.15 Solution: By definition, � is a stopping time if
∀ n ∈ N0 ∶ {� ⩽ n} ∈ An.

Thus, if � is a stopping time, we find for n ⩾ 1
{� < n} = {� ⩽ n − 1} ∈ An−1 ⊂ An

and, therefore, for all n ∈ N0

{� = n} = {� ⩽ n} ⧵ {� < n} ∈ An.

Conversely, if {� = n} ∈ An for all n, we get
{� ⩽ k} = {� = 0} ∪ {� = 1} ∪⋯ ∪ {� = k} ∈ A0 ∪⋯ ∪Ak ⊂ Ak.

■■

Problem 23.16 Solution: Since � ∧ � ⩽ � and � ∧ � ⩽ �, we find from Lemma 23.6 that
ℱ�∧� ⊂ ℱ� ∩ℱ� .

Conversely, if A ∈ ℱ� ∩ℱ� we know that
A ∩ {� ⩽ j} ∈ ℱj and A ∩ {� ⩽ j} ∈ ℱj ∀ j ∈ N0.

Thus,
A ∩ {� ∧ � ⩽ j} = A ∩

(

{� ⩽ j} ∪ {� ⩽ j}
)

∈ ℱj

and we get A ∈ ℱ�∧� .
■■
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24 Martingale convergence theorems.

Solutions to Problems 24.1�24.9

Problem 24.1 Solution: We have �0 = 0 which is clearly a stopping time and since

�1 ∶= inf{j > 0 ∶ uj ⩽ a} ∧N (inf ∅ = +∞)

it is clear that

{�1 > l} = {u1 > a} ∩⋯ ∩ {ul > a} ∈ Al.

The claim follows by induction once we have shown that �k and �k are stopping times for a generic
value of k. Since the structure of their definitions are similar, we show this for �k only.
By induction assumption, let �0, �1, �1,… , �k−1, �k be stopping times. By definition,

�k ∶= inf{j > �k−1 ∶ uj ⩽ a} ∧N (inf ∅ = +∞)

and we find for l ∈ N and l < N

{�k > l} = {�k−1 ⩽ l} ∈ Al

while, by definition

{�k = N} = ∅ ∈ AN .

■■

Problem 24.2 Solution: Theorem 24.7 becomes for supermartingales: Let (ul)l∈−N be a backwards
supermartingale and assume that �|A−∞ is �-finite. Then limj→∞ u−j = u−∞ ∈ (−∞,∞] exists a.e.
Moreover, L1-limj→∞ u−j = u−∞ if, and only if, supj ∫ u−j d� < ∞; in this case (ul,Al)l∈−N is
a supermartingale and u−∞ is finitely-valued.

Using this theorem the claim follows immediately from the supermartingale property:

−∞ < ∫A
u−1 d� ⩽ ∫A

u−j d� ⩽ ∫A
u−∞ d� <∞ ∀ j ∈ N, A ∈ A−∞

and, in particular, for A = X ∈ A−∞.
■■
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Problem 24.3 Solution: Corollary 24.3 shows pointwise a.e. convergence. Using Fatou’s lemma we
get

0 = lim
j→∞∫ uj d� = lim infj→∞ ∫ uj d�

⩾ ∫ lim inf
j→∞

uj d�

= ∫ u∞ d� ⩾ 0

so that u∞ = 0 a.e.
Moreover, since ∫ uj d� ←←←←←←←←←←←←←←←←←←←←→

j→∞
0 = ∫ u∞ d�, Theorem 24.6 shows that uj → u∞ in L1-sense.

■■

Problem 24.4 Solution: From L1-limj→∞ uj = f we conclude that supj ∫ |uj| d� < ∞ and we get
that limj→∞ uj exists a.e. Since L1-convergence also implies a.e. convergence of a subsequence,
the limiting functions must be the same.

■■

Problem 24.5 Solution: The quickest solution uses the famous Chung-Fuchs result that a simple
random walk (this is just Sj ∶= �1 +⋯ + �j with �k iid Bernoulli p = q = 1

2 ) does not converge
and that −∞ = lim inf j Sj < lim supj Sj = ∞ a.e. Knowing this we are led to

P (uj converges) = P (�0 + 1 = 0) = 1
2
.

It remains to show that uj is a martingale. For A ∈ �(�1,… , �j) we get

∫A
uj+1 dP = ∫A

(�0 + 1)(�1 +⋯ + �j + �j+1) dP

= ∫A
(�0 + 1)(�1 +⋯ + �j) dP + ∫A

(�0 + 1)�j+1 dP

= ∫A
uj dP + ∫A

(�0 + 1) dP ∫Ω
�j+1 dP

= ∫A
uj dP

where the last step follows because of independence.
If you do not know the Chung-Fuchs result, you could argue as follows: assume that for some finite
random variable S the limit Sj(!) → S(!) takes place on a set A ⊂ Ω. Since the �j’s are iid, we
have

�2 + �3 +⋯→ S

and
�1 + �2 +⋯→ S

which means that S and S + �1 have the same probability distribution. But this entails that S is
necessarily ±∞, i.e., Sj cannot have a finite limit.

■■
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Problem 24.6 Solution:

(i) Cf. the construction in Scholium 23.4.
(ii) Note that n2 − (n − 1)2 − 1 = 2n − 2 is even.

The function f ∶ R2n−2 → R, f (x1,… , x2n−2) = x1 +⋯ + xn2−(n−1)2 is clearly Borel
measurable, i.e. the function

f (�(n−1)2+2,… , �n2) = �(n−1)2+2 +⋯ + �n2

is An-measurable and so is the set An.
Moreover, x ∈ An if, and only if, exactly half of �(n−1)2+2,… , �n2 are +1 and the other
half is −1. Thus,

�(An) =
(

2n − 2
n − 1

)(

1
2

)n−1(1
2

)n−1
=
(

2n − 2
n − 1

)(

1
2

)2n−2

Using Stirling’s formula, we get
1
22k

(

2k
k

)

= (2k)!
k! k!

∼
√

2�2k(2k)2kekek

22k
√

2�k
√

2�kkkkke2k

= 1
√

k�
←←←←←←←←←←←←←←←←←←←←→
k→∞

0.

Setting k = n − 1 this shows both
lim
n
�(An) = 0 and ∑

n
�(An) ∼

∑

n

1
√

n
= ∞.

Finally, lim supn 1An = 1lim supn An = 1 a.e. while, by Fatou’s lemma

0 ⩽ ∫ lim inf
n

1An d� ⩽ lim inf
n ∫ 1An d� = lim infn

�(An) = 0,

i.e., lim infn 1An = 0 a.e. This means that 1An does not have a limit as n→∞.
(iii) For A ∈ An we have because of independence

∫A
Mn+1 d�

= ∫A
Mn(1 + �n2+1) d� + ∫A

1An�n2+1 d�

= ∫A
Mn d�∫[0,1]

(1 + �n2+1) d� + ∫A
1An d�∫[0,1]

�n2+1 d�

= ∫A
Mn d�.

(iv) We have
{Mn+1 ≠ 0}

= {Mn+1 ≠ 0, �n2+1 = −1} ∪ {Mn+1 ≠ 0, �n2+1 = +1}

⊂ An ∪ {Mn ≠ 0, �n2+1 = +1}.
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(v) By definition,

Mn+1 −Mn =Mn�n2+1 + 1An�n2+1 = (Mn + 1An)�n2+1

so that

|Mn+1 −Mn| = |Mn + 1An| ⋅ |�n2+1| = |Mn + 1An|.

This shows that for x ∈ {limnMn exists} the limit limn 1An(x) exists. But, because of
(ii), the latter is a null set, so that the pointwise limit ofMn cannot exist.
On the other hand, using the inequality (iv), shows

�(Mn+1 ≠ 0) ⩽
1
2�(Mn ≠ 0) + �(An)

and iterating this gives

�(Mn+k ≠ 0) ⩽
1
2k�(Mn ≠ 0) + �(An) +⋯ �(An+k−1)

⩽ 1
2k + �(An) +⋯ �(An+k−1).

Letting first n→∞ and then k→∞ yields

lim sup
j

�(Mj ≠ 0) = 0

so that limj �(Mj = 0) = 0.
■■

Problem 24.7 Solution: Note that for A ∈ {

{1}, {2},… , {n}, {n + 1, n + 2,…}
} we have

∫A
�n+1 dP = ∫A

(n + 2)1[n+2,∞)∩N dP

=
⎧

⎪

⎨

⎪

⎩

0 if A is a singleton

∫[n+1,∞)∩N
(n + 2)1[n+2,∞)∩N dP else

and in the second case we have

∫[n+1,∞)∩N
(n + 2)1[n+2,∞)∩N dP = ∫[n+2,∞)∩N

(n + 2) dP

= (n + 2)
∞
∑

j=n+2
P ({j})

= (n + 2)
∞
∑

j=n+2

(

1
j
− 1
j + 1

)

= 1,

The same calculation shows

∫A
�n dP = ∫A

(n + 1)1[n+1,∞)∩N dP
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=
⎧

⎪

⎨

⎪

⎩

0 if A is a singleton

∫[n+1,∞)∩N
(n + 1)1[n+1,∞)∩N dP = 1 else

so that

∫A
�n+1 dP = ∫A

�n dP

for all A from a generator of the �-algebra which contains an exhausting sequence. This shows,
by Remark 23.2(i) that (�n)n is indeed a martingale.
The second calculation from above also shows that ∫ �n dP = 1 while

sup
n
�n = ∞ and lim

n
�n = 0

are obvious.
■■

Problem 24.8 Solution:

(i) Using Problem 23.6 we get

∫ (uj − uj−1)2 d� = ∫ u2j d� − 2∫ ujuj−1 d� + ∫ u2j−1 d�

= ∫ u2j d� − 2∫ u2j−1 d� + ∫ u2j−1 d�

= ∫ u2j d� − ∫ u2j−1 d�

which means that

∫ u2N d� =
N
∑

j=1
∫ (uj − uj−1)2 d�

and the claim follows.
(ii) Because of Example 23.3(vi), p = 2, we conclude that (u2j )j is a submartingale which,

due to L2-boundedness, satisfies the assumptions of Theorem 24.2 on submartingale
convergence. This means that limj u2j = u

2 exists a.e. This is, alas, not good enough to
get uj → u a.e., it only shows that |uj| → |u| a.e.
The following trick helps: let (Ak)k ⊂ A0 be an exhausting sequence with Ak ↑ X
and �(Ak) < ∞. Then (1Akuj)j is an L1-bounded martingale: indeed, if A ∈ An then
A ∩ Ak ∈ An and it is clear that

∫A
1Akun d� = ∫A∩Ak

un d� = ∫A∩Ak
un+1 d� = ∫A

1Akun+1 d�

while, by the Cauchy–Schwarz inequality,

∫ |1Akun| d� ⩽
√

�(Ak) ⋅

√

sup
n ∫ u2n d� ⩽ ck.
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Thus, we can use Theorem 24.2 and conclude that
1Akun ←←←←←←←←←←←←←←←←←←←←→n→∞

1Aku

almost everywhere with, because of almost-everywhere-uniqueness of the limits on
each of the sets Ak, a single function u. This shows un → u a.e.

(iii) Following the hint and using the arguments of part (i) we find

∫ (uj+k − uj)2 d� = ∫ (u2j+k − u
2
j ) d�

=
j+k
∑

l=j+1
∫ (u2l − u

2
l−1) d�

=
j+k
∑

l=j+1
∫ (ul − ul−1)2 d�.

Now we use Fatou’s lemma and the result of part (ii) to get

∫ lim inf
j

(u − uj)2 d� ⩽ lim inf
j ∫ (u − uj)2 d�

⩽ lim sup
j ∫ (u − uj)2 d�

⩽ lim sup
j

∞
∑

l=j+1
∫ (ul − ul−1)2 d�

= 0

since, by L2-boundedness,∑∞
k=1 ∫ (uk − uk−1)

2 d� <∞.
(iv) Since �(�) < ∞, constants are integrable and we find using the Cauchy–Schwarz and

Markov inequalities

∫
|uk|>R

|uk| d� ⩽
√

�(|uk| > R) ⋅

√

∫ u2k d�

⩽ 1
R

√

∫ u2k d� ⋅

√

∫ u2k d�

⩽ 1
R
sup
k ∫ u2k d�

from which we get uniform integrability; the claim follows now from parts (i)–(iii) and
Theorem 24.6.

■■

Problem 24.9 Solution:

(i) Note that ∫ �j dP = 0 and ∫ �2j dP = 1. Moreover, �n ∶= ∑n
j=1 �jyj is a martingale

w.r.t. the filtration An ∶= �(�1,… , �n) and

∫ �2n dP =
n
∑

j=1
y2j .
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Problem 24.8 now shows that ∑∞
j=1 y

2
j < ∞ means that the martingale (�n)n is L2-

bounded, i.e. �n converges a.e. The converse follows from part (iii).
(ii) This follows with the same arguments as in part (i) with An = �(�1,… , �n).
(iii) We show that S2n − An is a martingale. Now for A ∈ An

∫A
Mn+1 dP = ∫A

(S2n+1 − An+1) dP

= ∫A
(S2n + 2�n+1Sn + �

2
n+1 − An − �

2
n+1) dP

= ∫A
(S2n − An) dP + ∫A

(2�n+1Sn + �2n+1 − �
2
n+1) dP

= ∫A
Mn dP + ∫A

(2�n+1Sn + �2n+1 − �
2
n+1) dP

But, because of independence,

∫A
(2�n+1Sn + �2n+1 − �

2
n+1) dP

= ∫A
2�n+1 dP ∫Ω

Sn dP + P (A)∫ �2n+1 dP − P (A)�
2
n+1

= 0 + P (A)�2n+1 − P (A)�
2
n+1

= 0.

and the claim is established.
Now define

� ∶= �� ∶= inf{j ∶ |Mj| > �}.

By optional sampling, (Mn∧�� )n is again a martingale and we have

|Mn∧� | =Mn1{n<�} + |M� |1{n⩾�}

⩽ �1{n<�} + |M� |1{n⩾�}

⩽ �1{n<�} + |M� −M�−1|1{n⩾�} + |M�−1|1{n⩾�}

= �1{n<�} + |�� |1{n⩾�} + |M�−1|1{n⩾�}

⩽ �1{n<�} + |�� |1{n⩾�} + �1{n⩾�}
⩽ � + C

where we use, for the estimate ofM�−1, the definition of � for the last estimate. Since
(Mn∧�)n is a martingale, this gives

∫ (S2n∧� − An∧�) dP = ∫ (S20 − A0) dP = 0

so that

∫ An∧� dP = ∫ S2n∧� dP ⩽ (� + C)2
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uniformly in n.
Thus, by Beppo Levi’s theorem,

∫ A� dP ⩽ (� + C)2 <∞

which means that A� < ∞ almost surely. But since ∑

j �j converges almost surely,
P (� = ∞) = 1 for sufficiently large �, and we are done.

■■
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25 Martingales in action.

Solutions to Problems 25.1�25.15

Problem 25.1 Solution: This problem is intimately linked with problem 25.7.
Without loss of generality we assume that � and � are finite measures, the case for �-finite � and
arbitrary � is exactly as in the proof of Theorem 25.2.
Let (Ai)i be as described in the problem and define the finite �-algebras An ∶= �(A1,… , An).
Using the hint we can achieve that

An = �
(

Cn1 ,… , Cnl(n)
)

with mutually disjoint Cki ’s and l(n) ⩽ 2n +1 and
⨃

i C
n
i = X. Then the construction of Example

25.4 yields a countably-indexed martingale since the �-algebras Ai are increasing.
This means, that the countable version of the martingale convergence theorem is indeed enough
for the proof.

■■

Problem 25.2 Solution: “⇒”: Assume first that (25.1) holds, i.e. that � ≪ �. If �(A▵B) = 0 for
some A,B ∈ A we get �(A▵B) = 0. By definition,

�(A▵B) = �(A ⧵ B) + �(B ⧵ A) = �(A ⧵ (A ∩ B)) + �(B ⧵ (A ∩ B)) = 0

so that

�(A ⧵ (A ∩ B)) = �(B ⧵ (A ∩ B)) = 0.

Assume that �(A) <∞. Then �(A ∩ B) ⩽ �(A) <∞ and we see that

�(A) = �(A ∩ B) and �(B) = �(A ∩ B)

which means that �(A) = �(B).
If �(A) = ∞ the condition �(A ⧵ (A ∩ B)) = 0 shows that �(A ∩ B) = ∞, otherwise 0 =
�(A ⧵ (A ∩ B)) = �(A) − �(A ∩ B) = ∞ which is impossible. Again we have �(A) = ∞ = �(B).

“⇐”: Assume now that the condition stated in the problem is satisfied. If N ∈ A is any �-null
set, we choose A ∶= N and B ∶= ∅ and observe that A▵B = N . Thus,

�(N) = �(A▵B) = 0 ⇐⇒ �(A) = �(B)
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but this is just �(N) = �(A) = �(∅) = 0. Condition (25.1) follows.
■■

Problem 25.3 Solution: Using simply the Radon–Nikodým theorem, Theorem 25.2, gives

∀ t ∃ pt(x) such that �t(dx) = pt(x) ⋅ �t(dx)

with a measurable function x → pt(x); it is, however, far from being clear that (t, x) → pt(x) is
jointly measurable.
A slight variation of the proof of Theorem 25.2 allows us to incorporate parameters provided the
families of measures are measurable w.r.t. these parameters. Following the hint we set (notation
as in the proof of 25.2)

p�(t, x) ∶=
∑

A∈�

�t(A)
�t(A)

IA(x)

with the agreement that 00 ∶= 0 (note that a0 with a ≠ 0 will not turn up because of the absolute
continuity of the measures!). Since t → �t(A) and t → �t(A) are measurable, the above sum is
measurable so that

(t, x) → p(t, x)

is a jointly measurable function. If we can show that

lim
�
p�(t, x) = p(t, x)

exists (say, in L1, t being fixed) then the limiting function is again jointly measurable.
Using exactly the arguments of the proof of Theorem 25.2 with t fixed we can confirm that this
limit exists and defines a jointly measurable function with the property that

�t(dx) = p(t, x) ⋅ �t(dx).

Because of the a.e. uniqueness of the Radon–Nikodým density the functions p(t, x) and pt(x) co-
incide, for every t a.e. as functions of x; without additional assumptions on the nature of the de-
pendence on the parameter, the exceptional set may, though, depend on t!

■■

Problem 25.4 Solution: � ≪ � . We show that �(N) = 0 ⇐⇒ �(N) = 0. Let N ∈ ℬ(Rn) be a
Lebesgue null set. Using the invariance of Lebesgue measure under shifts we get

0 = ∫ �(N)
⏟⏟⏟
=0

�(dy) = ∫ �(N − y) �(dy)

= ∬ 1N (x + y) �(dx)�(dy)

Tonelli
= ∬ 1N (x + y) �(dy)�(dx)
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= ∫ �(N − y) �(dy).

Therefore, �(N−y) = 0 for Lebesgue almost every y, i.e. there is some x0 such that �(N+x0) = 0.
Now we use the quasi-invariance to get �(N) = �((N + x0) − x0) = 0.
� ≪ � . We show that �(N) = 0 ⇐⇒ �(N) = 0. LetN ∈ℬ(Rn) be a null set for the measure �.
Similar to the first part of the proof we get

0 = ∫ �(N − x)
⏟⏞⏞⏟⏞⏞⏟

=0

�(dx) = ∫ �(N − y) �(dy)

= ∫ �(N) �(dy) = �(N)�(Rn).

This shows that �(N) = 0 (unless � is trivial....).
■■

Problem 25.5 Solution: Have a look at the respective solutions for Chapter 20.
■■

Problem 25.6 Solution: We write u± for the positive resp. negative parts of u ∈ 1(A ), i.e. u =
u+ − u− and u± ⩾ 0. Fix such a function u and define

�±(F ) ∶= ∫F
u±(x)�(dx), ∀F ∈ ℱ .

Clearly, �± are measures on the �-algebra ℱ . Moreover

∀N ∈ ℱ , �(N) = 0 ⇐⇒ �±(N) = ∫N
u± d� = 0

which means that �± ≪ �. By the Radon–Nikodým theorem we find (up to null-sets unique)
positive functions f± ∈ 1(ℱ ) such that

�±(F ) = ∫F
f± d� ∀F ∈ ℱ .

Thus, uℱ ∶= f+ − f− ∈ 1(ℱ ) clearly satisfies

∫F
uℱ d� = ∫F

u d� ∀F ∈ ℱ .

To see uniqueness, we assume that w ∈ 1(ℱ ) also satisfies

∫F
wd� = ∫F

u d� ∀F ∈ ℱ .

Since then

∫F
uℱ d� = ∫F

wd� ∀F ∈ ℱ .

we can choose f ∶= {w > uℱ } and find

0 = ∫{w>uℱ }
(w − uℱ ) d�

291



R.L. Schilling: Measures, Integrals & Martingales

which is only possible if �({w > uℱ }) = 0. Similarly we conclude that �({w < uℱ }) = 0 from
which we get w = uℱ almost everywhere.
Reformulation of the submartingale property.
Recall that (uj ,Aj)j is a submartingale if, for every j, uj ∈ 1(Aj) and if

∫A
uj d� ⩽ ∫A

uj+1 d� ∀A ∈ Aj , ∀ j.

We claim that this is equivalent to saying

uj ⩽ uAjj+1 almost everywhere, ∀ j.

The direction ‘⇒’ is clear. To see ‘⇐’ we fix j and observe that, since

∫A
uj d� ⩽ ∫A

uj+1 d� = ∫A
uAjj+1 d� ∀A ∈ Aj ,

we get, in particular, for A ∶= {uAjj+1 < uj} ∈ Aj ,

0 ⩽ ∫{uAjj+1<uj}
(uAjj+1 − uj) d�

which is only possible if �({uAjj+1 < uj}) = 0.
■■

Problem 25.7 Solution: Since both � and � are �-finite, we can restrict ourselves, using the technique
of the Proof of Theorem 25.2 to the case where � and � are finite. All we have to do is to pick an
exhaustion (Kl)l, Kl ↑ X such that �(Kl), �(Kl) < ∞ and to consider the measures 1Kl� and
1Kl� which clearly inherit the absolute continuity from � and �.
Using the Radon–Nikodým theorem (Theorem 25.2) we get that

�j ≪ �j ⇐⇒ �j = uj ⋅ �j

with an Aj-measurable positive density uj . Moreover, since � is a finite measure,

∫X
uj d� = ∫X

uj d�j = ∫X
d�j = �j(X) <∞

so that all the (uj)j are �-integrable. Using exactly the same argument as at the beginning of the
proof of Theorem 25.2 (ii)⇒(i), we get that (uj)j is even uniformly �-integrable. Finally, (uj)j is a
martingale (given the measure �), since for j, j + 1 and A ∈ Aj we have

∫A
uj+1 d� = ∫A

uj+1 d�j+1

= ∫A
d�j+1 (uj+1 ⋅ �j+1 = �j+1)

= ∫A
d�j (A ∈ Aj)
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= ∫A
uj d�j (�j = uj ⋅ �j)

= ∫A
uj d�

and we conclude that uj → u∞ a.e. and in L1(�) for some limiting function u∞ which is still L1(�)
and also A∞ ∶= �(

⋃

j∈NAj)-measurable. Since, by assumption, A∞ = A , this argument shows
also that

� = u∞ ⋅ �

and it reveals that

u∞ = d�
d�

= lim
j

d�j
d�j

.

■■

Problem 25.8 Solution: We can assume that V�j <∞, otherwise the inequality would be trivial.
Note that the random variables �j − E�j , j = 1, 2,… , n are still independent and, of course,
centered (= mean-zero). Thus, by Example 23.3(x) we get that

Mk ∶=
k
∑

j=1
(�j − E�j) is a martingale

and, because of Example 23.3(v), (|Mk|)k is a submartingale. Applying (25.10) in this situation
proves the claimed inequality since

VMn = E(M2
n ) (since EMn = 0)

=
n
∑

j=1
E(�2j )

where we use, for the last equality, what probabilists call Theorem of Bienaymé for the independent
random variables �j :

E(M2
n ) =

n
∑

j,k=1
E
[

(�j − E�j)(�k − E�k)
]

=
n
∑

j=k=1
E
[

(�j − E�j)2
]

+
∑

j≠k
E
[

(�j − E�j)
]

E
[

(�k − E�k)
] (by independence)

=
n
∑

j=k=1
E
[

(�j − E�j)2
]

=
n
∑

j=1
E
[

M2
j
]

=
n
∑

j=1
VMj .

■■
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Problem 25.9 Solution:

(i) As in the proof of Theorem 25.12 we find

∫ up d�
(14.9)
= p∫

∞

0
sp−1 � ({u ⩾ s}) ds

⩽ p∫

∞

0
sp−2

(

∫ 1{u⩾s}(x)w(x)�(dx)
)

ds

= p∫

(

∫

∞

0
1[0,u(x)](s)sp−2 ds

)

w(x)�(dx)

= p∫
u(x)p−1

p − 1
w(x)�(dx)

= p
p − 1 ∫

up−1wd�

Note that this inequality is meant in [0,+∞], i.e. we allow the cases a ⩽ +∞ and+∞ ⩽ +∞.
(ii) Pick conjugate numbers p, q ∈ (1,∞), i.e. q = p

p−1 . Then we can rewrite the result of (i) and
then apply Hölder’s inequality to get

‖u‖pp ⩽
p

p − 1 ∫
up−1wd�

⩽ p
p − 1

(

∫ u(p−1)q d�
)1∕q(

∫ wp d�
)1∕p

= p
p − 1

(

∫ up d�
)1−1∕p

‖w‖p

= p
p − 1

‖u‖p−1p ⋅ ‖w‖p

and the claim follows upon dividing both sides by ‖u‖p−1p . (Here we use the finiteness of this
expression, i.e. the assumption u ∈ p).

■■

Problem 25.10 Solution: Only the first inequality needs proof. Note that
max
1⩽j⩽N ∫ |uj|

p d� ⩽ ∫ max
1⩽j⩽N

|uj|
p d� = ∫ u∗N d�

from which the claim easily follows.
■■

Problem 25.11 Solution: Let (Ak)k ⊂ A0 be an exhausting sequence, i.e. Ak ↑ X and �(Ak) < ∞.
Since (uj)j is L1-bounded, we know that

sup
j
‖uj‖p ⩽ c <∞

and we find, using Hölder’s inequality with 1
p
+ 1

q
= 1

∫ |1Akuj| d� ⩽
(

�(Ak)
)1∕q

⋅ ‖uj‖p ⩽ c
(

�(Ak)
)1∕q
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uniformly for all j ∈ N. This means that the martingale (1Akuj)j (see the solution to Problem
24.8) is L1-bounded and we get, as in Problem 24.8 that for some unique function u

lim
j
1Akuj = 1Aku ∀ k

a.e., hence uj ←←←←←←←←←←←←←←←←←←←←→j→∞
u a.e. Using Fatou’s Lemma we get

∫ |u|p d� = ∫ lim inf
j

|uj|
p d�

⩽ lim inf ∫ |uj|
p d�

⩽ sup
j ∫ |uj|

p d� < ∞

which means that u ∈ Lp.
For each k ∈ N the martingale (1Akuj)j is also uniformly integrable: using Hölder’s andMarkov’s
inequalities we arrive at

∫{1Ak |uj |>1AkR}
1Ak|uj| d� ⩽ ∫{|uj |>R}

1Ak|uj| d�

⩽
(

�{|uj| > R}
)1∕q

‖uj‖p

⩽
(

1
Rp

‖uj‖
p
p

)1∕q
‖uj‖p

⩽ cp∕q+1

Rp∕q

and the latter tends, uniformly for all j, to zero as R → ∞. Since 1Ak ⋅ R is integrable, the claim
follows.
Thus, Theorem 24.6 applies and shows that for u∞ ∶= u and every k the family (uj1Ak)j∈N∪{∞} is
a martingale. Because of Example 23.3(vi) (|uj|p1Ak)j∈N∪{∞} is a submartingale and, therefore,
for all k ∈ N

∫ |1Akuj|
p d� ⩽ ∫ |1Akuj+1|

p d� ⩽ ∫ |1Aku∞|
p d� = ∫ |1Aku|

p d�,

Since, by Fatou’s lemma

∫ |1Aku|
p d� = ∫ lim inf

j
|1Akuj|

p d� ⩽ lim inf
j ∫ |1Akuj|

p d�

we see that

∫ |1Aku|
p d� = lim

j ∫ |1Akuj|
p d� = sup

j ∫ |1Akuj|
p d�.

Since suprema interchange, we get

∫ |u|p d� = sup
k ∫ |1Aku|

p d�

= sup
k
sup
j ∫ |1Akuj|

p d�
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= sup
j
sup
k ∫ |1Akuj|

p d�

= sup
j ∫ |uj|

p d�

and Riesz’s convergence theorem, Theorem 13.10, finally proves that uj → u in Lp.
■■

Problem 25.12 Solution: Since fk is a martingale and since

∫ |fk| d� ⩽
∑

z∈2−kZZn

1
�n(Qk(z)) ∫Qk(z)

|f | d�n ∫ 1Qk(z) d�
n

=
∑

z∈2−kZZn
∫Qk(z)

|f | d�n

= ∫ |f | d�n <∞

we get from the martingale convergence theorem 24.2 that

f∞ ∶= lim
k
fk

exists almost everywhere and that f∞ ∈ 1(ℬ). The above calculation shows, on top of that, that
for any set Q ∈ A [0]

k

∫Q
fk d�

n = ∫Q
f d�n

and

∫Q
|fk| d�

n ⩽ ∫Q
|f | d�n

which means that, using Fatou’s Lemma,

∫Q
|f∞| d�

n ⩽ lim inf
k ∫Q

|fk| d�n ⩽ ∫Q
|f | d�n

for allQ ∈ A [0]
k and any k. Since S =

⋃

kA
[0]
k is a semi-ring and since on both sides of the above

inequality we have measures, this inequality extends toℬ = �(S ) (cf. Lemma 16.6) and we get

∫B
|f∞| d�

n ⩽ ∫B
|f | d�n.

Since f∞ and f areℬ-measurable, we can take B = {|f∞| > |f |} and we get that f = f∞ almost
everywhere. This shows that (fk)k∈N∪{∞} is a martingale.
Thus all conditions of Theorem 24.6 are satisfied and we conclude that (fk)k is uniformly integ-
rable.

■■
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Problem 25.13 Solution: As one would expect, the derivative at x turns out to be u(x). This is seen
as follows (without loss of generality we can assume that y > x):

|

|

|

|

1
x − y

(

∫[a,x]
u(t) dt − ∫[a,x]

u(t) dt
)

− u(x)
|

|

|

|

=
|

|

|

|

1
x − y ∫[x,y]

(

u(t) − u(x)
)

dt
|

|

|

|

⩽ 1
|x − y| ∫[x,y]

|

|

|

u(t) − u(x)||
|

dt

⩽ 1
|x − y|

|x − y| sup
t∈[x,y]

|

|

|

u(t) − u(x)||
|

= sup
t∈[x,y]

|

|

|

u(t) − u(x)||
|

and the last expression tends to 0 as |x− y| → 0 since u is uniformly continuous on compact sets.
If u is not continuous but merely of classL1, we have to refer to Lebesgue’s differentiation theorem,
Theorem 25.20, in particular formula (25.19) which reads in our case

u(x) = lim
r→0

1
2r ∫(x−r,x+r)

u(t) dt

for Lebesgue almost every x ∈ (a, b).
■■

Problem 25.14 Solution: We follow the hint: first we remark that by Lemma 14.14 we know that
f has at most countably many discontinuities. Since it is monotone, we also know that F (t) ∶=
f (t+) = lims>t,s→t f (s) exists and is finite for every t and that {f ≠ F } is at most countable (since
it is contained in the set of discontinuities of f ), hence a Lebesgue null set.
If f is right-continuous, �(a, b] ∶= f (b) − f (a) extends uniquely to a measure on the Borel-sets
and this measure is locally finite and �-finite. If we apply Theorem 25.9 to � and � = �1 we can
write � = �◦ + �⊥ with �◦ ≪ � and �⊥⊥�. By Corollary 25.22 D�⊥ = 0 a.e. and D�◦ exists a.e.
and we get a.e.

D�(x) = lim
r→0

�(x − r, x + r)
2r

= lim
r→0

�◦(x − r, x + r)
2r

+ 0

and we can set f ′(x) = D�(x) which is a.e. defined. Where it is not defined, we put it equal to 0.
Now we get

f (b) − f (a) = �(a, b]

⩾ �(a, b)

= ∫(a,b)
d�

⩾ ∫(a,b)
d�◦

= ∫(a,b)
D�(x) �(dx)
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= ∫(a,b)
f ′(x) �(dx).

The above estimates show that we get equality if f is continuous and also absolutely continuous
w.r.t. Lebesgue measure.

■■

Problem 25.15 Solution: Without loss of generality we may assume that fj(a) = 0, otherwise we
would consider the (still increasing) functions x → fj(x) − fj(a) resp. their sum x → s(x) − s(a).
The derivatives are not influenced by this operation. As indicated in the hint call sn(x) ∶= f1(x)+
⋯ + fn(x) the nth partial sum. Clearly, s, sn are increasing

sn(x + ℎ) − sn(x)
ℎ

⩽
sn+1(x + ℎ) − sn+1(x)

ℎ
⩽ s(x + ℎ) − s(x)

ℎ
.

and possess, because of Problem 25.14, almost everywhere positive derivatives:
s′n(x) ⩽ s′n+1(x) ⩽⋯ s′(x), ∀ x ∉ E

Note that the exceptional null-sets depend originally on the function sn etc. but we can consider
their (countable!!) union and get thus a universal exceptional null set E. This shows that the
formally differentiated series

∞
∑

j=1
f ′j (x) converges for all x ∉ E.

Since the sequence of partial sums is increasing, it will be enough to check that
s′(x) − s′nk(x) ←←←←←←←←←←←←←←←←←←←←→k→∞

0 ∀x ∉ E.

Since, by assumption the sequence sk(x) → s(x) we can choose a subsequence nk in such a way
that

s(b) − snk(b) < 2
−k ∀ k ∈ N.

Since
0 ⩽ s(x) − snk(x) ⩽ s(b) − snk(b)

the series
∞
∑

k=1
(s(x) − snk(x)) ⩽

∞
∑

k=1
2−k <∞ ∀ x ∈ [a, b].

By the first part of the present proof, we can differentiate this series term-by-term and get that
∞
∑

k=1
(s′(x) − s′nk(x)) converges ∀ x ∈ (a, b) ⧵ E

and, in particular, s′(x) − s′nk(x) ←←←←←←←←←←←←←←←←←←←←→k→∞
0 for all x ∈ (a, b) ⧵ E which was to be proved.

■■
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26 Abstract Hilbert space.

Solutions to Problems 26.1�26.19

Problem 26.1 Solution: If we set � = �1 +⋯ + �n, X = {1, 2,… , n}, A = P (X) or � = ∑

j∈N �j ,
X = N, A = P (X), respectively, we can deduce 26.5(i) and (ii) from 26.5(iii).
Let us, therefore, only verify (iii). Without loss of generality (see the complexification of a real
inner product space in Problem 26.3) we can consider the real case where L2 = L2

R
.

• L2 is a vector space — this was done in Remark 13.5.
• ⟨u, v⟩ is finite on L2 × L2 — this is the Cauchy–Schwarz inequality 13.3.
• ⟨u, v⟩ is bilinear — this is due to the linearity of the integral.
• ⟨u, v⟩ is symmetric — this is obvious.
• ⟨v, v⟩ is definite, and ‖u‖2 is a Norm — cf. Remark 13.5.

■■

Problem 26.2 Solution:

(i) We prove it for the complex case—the real case is simpler. Observe that

⟨u ±w, u ±w⟩ = ⟨u, u⟩ ± ⟨u,w⟩ ± ⟨w, u⟩ + ⟨w,w⟩

= ⟨u, u⟩ ± ⟨u,w⟩ ± ⟨u,w⟩ + ⟨w,w⟩

= ⟨u, u⟩ ± 2Re⟨u,w⟩ + ⟨w,w⟩.

Thus,

⟨u +w, u +w⟩ + ⟨u −w, u −w⟩ = 2⟨u, u⟩ + 2⟨w,w⟩.

Since ‖v‖2 = ⟨v, v⟩ we are done.
(ii) (SP1): Obviously,

0 < (u, u) = 1
4 ‖2v‖

2 = ‖v‖2 ⇐⇒ v ≠ 0.

(SP1): is clear.
(iii) Using at the point (*) below the parallelogram identity, we have

4(u + v,w) = 2(u + v, 2w)

= 1
2

(

‖u + v + 2w‖2 − ‖u + v − 2w‖2
)
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= 1
2

(

‖(u +w) + (v +w)‖2 − ‖(u −w) + (v −w)‖2
)

∗
= 1

2

[

2
(

‖u +w‖2 + ‖v +w‖2 − ‖u −w‖2 − ‖v −w‖2
)

]

= 4(u,w) + 4(v,w)

and the claim follows.
(iv) We show (qv,w) = q(v,w) for all q ∈ Q. If q = n ∈ N0, we iterate (iii) n times and

have
(nv,w) = n(v,w) ∀ n ∈ N0 (*)

(the case n = 0 is obvious). By the same argument, we get for m ∈ N
(v,w) =

(

m 1
m
v,w

)

= m
( 1
m
v,w

)

which means that
( 1
m
v,w

)

= 1
m
(v,w) ∀m ∈ N. (**)

Combining (*) and (**) then yields ( n
m
v,w) = n

m
(v,w). Thus,

(pu + qv,w) = p(u,w) + q(v,w) ∀ p, q ∈ Q.

(v) By the lower triangle inequality for norms we get for any s, t ∈ R
|

|

|

‖tv ±w‖ − ‖sv ±w‖||
|

⩽ ‖(tv ±w) − (sv ±w)‖

= ‖(t − s)v‖

= |t − s| ⋅ ‖v‖.

This means that the maps t → tv ±w are continuous and so is t → (tv, w) as the sum
of two continuous maps. If t ∈ R is arbitrary, we pick a sequence (qj)j∈N ⊂ Q such
that limj qj = t. Then

(tv, w) = lim
j
(qjv,w) = limj qj(qv,w) = t(v,w)

so that
(su + tv, w) = (su,w) + (tv, w) = s(u,w) + t(v,w).

■■

Problem 26.3 Solution: This is actually a problem on complexification of inner product spaces... .
Since v and iw are vectors in V ⊕ iV and since ‖v‖ = ‖ ± iv‖, we get

(v, iw)R =
1
4

(

‖v + iw‖2 − ‖v − iw‖2
)

= 1
4

(

‖i(w − iv)‖2 − ‖(−i)(w + iv)‖2
)

= 1
4

(

‖w − iv‖2 − ‖w + iv‖2
)

= (w,−iv)R
= −(w, iv)R.

(*)
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In particular,

(v, iv) = −(v, iv) ⇐⇒ (v, iv) = 0 ∀v,

and we get

(v, v)C = (v, v)R > 0 ⇐⇒ v = 0.

Moreover, using (*) we see that

(v,w)C = (v,w)R + i(v, iw)R
∗
= (w, v)R − i(w, iv)R
= (w, v)R + ī ⋅ (w, iv)R
= (w, v)R + i(w, iv)R
= (w, v)C.

Finally, for real �, � ∈ R the linearity property of the real scalar product shows that

(�u + �v,w)C = �(u,w)R + �(v,w)R + i�(u, iw)R + i�(v, iw)R
= �(u,w)C + �(v,w)C.

Therefore to get the general case where �, � ∈ C we only have to consider the purely imaginary
case:

(iv, w)C = (iv, w)R + i(iv, iw)R
∗
= −(v, iw)R − i(v,−w)R
= −(v, iw)R + i(v,w)R
= i

(

i(v, iw)R + (v,w)R
)

= i(v,w)C,

where we use twice the identity (*). This shows complex linearity in the first coordinate, while
skew-linearity follows from the conjugation rule (v,w)C = (w, v)C.

■■

Problem 26.4 Solution: The parallelogram law (stated for L1) would say:
(

∫

1

0
|u +w| dx

)2
+
(

∫

1

0
|u −w| dx

)2
= 2

(

∫

1

0
|u| dx

)2
+ 2

(

∫

1

0
|w| dx

)2
.

If u ± w, u,w have always only ONE sign (i.e. +ve or −ve), we could leave the modulus signs |∙|
away, and the equality would be correct! To show that there is no equality, we should therefore
choose functions where we have some sign change. We try:

u(x) = 1∕2, w(x) = x

301



R.L. Schilling: Measures, Integrals & Martingales

(note: u −w does change its sign!) and get

∫

1

0
|u +w| dx = ∫

1

0
(12 + x) dx = [

1
2 (x + x

2)]10 = 1

∫

1

0
|u −w| dx = ∫

1∕2

0
( 12 − x) dx + ∫

1

1∕2
(x − 1

2 ) dx

= [12 (x − x
2)]1∕20 + [ 12 (x

2 − x)]11∕2
= 1

4 −
1
8 −

1
8 +

1
4 =

1
4

∫

1

0
|u| dx = ∫

1

0

1
2 dx =

1
2

∫

1

0
|w| dx = ∫

1

0
x dx = [12x

2]10 =
1
2

This shows that

12 + ( 14 )
2 = 17

16 ≠ 1 = 2(12 )
2 + 2( 12 )

2.

We conclude, in particular, that L1 cannot be a Hilbert space (since in any Hilbert space the Par-
allelogram law is true....).

■■

Problem 26.5 Solution:

(i) If k = 0 we have � = 1 and everything is obvious. If k ≠ 0, we use the summation formula
for the geometric progression to get

S ∶= 1
n

n
∑

j=1
�jk = 1

n

n
∑

j=1

(

�k
)j = �

n
1 − (�k)n

1 − �k

but (�k)n = exp(2� i
n
⋅ k ⋅ n) = exp(2�ik) = 1. Thus S = 0 and the claim follows.

(ii) Note that �j = �−j so that

‖v + �jw‖2 = ⟨v + �jw, v + �jw⟩

= ⟨v, v⟩ + ⟨v, �jw⟩ + ⟨�jw, v⟩ + ⟨�jw, �jw⟩

= ⟨v, v⟩ + �−j⟨v,w⟩ + �j⟨w, v⟩ + �j�−j⟨w,w⟩

= ⟨v, v⟩ + �−j⟨v,w⟩ + �j⟨w, v⟩ + ⟨w,w⟩.

Therefore,
1
n

n
∑

j=1
�j‖v + �jw‖2

= 1
n

n
∑

j=1
�j⟨v, v⟩ + 1

n

n
∑

j=1
⟨v,w⟩ + 1

n

n
∑

j=1
�2j⟨w, v⟩ + 1

n

n
∑

j=1
�j⟨w,w⟩

= 0 + ⟨v,w⟩ + 0 + 0

where we use the result from part (i) of the exercise.
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(iii) Since the function � → ei�‖v + ei�w‖2 is bounded and continuous, the integral exists as
a (proper) Riemann integral, and we can use any Riemann sum to approximate the integral,
see 12.6–12.12 in Chapter 12 or Corollary I.6 and Theorem I.8 of Appendix I. Before we do
that, we change variables according to  = (� + �)∕2� so that d = d�∕2� and

1
2� ∫(−�,�]

ei� ‖‖
‖

v + ei�w‖‖
‖

2
d� = −∫(0,1]

e2�i ‖‖
‖

v − e2�i w‖‖
‖

2
d .

Now using equidistant Riemann sums with step 1∕n and nodes �jn = e2�i⋅
1
n ⋅j , j = 1, 2,… , n

yields, because of part (ii) of the problem,

−∫(0,1]
e2�i ‖‖

‖

v − e2�i w‖‖
‖

2
d = − lim

n→∞
1
n

n
∑

j=1
�jn‖v − �

j
nw‖

2

= − lim
n→∞

⟨v,−w⟩

= ⟨v,w⟩.

■■

Problem 26.6 Solution: We assume that V is a C-inner product space. Then,

‖v +w‖2 = ⟨v +w, v +w⟩

= ⟨v, v⟩ + ⟨v,w⟩ + ⟨w, v⟩ + ⟨w,w⟩

= ‖v‖2 + ⟨v,w⟩ + ⟨v,w⟩ + ‖w‖2

= ‖v‖2 + 2Re⟨v,w⟩ + ‖w‖2.

Thus

‖v +w‖2 = ‖v‖2 + ‖w‖2 ⇐⇒ Re⟨v,w⟩ = 0 ⇐⇒ v⊥w.

■■

Problem 26.7 Solution: Let (ℎk)k ⊂  such that limk ‖ℎk − ℎ‖ = 0. By the triangle inequality

‖ℎk − ℎl‖ ⩽ ‖ℎk − ℎ‖
⏟⏞⏟⏞⏟

→0

+ ‖ℎ − ℎl‖
⏟⏞⏞⏟⏞⏞⏟

→0

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
k,l→∞

0.

■■

Problem 26.8 Solution: Let g, g̃ ∈ . By the Cauchy–Schwarz inequality 26.3
|

|

⟨g, ℎ⟩ − ⟨g̃, ℎ⟩|
|

⩽ |

|

⟨g − g̃, ℎ⟩|
|

⩽ ‖ℎ‖ ⋅ ‖g̃ − g‖

which proves continuity. Incidentally, this calculation shows also that, since g → ⟨g, ℎ⟩ is linear,
it would have been enough to check continuity at the point g = 0 (think about it!).

■■
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Problem 26.9 Solution: Definiteness (N1) and positive homogeneity (N2) are obvious. The triangle
inequality reads in this context (g, g′, ℎ, ℎ′ ∈ ):

‖|(g, ℎ) + (g′, ℎ′)|‖ ⩽ ‖|(g, ℎ)|‖ + ‖|(g′, ℎ′)|‖ ⇐⇒
(

‖g + g′‖p + ‖ℎ + ℎ′‖p
)1∕p ⩽

(

‖g‖p + ‖ℎ‖p
)1∕p +

(

‖g′‖p + ‖ℎ′‖p
)1∕p.

Since
(

‖g + g′‖p + ‖ℎ + ℎ′‖p
)1∕p ⩽

([

‖g‖‖g′‖
]p +

[

‖ℎ‖ + ‖ℎ′‖
]p)1∕p

we can use theMinkowski inequality for sequences resp. inR2—which reads for numbers a, A, b, B ⩾
0

(

(a + b)p + (A + B)p
)1∕p ⩽

(

ap + Ap
)1∕p +

(

bp + Bp
)1∕p

—and the claim follows.
SinceR2 is only with the Euclidean norm a Hilbert space—the parallelogram identity fails for the
norms (|x|p + |y|p)1∕p—this shows that also in the case at hand only p = 2 will be a Hilbert space
norm.

■■

Problem 26.10 Solution: For the scalar product we have for all g, g′, ℎ, ℎ′ ∈  such that ‖g−g′‖2+
‖ℎ − ℎ′‖2 < 1

|

|

|

⟨g − g′, ℎ − ℎ′⟩||
|

⩽ ‖g − g′‖ ⋅ ‖ℎ − ℎ′‖ ⩽
[

‖g − g′‖2 + ‖ℎ − ℎ′‖2
]1∕2

where we use the elementary inequality
ab ⩽ 1

2
(a2 + b2) ⩽ a2 + b2 ⩽

√

a2 + b2
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
if a2+b2⩽1

.

Since (g, ℎ) → [

‖g‖2 + ‖ℎ‖2
]1∕2 is a norm on  × we are done.

Essentially the same calculation applies to (t, ℎ) → t ⋅ ℎ.
■■

Problem 26.11 Solution: Assume that has a countable maximal ONS, say (ej)j . Then, by defini-
tion, every vector ℎ ∈  can be approximated by a sequence made up of finite linear combinations
of the (ej)j :

ℎk ∶=
n(k)
∑

j=1
�j ⋅ ej

(note that �j = 0 is perfectly possible!). In view of problem 26.10 we can even assume that the �j
are rational numbers. This shows that the set

 ∶=
{

n
∑

j=1
�j ⋅ ej ∶ �j ∈ Q, n ∈ N

}
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is a countable dense subset of .
Conversely, if  ⊂  is a countable dense subset, we can use the Gram-Schmidt procedure and
obtain from  an ONS. Then Theorem 26.24 proves the claim.

■■

Problem 26.12 Solution: Let us, first of all, show that for a closed subspace C ⊂  we have C =
(C⊥)⊥.
Because of Lemma 26.12 we know that C ⊂ (C⊥)⊥ and that C⊥ is itself a closed linear subspace
of . Thus,

C ⊕ C⊥ =  = C⊥ ⊕ (C⊥)⊥.

Thus C cannot be a proper subspace of (C⊥)⊥ and therefore C = (C⊥)⊥.
Applying this to the obviously closed subspaceC ∶= K⋅w = span(w)we conclude that span(w) =
span(w)⊥⊥.
By assumption,Mw = {w}⊥ andM⊥

w = {w}
⊥⊥ and we have w ∈ {w}⊥⊥. The last expression is

a (closed) subspace, so
w ∈ {w}⊥⊥ ⇐⇒ span(w) ⊂ {w}⊥⊥

also. Further
{w} ⊂ span(w) ⇐⇒ {w}⊥ ⊃ span(w)⊥

⇐⇒ {w}⊥⊥ ⊂ span(w)⊥⊥ = span(w)

and we conclude that
{w}⊥⊥ = span(w)

which is either {0} or a one-dimensional subspace.
■■

Problem 26.13 Solution:

(i) By Pythagoras’ Theorem 26.19
‖ej − ek‖2 = ‖ej‖

2 + ‖ek‖
2 = 2 ∀ j ≠ k.

This shows that no subsequence (ej)j∈⟋ can ever be a Cauchy sequence, i.e. it cannot
converge.
If ℎ ∈  we get from Bessel’s inequality 26.19 that the series

∑

j
|⟨ej , ℎ⟩|

2 ⩽ ‖ℎ‖2

is finite, i.e. converges. Thus the sequence with elements ⟨ej , ℎ⟩ must converge to 0 as
j →∞.
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(ii) Parseval’s equality 26.19 shows that

‖ℎ‖2 =
∞
∑

j=1
|⟨ej , ℎ⟩|

2 =
∞
∑

j=1
|cj|

2 ⩽
∞
∑

j=1

1
j2
<∞

uniformly for all ℎ ∈ Q, i.e. Q is a bounded set.
Let (ℎl)l ⊂ Q be a sequence with liml ℎl = ℎ and write cj ∶= ⟨ej , ℎ⟩ and clj ∶=
⟨ej , ℎl⟩. Because of the continuity of the scalar product

|cj| = |⟨ej , ℎ⟩| = liml |⟨ej , ℎl⟩| = liml |clj | ⩽
1
j

which means that ℎ ∈ Q and that Q is closed.
Let (ℎl)l ⊂ Q be a sequence and set cj(l) ∶= ⟨ej , ℎl⟩. Using the Bolzano-Weierstraß
theorem for bounded sequences we get

|c1(l)| ⩽ 1 ⇐⇒ ∃
(

c1(l1j )
)

j ⊂
(

c1(l)
)

l ∶ limj c1(l1j ) = 1

and
|c2(l1j )| ⩽

1
2

⇐⇒ ∃
(

c2(l2j )
)

j ⊂
(

c2(l1j )
)

j ∶ limj c2(l2j ) = 2

and, recursively,
|ck(lk−1j )| ⩽ 1

k
⇐⇒ ∃

(

ck(lkj )
)

j ⊂
(

ck(lk−1j )
)

j ∶ limj ck(lkj ) = k

and since we have considered sub-sub-etc.-sequences we get
ck(lmm) ←←←←←←←←←←←←←←←←←←←←←←→m→∞

k ∀ k ∈ N.

Thus, we have constructed a subsequence (ℎlmm )m ⊂ (ℎl)l with
⟨ek, ℎlmm ⟩ ←←←←←←←←←←←←←←←←←←←←←←→m→∞

k ∀ k ∈ N (*)
so that j ⩽ 1∕j. Setting ℎ =

∑

j jej we see (by Parseval’s relation) that ℎ ∈ Q.
Further,

‖ℎ − ℎlmm‖
2 =

∞
∑

j=1
|j − cj(lmm)|

2

⩽
N
∑

j=1
|j − cj(lmm)|

2 +
∞
∑

j=N+1

4
j2
.

Letting first m→∞ we get, because of (*)
N
∑

j=1
|j − cj(lmm)|

2 ←←←←←←←←←←←←←←←←←←←←←←→
m→∞

0,

and lettingN →∞ gives

lim sup
m

‖ℎ − ℎlmm‖
2 ⩽

∞
∑

j=N+1

4
j2

←←←←←←←←←←←←←←←←←←←←←←←←→
N→∞

0

so that limm ‖ℎ − ℎlmm‖
2 = 0.
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(iii) R cannot be compact since (ej)j ⊂ R does not have any convergent subsequence, see
part (i).
R is bounded since r ∈ R if, and only if, there is some j ∈ N such that

‖r − ej‖ ⩽ 1
j
⩽ 1.

Thus, every r ∈ R is bounded by

‖r‖ ⩽ ‖r − ej‖ + ‖ej‖ ⩽ 2.

R is closed. Indeed, if xj ∈ B1∕j(ej) we see that for j ≠ k

‖xj − xk‖ = ‖(xj − ej) + (ej − ek) + (ek − xk)‖

⩾ ‖ej − ek‖ − ‖xj − ej‖ − ‖xk − ek‖
(i)
⩾
√

2 − 1
j
− 1
k
.

This means that any sequence (rj)r ⊂ R with limj rj = r is in at most finitely many of
the sets B1∕j(ej). But a finite union of closed sets is closed so that r ∈ R.

(iv) Assume that ∑j �
2
j < ∞. Then closedness, boundedness and compactness follows

exactly as in part (ii) of the problem with �j replacing 1∕j.
Conversely, assume that S is compact. Then the sequence

ℎl =
l
∑

j=1
�jej ∈ S

and, by compactness, there is a convergent subsequence

ℎlk =
lk
∑

j=1
�jej ←←←←←←←←←←←←←←←←←←←←→k→∞

ℎ.

By Parseval’s identity we get:

‖ℎlk‖
2 =

lk
∑

j=1
�2j ←←←←←←←←←←←←←←←←←←←←→k→∞

∞
∑

j=1
�2j = ‖ℎ‖2 <∞.

■■

Problem 26.14 Solution:

(i) Note that for all g ≠ 0

|⟨g, ℎ⟩| ⩽ ‖g‖ ⋅ ‖ℎ‖ ⇐⇒
|⟨g, ℎ⟩|
‖g‖

⩽ ‖ℎ‖

so that

sup
g≠0

|⟨g, ℎ⟩|
‖g‖

⩽ ‖ℎ‖.
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Since for g = ℎ the supremum is attained, we get equality.
Further, since ‖‖

‖

g
‖g‖

‖

‖

‖

= 1, we have

sup
g≠0

|⟨g, ℎ⟩|
‖g‖

= sup
g≠0

|

|

|

⟨ g
‖g‖

, ℎ
⟩

|

|

|

= sup
, ‖‖=1

|⟨, ℎ⟩|.

Finally,

‖ℎ‖ = sup
g, ‖g‖=1

|⟨g, ℎ⟩| ⩽ sup
g, ‖g‖⩽1

|⟨g, ℎ⟩| ⩽ sup
g, ‖g‖⩽1

‖g‖ ⋅ ‖ℎ‖ ⩽ ‖ℎ‖.

(ii) Yes, since we can, by a suitable rotation ei� achieve that

⟨ei�g, ℎ⟩ = |⟨g, ℎ⟩|

while ‖g‖ = ‖ei�g‖.
(iii) Yes. If D ⊂  is dense and ℎ ∈  we find a sequence (dj)j ⊂ D with limj dj = ℎ.

Since the scalar product and the norm are continuous, we get

lim
j

⟨dj , ℎ⟩
‖dj‖

=
⟨ℎ, ℎ⟩
‖ℎ‖

= ‖ℎ‖

and we conclude that

‖ℎ‖ ⩽ sup
j
|⟨dj∕‖dj‖, ℎ⟩| ⩽ sup

d∈D, ‖d‖=1
|⟨d, ℎ⟩|.

The reverse inequality is trivial.
■■

Problem 26.15 Solution: Let x, y ∈ span{ej , j ∈ N}. By definition, there exist numbers m, n ∈ N
and ‘coordinates’ �1,… , �m, �1,… , �n ∈ K such that

x =
m
∑

j=1
�jej and y =

n
∑

k=1
�kek.

Without loss of generality we can assume that m ⩽ n. By defining

�m+1 ∶= 0,… , �n ∶= 0

we can write for all �, � ∈ K

x =
n
∑

j=1
�jej and y =

n
∑

k=1
�kek and �x + �y =

n
∑

l=1
(��l + ��l)ek.

This shows that span{ej , j ∈ N} ⊂  is a linear subspace.
■■

Problem 26.16 Solution:
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(i) Since∑∞
j=1 a

2
j = ∞ there is some number j1 ∈ N such that

j1
∑

j=1
a2j > 1.

Since the remaining tail of the series ∑j>j1
a2j = ∞ we can construct recursively a

strictly increasing sequence (jk)k∈N0
⊂ N, j0 ∶= 1, such that

∑

j∈Jk

a2j > 1 where Jk ∶= (jk, jk+1] ∩N.

(ii) Define the numbers k as, say,

k ∶=
1

k
√

∑

j∈Jk a
2
j

.

Then
∑

j
b2j =

∑

k

∑

j∈Jk

2ka
2
j

=
∑

k
2k

∑

j∈Jk

a2j

=
∑

k

∑

j∈Jk a
2
j

k2
∑

j∈Jk a
2
j

=
∑

k

1
k2

<∞.

Moreover, since
∑

j∈Jk a
2
j

√

∑

j∈Jk a
2
j

⩾ 1,

we get
∑

j
ajbj =

∑

k

∑

j∈Jk

ka
2
j

=
∑

k
k

∑

j∈Jk

a2j

=
∑

k

1
k

∑

j∈Jk a
2
j

√

∑

j∈Jk a
2
j

⩾
∑

k

1
k
= ∞.

(iii) We want to show (note that we renamed � ∶= a and � ∶= b for notational reasons) that
for any sequence � = (�j)j we have:

∀ � ∈ l2 ∶ ⟨�, �⟩ <∞ ⇐⇒ � ∈ l2.
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Assume, to the contrary, that � ∉ l2. Then ∑

j �
2
j = ∞ and, by part (i), we can find

a sequence of jk with the properties described in (i). Because of part (ii) there is a
sequence � = (�j)j ∈ l2 such that the scalar product ⟨�, �⟩ = ∞. This contradicts our
assumption, i.e. � should have been in l2 in the first place.

(iv) Since, by Theorem 26.24 every separable Hilbert space has a basis (ej)j∈N ⊂ , we
can identify ℎ ∈  with the sequence of ‘coordinates’ (⟨ℎ, ej⟩)j∈N and it is clear that
(iii) implies (iv).

■■

Problem 26.17 Solution:

(i) Since P 2 = P is obvious by the uniqueness of the minimizing element, this part follows
already from Remark 26.15.

(ii) Note that for u, v ∈  we have

∀ℎ ∈  ∶ ⟨u, ℎ⟩ = ⟨v, ℎ⟩ ⇐⇒ u = v.

Indeed, consider ℎ ∶= u − v. Then

⟨u, ℎ⟩ = ⟨v, ℎ⟩ ⇐⇒ 0 = ⟨u − v, ℎ⟩ = ⟨u − v, u − v⟩ = |u − v|2

so that u = v.
Linearity of P : Let �, � ∈ K and f, g, ℎ ∈ . Then

⟨P (�f + �g), ℎ⟩ = ⟨�f + �g, Pℎ⟩

= �⟨f, Pℎ⟩ + �⟨g, Pℎ⟩

= �⟨Pf, ℎ⟩ + �⟨Pg, ℎ⟩

= ⟨�Pf + �Pg, ℎ⟩

and we conclude that P (�f + �g) = �Pf + �Pg.
Continuity of P : We have for all ℎ ∈ 

‖Pℎ‖2 = ⟨Pℎ, Pℎ⟩ = ⟨P 2ℎ, ℎ⟩ = ⟨Pℎ, ℎ⟩ ⩽ ‖Pℎ‖ ⋅ ‖ℎ‖

and dividing by ‖Pℎ‖ shows that P is continuous, even a contraction.
Closedness of P (): Note that f ∈ P () if, and only if, f = Pℎ for some ℎ ∈ .
Since P 2 = P we get

f = Pℎ ⇐⇒ f − Pℎ = 0

⇐⇒ f − P 2ℎ = 0

⇐⇒ f − Pf = 0

⇐⇒ f ∈ (id−P )−1({0})
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and since P is continuous and {0} is a closed set, (id −P )−1({0}) is closed and the above
line shows P () = (id−P )−1({0}) is closed.
Projection: In view of Corollary 26.14 we have to show that Pℎ − ℎ is for any ℎ ∈ 
orthogonal to f ∈ P (). But

⟨Pℎ − ℎ, f⟩ = ⟨Pℎ, f⟩ − ⟨ℎ, f⟩

= ⟨ℎ, Pf⟩ − ⟨ℎ, f⟩

= ⟨ℎ, f⟩ − ⟨ℎ, f⟩ = 0.

(iii) Since, by assumption, ‖Pℎ‖ ⩽ ‖ℎ‖, P is continuous and closedness follows just as in
(ii). It is, therefore, enough to show that P is an orthogonal projection.
We will show that N ∶= {ℎ ∈  ∶ Pℎ = 0} satisfies N ⊥ = P ().
For this we observe that if ℎ ∈ , P (Pℎ − ℎ) = P 2ℎ − Pℎ = Pℎ − Pℎ = 0 so that
Pℎ − ℎ ∈ N . In particular

ℎ ∈ N ⊥ ⇐⇒ y = Pℎ − ℎ ∈ N

⇐⇒ Pℎ = ℎ + y with ℎ⊥y. (*)

Thus,

‖ℎ‖2 + ‖y‖2 = ‖Pℎ‖2 ⩽ ‖ℎ‖2 ⇐⇒ ‖y‖2 ⇐⇒ y = 0.

We conclude that

ℎ ∈ N ⊥ ⇐⇒ Pℎ − ℎ = 0 ⇐⇒ Pℎ = ℎ ⇐⇒ ℎ ∈ P ()

and we have shown that N ⊥ ⊂ P ().
To see the converse direction we pick ℎ ∈ P () and find Pℎ = ℎ. Since = N ⊕N ⊥

we have ℎ = x + x⊥ with x ∈ N and x⊥ ∈ N ⊥. Thus,

Pℎ = Px + P (x⊥) = P (x⊥)
(∗)
= x⊥,

thus

ℎ = Pℎ = x⊥ ⇐⇒ P () ⊂ N ⊥.

We have seen that P () = N ⊥⊥N = kernel(P ). This means that

⟨Pℎ − ℎ, Pℎ⟩ = 0

and we conclude that P is an orthogonal projection.
■■

Problem 26.18 Solution:
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(i) Pick uj ∈ Yj and uk ∈ Yk, j ≠ k. Then

∫Am
ujuk d� ⩽

√

∫Am
u2j d�

√

∫Am
u2k d�

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 ⋅ 0 if m ∉ {j, k}
√

⋯ ⋅ 0 if m = j, m ≠ k

0 ⋅
√

⋯ if m ≠ j, m = k

= 0.

(ii) Let u ∈ L2(�) and set wj ∶= w1A1∪⋯∪Aj . Since (A1 ∪⋯ ∪ Aj)c = Ac1 ∩⋯ ∩ Acj ↓ ∅
we get by dominated convergence

‖u −wj‖
2
2 = ∫(A1∪⋯∪Aj )c

u2 d� = ∫Ac1∩⋯∩Acj
u2 d� ←←←←←←←←←←←←←←←←←←←←→

j→∞
0.

(iii) P is given by Pj(u) = u1Aj . Clearly, Pj ∶ L2(�) → Yj is linear and P 2 = P , i.e. it is a
projection. Orthogonality follows from

⟨u − u1Aj , u1Aj ⟩ = ∫ u1Acj ⋅ u1Aj d� = ∫ u1∅ d� = 0.

■■

Problem 26.19 Solution:

(i) See Lemma 27.1 in Chapter 27.
(ii) Set un ∶= EAnu. Then

un =
n
∑

j=0
�j ⋅ 1Aj , �j ∶=

1
�(Aj) ∫Aj

u d�, 0 ⩽ j ⩽ n.

whereA0 ∶= (A1∪⋯∪An)c and 1∕∞ ∶= 0. This follows simply from the consideration
that un, as an element of L2(An), must be of the form ∑n

j=0 �j ⋅ 1Aj while the �j’s are
calculated as

⟨EAju,1Aj ⟩ = ⟨u, EAj1Aj ⟩ = ⟨u,1Aj ⟩ = ∫Aj
u d�

(resp. = 0 if �(A0) = ∞) so that, because of disjointness,

�j�(Aj) =
⟨

n
∑

k=0
�k ⋅ 1Ak ,1Aj

⟩

= ⟨EAju,1Aj ⟩ = ∫Aj
u d�.

Clearly this is a linear map and un ∈ L2(An). Orthogonality follows because all the
A0,… , An are disjoint so that

⟨u − un, un⟩ =
⟨

u −
n
∑

j=0
�j1Aj ,

n
∑

k=0
�k1Ak

⟩
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=
n
∑

j=0
∫Aj

(u − �j)�j d�

=
n
∑

j=0

(

�j ∫Aj
u d� − �(Aj)�2j

)

=
n
∑

j=0
0 = 0.

(iii) We have

L2(An)⊥ =
{

u −
n
∑

j=0
�j1Aj =

n
∑

j=0
(u − �j)1Aj ∶ u ∈ L

2(�)
}

(iv) In view of Remark 23.2 we have to show that

∫Aj
EAnu d� = ∫Aj

EAn+1u d�, ∀A0, A1,… , An.

Thus

∫Aj
EAnu d� = ⟨EAnu,1Aj ⟩ = ⟨u, EAn1Aj ⟩ = ⟨u,1Aj ⟩ = ∫Aj

u d�

for all 0 ⩽ j ⩽ n. The same argument shows also that

∫Aj
EAn+1u d� = ∫Aj

u d� ∀ j = 1, 2,… , n.

Since theA1, A2,… are pairwise disjoint andA0 = (A1∪⋯∪An)c , we haveAn+1 ⊂ A0
and Aj ∩ A0 = ∅, 1 ⩽ j ⩽ n; if j = 0 we get

∫A0
EAn+1u d�

= ∫A0

(

1An+1

∫An+1 u d�

�(An+1)
+ 1A0⧵An+1

∫A0⧵An+1 u d�

�(A0 ⧵ An+1)

)

d�

= �(A0 ∩ An+1)
∫An+1 u d�

�(An+1)
+ �(A0 ⧵ An+1)

∫A0⧵An+1 u d�

�(A0 ⧵ An+1)

= �(An+1)
∫An+1 u d�

�(An+1)
+ �(A0 ⧵ An+1)

∫A0⧵An+1 u d�

�(A0 ⧵ An+1)

= ∫An+1
u d� + ∫A0⧵An+1

u d�

= ∫A0
u d�.

The claim follows.
Remark. It is, actually, better to show that for un ∶= EAnu the sequence (u2n)n is a
sub-Martingale. (The advantage of this is that we do not have to assume that u ∈ L1

and that u ∈ L2 is indeed enough....). O.k.:
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We have
An0 ∶= (A1 ⊍⋯ ⊍ An)c = Ac1 ∩⋯ ∩ Acn

An+10 ∶= (A1 ⊍⋯ ⊍ An ⊍ An+1)c = An0 ∩ A
c
n+1

and

EAnu =
n
∑

j=1
1Aj ∫Aj

u
d�
�(Aj)

+ 1An0 ∫An0
u

d�
�(An0)

EAn+1u =
n+1
∑

j=1
1Aj ∫Aj

u
d�
�(Aj)

+ 1An+10 ∫An+10

u
d�

�(An+10 )

with the convention that 1∕∞ = 0. Since the Aj’s are mutually disjoint,
(

EAnu
)2 =

n
∑

j=1
1Aj

[

∫Aj
u

d�
�(Aj)

]2
+ 1An0

[

∫An0
u

d�
�(An0)

]2

(

EAn+1u
)2 =

n+1
∑

j=1
1Aj

[

∫Aj
u

d�
�(Aj)

]2
+ 1An+10

[

∫An+10

u
d�

�(An+10 )

]2
.

We have to show that (EAnu)2 = u2n ⩽ u2n+1 =
(

EAn+1u
)2. If �(An+10 ) = ∞ this follows

trivially since in this case
(

EAnu
)2 =

n
∑

j=1
1Aj

[

∫Aj
u

d�
�(Aj)

]2

(

EAn+1u
)2 =

n+1
∑

j=1
1Aj

[

∫Aj
u

d�
�(Aj)

]2
.

If �(An+10 ) <∞ we get
(

EAnu
)2 −

(

EAn+1u
)2

= 1An0

[

∫An0
u

d�
�(An0)

]2
− 1An+1

[

∫An+1
u

d�
�(An+1)

]2

+ 1An+10

[

∫An+10

u
d�

�(An+10 )

]2

= 1An+1

(

[

∫An+1
u

d�
�(An0)

]2
−
[

∫An+1
u

d�
�(An+1)

]2
)

+ 1An+10

(

[

∫An+10

u
d�
�(An0)

]2
−
[

∫An+10

u
d�

�(An+10 )

]2
)

and each of the expressions in the brackets is negative since
An0 ⊃ An+1 ⇐⇒ �(An0) ⩾ �(An+1) ⇐⇒

1
�(An0)

⩽ 1
�(An+1)

and
An0 ⊃ A

n+1
0 ⇐⇒ �(An0) ⩾ �(An+10 ) ⇐⇒

1
�(An0)

⩽ 1
�(An+10 )

.
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(v) Set un ∶= EAnu. Since (un)n is a martingale, u2n is a submartingale. In fact, (u2n)n is even
uniformly integrable. For this we remark that

un =
n
∑

j=1
1Aj ∫Aj

u(x) �(dx)
�(Aj)

+ 1An0 ∫An0
u(x) frac�(dx)�(An0)

(1∕∞ ∶= 0) and that the function

v ∶=
∞
∑

j=1
1Aj ∫Aj

u(x) �(dx)
�(Aj)

is in L2(A∞). Only integrability is a problem: since the Aj’s are mutually disjoint, the
square of the series defining v factorizes, i.e.

∫ v2(y)�(dy) = ∫

( ∞
∑

j=1
1Aj (y)∫Aj

u(x) �(dx)
�(Aj)

)2
�(dy)

=
∞
∑

j=1
∫ 1Aj (y)�(dy)

(

∫Aj
u(x) �(dx)

�(Aj)

)2

⩽
∞
∑

j=1
∫ 1Aj (y)�(dy)∫Aj

u2(x) �(dx)
�(Aj)

=
∞
∑

j=1
∫Aj

u2(x)�(dx)

= ∫ u2(x)�(dx)

where we use Beppo Levi’s theorem (twice) and Jensen’s inequality. In fact,
v = EA∞u.

Since un(x) = v(x) for all x ∈ A1 ∪⋯ ∪ An, and since An0 = (A1 ∪⋯ ∪ An)c ∈ An we
find by the submartingale property

∫{u2n>(2v)2}
u2n d� ⩽ ∫An0

u2n d�

⩽ ∫An0
u2 d�

←←←←←←←←←←←←←←←←←←←←→
n→∞

0

by dominated convergence since An0 → ∅ and u2 ∈ L1(�).
Using the convergence theorem for UI (sub)martingales, Theorem 24.6, we conclude
that u2j converges pointwise and inL1-sense to some u2∞ ∈ L1(A∞) and that (u2j )j∈N∪{∞}
is again a submartingale. By Riesz’s convergence theorem 13.10 we conclude that
uj → u∞ in L2-norm.
Remark: We can also identify u∞ with v: since EAjv = uj = EAju∞ it follows that
for k = 1, 2,… , j and all j

0 = ⟨EAjv − EAju∞,1Ak⟩ = ⟨v − u∞, EAj1Ak⟩ = ⟨v − u∞,1Ak⟩
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i.e. v = u∞ on all sets of the ∩-stable generator of A∞ which can easily be extended to
contain an exhausting sequence A1 ⊍⋯ ⊍ An of sets of finite �-measure.

(vi) The above considerations show that the functions

D ∶=

{

�01An0 +
n
∑

j=1
�j1Aj ∶ n ∈ N, �j ∈ R

}

(if �(An0) = ∞, then �0 = 0) are dense in L2(A∞). It is easy to see that

E ∶=

{

q01An0 +
n
∑

j=1
qj1Aj ∶ n ∈ N, �j ∈ Q

}

(if �(An0) = ∞, then q0 = 0) is countable and dense in D so that the claim follows.
■■
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27 Conditional expectations.

Solutions to Problems 27.1�27.19

Problem 27.1 Solution: In Theorem 27.4(vii) we have seen that

EℋEG u = Eℋ u.

Since, by 27.4(i) and 27.1 Eℋ u ∈ L2(ℋ ) ⊂ L2(G ) we have, because of 27.4

EGEℋ u = Eℋ u.

■■

Problem 27.2 Solution: Note that by the Markov inequality �{u > 1} ⩽ ∫ u2 d� < ∞, i.e. u1{u>1}
is an integrable function (use Cauchy-Schwarz).
We have

1�{u > 1} = ∫{u>1}
1 d�

(*)
< ∫{u>1}

u d�
assumption

⩽ �{u > 1}.

In the step marked (*) we really (!) need that �{u > 1} > 0— otherwise we could not get a strict
inequality. Thus, �{u > 1} < �{u > 1} which is a contradiciton. Therefore, �{u > 1} = 0 and
we have u ⩽ 1 a.e.
If you are unhappy with strict inequalities, you can extend the argument as follows: By assumption
�{u > 1} > 0. Since {u > 1} = ⋃

n⩾1{u ⩾ 1+1∕n}, there is someN such that �{u ⩾ 1+1∕n} > 0
for all n ⩾ N — use a continuity of measure argument. Now we get for all n ⩾ N

∫{u⩾1+1
n

}
1 d� = �

{

u ⩾ 1 + 1
n

}

<
(

1 + 1
n

)

�
{

u ⩾ 1 + 1
n

}

= ∫{u⩾1+1
n

}

(

1 + 1
n

)

d�

⩽ ∫{u⩾1+1
n

}
u d�.

Observe that

∫{u>1}
1 d� =

∞
∑

n=N+1
∫{1+1∕n⩽u<1+1∕(n−1)

}
1 d� + ∫{u⩾1+ 1

N

}
1 d�
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⩽
∞
∑

n=N+1
∫{1+1∕n⩽u<1+1∕(n−1)

}
u d� + ∫{u⩾1+ 1

N

}
1 d�

<
∞
∑

n=N+1
∫{1+1∕n⩽u<1+1∕(n−1)

}
u d� + ∫{u⩾1+ 1

N

}
u d�

= ∫{u>1}
u d�.

With our assumption we thus get the contradiction �{u > 1} < �{u > 1}.
Alternative: From ∫{u>1} u d� ⩽ �(u > 1) we get

∫{u>1}
(u − 1) d� ⩽ 0.

Observe that (u − 1)1{u>1} ⩾ 0 implies

∫{u>1}
(u − 1) d� ⩾ 0.

Therefore, ∫{u>1}(u − 1) d� = 0 and we see that (u − 1)1{u>1} = 0 a.e., hence 1{u>1} = 0 a.e.
■■

Problem 27.3 Solution: Note that, since EG is (currently...) only defined for L2-functions the prob-
lem implicitly requires that f ∈ L2(A , �). (A look at the next section reveals that this is not
really necessary...). Below we will write ⟨∙, ∙⟩L2(�) resp. ⟨∙, ∙⟩L2(�) to indicate which scalar product
is meant.
We begin with a general consideration: Let u,w be functions such that u2, v2 ∈ L2(�). Then we
have |u ⋅w| ⩽ 1

2 (u
2 +w2) ∈ L2(�) and, using again the elementary inequality

|xy| ⩽ x2

2
+ y2

2

for x = |u|∕
√

EG� (u2) and y = |w|∕
√

EG� (w2) we conclude that on Gn ∶= {EG� (u
2) > 1

n
} ∩

{EG� (w
2) > 1

n
}

|u| ⋅ |w|
√

EG� (w2)
√

EG� (w2)
1Gn ⩽

[

u2

2EG� (u2)
+ w2

2EG� (w2)

]

1Gn .

Taking conditional expectations on both sides yields, since Gn ∈ G :
EG�

(

|u| ⋅ |w|
)

√

EG� (w2)
√

EG� (w2)
1Gn ⩽ 1Gn .

Multiplying through with the denominator of the lhS and letting n→∞ gives
|

|

|

EG� (uw)
|

|

|

1G∗ ⩽ EG�
(

|uw|
)

1G∗ ⩽
√

EG� (u2)
√

EG� (w2)

on the set G∗ ∶= Gu ∩ Gw ∶= {EG� u2 > 0} ∩ {EG�w2 > 0}.
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(i) Set G∗ ∶= {EG� f > 0} and Gn ∶= {EG� f > 1
n
}. Clearly, using the Markov inequality,

�(Gn) ⩽ n2 ∫ (EG� f )
2 d� ⩽ n∫ f 2 d� <∞

so that by monotone convergence we find for all G ∈ G ∩ G∗

�(G) = ⟨f,1G⟩L2(�)

= sup
n
⟨f,1G∩Gn⟩L2(�)

= sup
n
⟨f,EG� 1G∩Gn⟩L2(�)

= sup
n
⟨EG� f,1G∩Gn⟩L2(�)

= ⟨EG� f,1G⟩L2(�)

which means that �|G∩G∗ = EGf ⋅ �|G∩G∗ .
(ii) We define for bounded u ∈ L2(�)

Pu ∶=
EG� (fu)

EG� f
1G∗ .

Let us show that P ∈ L2(�). Set G√

fu ∶= {EG�
(

f ⋅ u2
)

> 0}. Then, for bounded
u ∈ L2(�)

‖

‖

‖

‖

EG� (fu)

EG� f
1G∗∩G√

fu∩G√

f

‖

‖

‖

‖

2

L2(�)

= ∫G∗∩G√

fu∩G√

f

[

EG� (fu)
]2

[

EG� f
]2 d�

= ∫G∗∩G√

fu∩G√

f

[

EG� (fu)
]2

[

EG� f
]2 f d�

= ∫G∗∩G√

fu∩G√

f

[

EG� (fu)
]2

[

EG� f
]2 EG� f d�

= ∫G∗∩G√

fu∩G√

f

[

EG� (fu)
]2

EG� f
d�

= ∫G∗∩G√

fu∩G√

f

[

EG�
[
√

f (
√

fu)
]]2

EG� f
d�

⩽ ∫G∗∩G√

fu∩G√

f

EG� f ⋅ E
G
�
[

fu2
]

EG� f
d�

= ∫G∗∩G√

fu∩G√

f

EG�
[

fu2
]

d�

= sup
n ∫ 1Gn∩G√

fu∩G√

f
EG�

[

fu2
]

d�
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= sup
n ∫ EG� 1Gn∩G√

fu∩G√

f
fu2 d�

= sup
n ∫ 1Gn∩G√

fu∩G√

f
fu2 d�

= ∫ 1G∗∩G√

fu∩G√

f
fu2 d�

⩽ ∫ fu2 d� = ‖

‖

‖

√

fu‖‖
‖

2

L2(�)
= ‖u‖2L2(�) <∞.

Still for bounded u ∈ L2(�),

∫Gn∩{f<n}∩{EG (fu2)=0}
EG� (fu) d�

= ∫Gn∩{EG (
√

fu)=0}
fu d�

⩽

√

∫Gn∩{f<n}
f d�

√

∫Gn∩{EG (fu2)=0}
fu2 d�

=

√

∫Gn∩{f<n}
f d�

√

∫Gn∩{EG (fu2)=0}
EG� fu2 d�

= 0

and, using monotone convergence, we have
‖Pu‖2L2(�) ⩽ ‖u‖2L2(�)

for all bounded u ∈ L2(�), hence – through extension by continuity – for all u ∈ L2(�).
(iii) Since

⟨

u − Pu, P u
⟩

L2(�)

=
⟨

fu − fPu, P u
⟩

L2(�)

=
⟨

fu − f
EG� (fu)

EG� f
1G∗ ,

EG� (fu)

EG� f
1G∗

⟩

L2(�)

=
⟨

EG�

[

fu − f
EG� (fu)

EG� f
1G∗

]

,
EG� (fu)

EG� f
1G∗

⟩

L2(�)

=
⟨

EG� (fu) − E
G
�

[

f
EG� (fu)

EG� f
1G∗

]

,
EG� (fu)

EG� f
1G∗

⟩

L2(�)

=
⟨

EG� (fu) − E
G
� (f )

EG� (fu)

EG� f
1G∗ ,

EG� (fu)

EG� f
1G∗

⟩

L2(�)

=
⟨

EG� (fu) − E
G
� (fu)1G∗ ,

EG� (fu)

EG� f
1G∗

⟩

L2(�)

= 0

which shows that P is the (uniquely determined) orthogonal projection onto L2(�,G ),
i.e. P = EG� .
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(Note that we have, implicitly, extended EG� onto L1....)
(iv) The condition that f1G∗ is G -measurable will do. Indeed, since G∗ ∈ G :

EG� u =
EG� (fu)

EG� f
1G∗ =

EG� ((f1G∗)u)

EG� (f1G∗)
=
(f1G∗)EG� (u)
(f1G∗)

= EG� u.

In fact, if f ∈ L4(�,A ) this is also necessary:

EG� f = E
G
� f

implies, because of (i), that

EG� f =
EG� (f

2)

EG� f
1{EG� f>0}

⇐⇒
(

EG� f
)2 = EG� (f

2)1{EG� f>0}

⇐⇒
(

EG� f
)2 = EG� (f

2).

Thus,

EG�

[

(

f − EG� f
)2
]

= 0,

which means that on the set G∗ = ⋃

nGn with �(Gn) <∞, see above,

0 = ∫Gn
EG� (f − E

G
� f )

2 d� = ∫Gn
(f − EG� f )

2 d�

i.e. f = EG� f on G∗ = {EG� f > 0}
■■

Problem 27.4 Solution: SinceG = {G1,… , Gn} such that theGj’s form amutually disjoint partition
of the whole space X, we have

L2(G ) =

{ n
∑

j=1
�j1Gj ∶ �j ∈ R

}

.

It is, therefore, enough to determine the values of the �j . Using the symmetry and idempotency of
the conditional expectation we get for k ∈ {1, 2,… , n}

⟨EG u,1Gk⟩ = ⟨u,EG1Gk⟩ = ⟨u,1Gk⟩ = ∫Gk
u d�.

On the other hand, using that EG u ∈ L2(G ) we find

⟨EG u,1Gk⟩ =
⟨

n
∑

j=1
�j1Gj ,1Gk

⟩

=
n
∑

j=1
�j⟨1Gj ,1Gk⟩ = �k�(Gk)

and we conclude that

�k =
1

�(Gk) ∫Gk
u d� = ∫Gk

u(x) �(dx)
�(Gk)

.

■■
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Problem 27.5 Solution: We follow the hint. Let u ∈ Lp(�) and define un = [(−n) ∨ u ∧ n]1{|u|⩾1∕n}.
Clearly, un is bounded, and by the Markov inequality (11.4)

�{|u| ⩾ 1∕n} = �{|u|p ⩾ 1∕np} ⩽ np ∫ |u|p d� <∞.

Therefore, un ∈ Lr(�) for all r ⩾ 1:

∫ |un|
r d� = ∫{|un|⩾1∕n}

(|u| ∧ n)r ⩽ nr�{|un| ⩾ 1∕n} ⩽ nr+p ∫ |u|p d� <∞.

Since un → u a.e., dominated convergence (use the majorant |u|p) shows that un → u in Lp. Thus,
we see as in the remark before Theorem 27.5 that (T un)n∈N is a Cauchy sequence in Lp(�), i.e. the
limit Lp-limn T un exists. If (wn)n is a further approximating sequence such that wn → u in Lp(�),
we get

‖T un − Twn‖p = ‖T (un −wn)‖p ⩽ c‖un −wn‖p ⩽ c‖un − u‖p + c‖u −wn‖p ←←←←←←←←←←←←←←←←←←←←→n→∞
0

which shows that limn T un = limn Twn, i.e. T̃ u ∶= limn T un (as an Lp-limit) is well-defined since
it is independent of the approximating sequence. Linearity is clear from the linearity of the limit.
Assume now that 0 ⩽ un ↑ u where un ∈ Lp(�) ∩ L2(�). By the first part, T̃ u = limn T un in Lp,
so there is a subsequence such that T̃ u = limk T unk a.e. Because of monotonicity we have

T unk ⩽ T un ∀ n ⩾ n(k) ⇐⇒ 0 ⩽ T̃ u − T un ⩽ T̃ u − T unk .

So,

0 ⩽ lim sup
n→∞

(T̃ u − T un) ⩽ T̃ u − T unk ←←←←←←←←←←←←←←←←←←←←→k→∞
0,

which shows that limn(T̃ u − T un) = 0.
■■

Problem 27.6 Solution: Let Gu ∶= {EG |u|p > 0}, Gw ∶= {EG |w|q > 0} and G ∶= Gu ∩ Gw.
Following the hint we get

|u|
[

EG (|u|p)
]1∕p

|w|
[

EG (|w|q)
]1∕q 1G ⩽ |u|p

pEG (|u|p)
1G +

|u|q

qEG (|w|q)
1G

Since 1G is bounded and G -measurable, we can apply EG on both sides of the above inequality
and get

EG (|u||w|)
[

EG (|u|p)
]1∕p[

EG (|w|q)
]1∕q 1G ⩽ EG (|u|p)

pEG (|u|p)
1G +

EG (|u|q)
qEG (|w|q)

1G = 1G

or

EG (|u||w|)1G ⩽
[

EG (|u|p)
]1∕p[

EG (|w|q)
]1∕q

1G

⩽
[

EG (|u|p)
]1∕p[

EG (|w|q)
]1∕q.
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Denote by Gn an exhaustion of X such that Gn ∈ G , Gn ↑ X and �(Gn) <∞. Then

∫Gcu
|u|p d� = sup

n ∫Gcu∩Gn
|u|p d�

= sup
n
⟨1Gcu∩Gn

, |u|p⟩

= sup
n
⟨EG1Gcu∩Gn

, |u|p⟩

= sup
n
⟨1Gcu∩Gn

,EG (|u|p)⟩

= 0

which means that 1Guu = u almost everywhere. Thus,
EG (|u||w|)1G = EG (|u||w|1G) = EG (|u|1Gu|w|1Gw) = E

G (|u||w|)

and the inequality follows since
|

|

|

EG (uw)||
|

⩽ EG (|uw|).

■■

Problem 27.7 Solution: In this problem it is helpful to keep the distinction between EG defined on
L2(A ) and the extension EG defined on LG (A ).
Since �|A is �-finite we can find an exhausting sequence of sets An ↑ X with �(An) <∞. Setting
for u,w ∈ LG (A )with uEGw ∈ L1(A ) un ∶=

(

(−n)∨u∧n
)

⋅1An andwn ∶=
(

(−n)∨w∧n
)

⋅1An
we have found approximating sequences such that un, wn ∈ L1(A ) ∩ L∞(A ) and, in particular,
∈ L2(A ).
(iii): For u,w ⩾ 0 we find by monotone convergence, using the properties listed in Theorem 27.4:

⟨EG u,w⟩ = lim
n
⟨EG un, w⟩

= lim
n
lim
m
⟨EG un, wm⟩

= lim
n
lim
m
⟨un,E

Gwm⟩

= lim
n
⟨un, E

Gw⟩

= ⟨u, EGw⟩.

In the general case we write
⟨EG u,w⟩ = ⟨EG u+, w+⟩ − ⟨EG u−, w+⟩ − ⟨EG u+, w−⟩ + ⟨EG u−, w−⟩

and consider each term separately.
The equality ⟨EG u,w⟩ = ⟨EG u, EGw⟩ follows similarly.

(iv): we have
u = w ⇐⇒ uj = wj ∀ j ⇐⇒ EG uj = EGwj ∀ j
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and we get

EG u = lim
j
EG uj = limj E

Gwj = w.

(ix): we have

0 ⩽ u ⩽ 1 ⇐⇒ 0 ⩽ un ⩽ 1 ∀ n

⇐⇒ 0 ⩽ EG un ⩽ 1 ∀ n

⇐⇒ 0 ⩽ EG u = lim
n
EG un ⩽ 1.

(x):

u ⩽ w ⇐⇒ 0 ⩽ w − u ⇐⇒ 0 ⩽ EG (u −w) = EG u − EGw.

(xi):

±u ⩽ |u| ⇐⇒ ±EG u ⩽ EG |u| ⇐⇒ |

|

|

EG u||
|

⩽ EG |u|.

■■

Problem 27.8 Solution: (Mind the typo in the hint: EG = EG should read EG = EG .) Assume first
that �|G is �-finite and denote by Gk ∈ G , Gk ↑ X and �(Gk) <∞ an exhausting sequence. Then
1Gk ∈ L

2(G ), 1Gk ↑ 1 and

EG 1 = sup
k
EG1Gk = supk

1Gk = 1.

Conversely, let EG 1 = 1. Because of Lemma 27.7 there is a sequence (uk)k ⊂ L2(A ) with uk ↑ 1.
By the very definition of EG we have

EG 1 = sup
k
EG uk = 1,

i.e. there is a sequence gk ∶= EG uk ∈ L2(G ) such that gk ↑ 1. Set Gk ∶= {gk > 1 − 1∕k} and
observe that Gk ↑ X as well as

�(Gk) ⩽
1

(1 − 1
k
)2 ∫

g2k d�

= 1
(1 − 1

k
)2
‖EG uk‖

2
L2

⩽ 1
(1 − 1

k
)2
‖uk‖

2
L2

<∞.

This shows that �|G is �-finite.
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If G is not �-finite, e.g. if G = {∅, G, Gc , X} where �(G) <∞ and �(Gc) = ∞ we find that

L2(G ) = {c1G ∶ c ∈ R}

which means that EG 1 = 1G since for every A ⊂ Gc , A ∈ A and �(A) <∞ we find

EG1A⊍G = EG (1A + 1G) = EG1A + EG1G = EG1A + 1G

Since this must be an element of L2(G ), we have necessarily EG1A = c1G or

⟨c1G,1G⟩ = ⟨EG1A,1G⟩ = ⟨1A, E
G1G⟩ = ⟨1A,1G⟩ = �(A ∩ G) = 0,

hence c = 0 or EG1A = 0.
This shows that

EG 1 = 1G ⩽ 1

is best possible.
■■

Problem 27.9 Solution: For this problem it is helpful to distinguish betweenEG (defined on L2) and
the extension EG .
Without loss of generality we may assume that g ⩾ 0—otherwise we would consider positive and
negative parts separately. Since g ∈ Lp(G ) we have that

�{g > 1∕j} ⩽ jp ∫ gp d� <∞

which means that the sequence gj ∶= (j ∧ g)1{g>1∕j} ∈ L2(G ). Obviously, gj ↑ g pointwise as
well as in Lp-sense. Using the results from Theorem 27.4 we get

EG gj = gj ⇐⇒ EG = sup
j
EG gj = sup

j
gj = g.

■■

Problem 27.10 Solution: For this problem it is helpful to distinguish between EG (defined on L2)
and the extension EG .
For u ∈ Lp(A ) we get EℋEG u = Eℋ u because of Theorem 27.11(vi) while the other equality
EGEℋ u = Eℋ u follows from Problem 27.9.
If u ∈ M+(A ) (mind the misprint in the problem!) we get a sequence uj ↑ u of functions uj ∈
L2+(A ). From Theorem 27.4 we know thatEG uj ∈ L2(G ) increases and, by definition, it increases
towards EG u. Thus,

EℋEG uj = Eℋ uj ↑ Eℋ u
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while

EℋEG uj ↑ E
ℋ (

sup
j
EG uj

)

= EℋEG u.

The other equality is similar.
■■

Problem 27.11 Solution: We know that

Lp(An) =

{ n
∑

j=1
cj1[j−1,j) ∶ cj ∈ R

}

since c01[n,∞) ∈ Lp if, and only if, c0 = 0. Thus, EAnu is of the form

EAnu(x) =
n
∑

j=1
cj1[j−1,j)(x)

and integrating over [k − 1, k) yields

∫[k−1,k)
EAnu(x) dx = ck.

Since

∫[k−1,k)
EAnu(x) dx = ⟨EAnu,1[k−1,k)⟩

= ⟨u, EAn1[k−1,k)⟩

= ⟨u,1[k−1,k)⟩

= ∫[k−1,k)
u(x) dx

we get

EAnu(x) =
n
∑

j=1
∫[j−1,j)

u(t) dt1[j−1,j)(x).

■■

Problem 27.12 Solution: For this problem it is helpful to distinguish between EG (defined on L2)
and the extension EG .
If �(X) = ∞ and ifG = {∅, X}, thenL1(G ) = {0}whichmeans thatEG u = 0 for any u ∈ L1(A ).
Thus for integrable functions u > 0 and �|G not �-finite we can only have ‘⩽’.
If �|G is �-finite and if Gj ↑ X, Gj ∈ G , �(Gj) < ∞ is an exhausting sequence, we find for any
u ∈ L1+(A )

∫ EG u d� = sup
j ∫Gj

EG u d�

= sup
j
⟨EG u,1Gj ⟩
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= sup
j
⟨u, EG1Gj ⟩

= sup
j
⟨u,1Gj ⟩

= ⟨u, 1⟩

= ∫ u d�.

If �|G is not �-finite and if u ⩾ 0, we perform a similar calculation with an exhausting sequence
Aj ∈ A , Aj ↑ X, �(Aj) < ∞ (it is implicit that �|A is �-finite as otherwise the conditional
expectation would not be defined!):

∫ EG u d� = sup
j ∫Aj

EG u d�

= sup
j
⟨EG u,1Aj ⟩

= sup
j
⟨u, EG1Aj ⟩

⩽ ⟨u, 1⟩

= ∫ u d�.

■■

Problem 27.13 Solution:

Proof of Corollary 27.14: Since

lim inf
j→∞

uj = sup
k
inf
j⩾k

uj

we get

EG
(

inf
j⩾k

uj
)

⩽ EG um ∀m ⩾ k

thus

EG
(

inf
j⩾k

uj
)

⩽ inf
m⩾k

EG um ⩽ sup
k
inf
m⩾k

EG um = lim infm→∞
EG um.

Since on the other hand the sequence inf j⩾k uj increases, as k→∞, towards supk inf j⩾k uj we can
use the conditional Beppo Levi theorem 27.13 on the left-hand side and find

EG
(

lim inf
j→∞

uj
)

= EG
(

sup
k
inf
j⩾k

uj
)

= sup
k
EG

(

inf
j⩾k

uj
)

⩽ lim inf
m→∞

EG um.

The Corollary is proved.

Proof of Corollary 27.15: Since |uj| ⩽ w we conclude that |u| = limj |uj| ⩽ w and that 2w −
|u − uj| ⩾ 0. Applying the conditional Fatou lemma 27.14 we find

EG (2w) = EG
(

lim inf
j

2w − |u − uj|
)
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⩽ lim inf
j

EG
(

2w − |u − uj|
)

= EG (2w) − lim sup
j

EG (|u − uj|)

which shows that

lim sup
j

EG (|u − uj|) = 0 ⇐⇒ lim
j
EG (|u − uj|) = 0.

Since, however,
|

|

|

EG uj − EG u
|

|

|

= |

|

|

EG (uj − u)
|

|

|

⩽ EG |uj − u| ←←←←←←←←←←←←←←←←←←←←→j→∞
0

the claim follows.
■■

Problem 27.14 Solution: (i) ⇐⇒ (ii): Let A ∈ A∞ be such that �(A) < ∞. Then, by Hölder’s
inequality with 1∕p + 1∕q = 1,

|

|

|

|

∫A
uj d� − ∫A

u d�
|

|

|

|

⩽ ∫A
|uj − u| d� ⩽ ‖uj − u‖p �(A)1∕q ←←←←←←←←←←←←←←←←←←←←→j→∞

0.

Thus, if u∞ ∶= EA∞u, we find by the martingale property for all k > j and A ∈ Aj such that
�(A) <∞

∫A
uj d� = ∫A

uk d� = lim
k→∞∫A

uk d� = ∫A
u d� = ∫A

u∞ d�,

and since we are in a �-finite setting, we can apply Theorem 27.12(i) and find that uj = EAju∞.

(ii) ⇐⇒ (iii): Assume first that u∞ ∈ L1 ∩Lp. Then uj = EAju∞ ∈ L1 ∩Lp and Theorem 27.19(i)
shows that uj ←←←←←←←←←←←←←←←←←←←←→j→∞

u∞ both in L1 and a.e. In particular, we get

⟨u∞ − uj , �⟩ ⩽ ‖u∞ − uj‖1‖�‖∞ → 0 ∀� ∈ L∞.

In the general case where u∞ ∈ Lp(A∞) we find for every � > 0 an element u�∞ ∈ L1(A∞) ∩
Lp(A∞) such that

‖u∞ − u�∞‖p ⩽ �

(indeed, since we are working in a �-finite filtered measure space, there is an exhaustion Ak ↑ X
such that Ak ∈ A∞ and for large enough k = k� the function u�∞ ∶= u∞1Ak will to the job).
Similarly, we can approximate any fixed � ∈ Lq by �� ∈ Lq ∩ L1 such that ‖� − ��‖q ⩽ �.
Now we set u�j ∶= EAju�∞ and observe that

‖uj − u�j‖p = ‖EAju∞ − EAju�∞‖p ⩽ ‖u∞ − u�∞‖p ⩽ �.

Thus, for any � ∈ Lq,

⟨uj − u∞, �⟩
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= ⟨uj − u�j − u∞ + u
�
∞, �⟩ + ⟨u�j − u

�
∞, �⟩

= ⟨uj − u�j − u∞ + u
�
∞, �⟩ + ⟨u�j − u

�
∞, � − �

�
⟩ + ⟨u�j − u

�
∞, �

�
⟩

⩽
(

‖uj − u�j‖p + ‖u∞ − u�∞‖p
)

‖�‖q

+ ‖u�j − u
�
∞‖p‖� − �

�
‖q + ⟨u�j − u

�
∞, �

�
⟩

⩽ 2� ‖�‖q + � ‖u�j − u
�
∞‖p

⏟⏞⏞⏞⏟⏞⏞⏞⏟
⩽2‖u�∞‖p⩽2(�+‖u∞‖p)

+ ⟨u�j − u
�
∞, �

�
⟩

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
←←←←←←←←←←←←←←←←←←←←→
j→∞

0

⩽ const.�

for sufficiently large j’s, and the claim follows.

(iii) ⇐⇒ (ii): Let un(j) be a subsequence converging weakly to some u ∈ Lp, i.e.,

lim
k
⟨un(k) − u, �⟩ = 0 ∀� ∈ Lq.

Then, in particular,

lim
k
⟨un(k) − u,EAn�⟩ = 0 ∀� ∈ Lq, n ∈ N

or

lim
k
⟨EAnun(k) − EAnu, �⟩ = 0 ∀� ∈ Lq, n ∈ N.

Since uj is a martingale, we find that EAnun(k) if n < n(k), i.e.,

⟨un − EAnu, �⟩ = 0 ∀� ∈ Lq, n ∈ N.

and we conclude that un = EAnu. Because of the tower property we can always replace u by
u∞ ∶= EA∞u:

un = EAnu = EAnEA∞u = EAnu∞

and the claim follows.

(ii) ⇐⇒ (i): We show that we can take u = u∞. First, if u∞ ∈ L1 ∩L∞ we find by the closability of
martingales, Theorem 27.19(i), that

lim
j
‖uj − u‖1 = 0.

Moreover, using that |a − b|r ⩽ (|a| + |b|)r ⩽ 2r(|a|r + |b|r), we find

‖uj − u‖pp = ∫ |uj − u|p d�

= ∫ |uj − u| ⋅ |uj − u|p−1 d�

⩽ 2p−1(‖uj‖p−1∞ + ‖u‖p−1∞ )∫ |uj − u| d�

⩽ 2p‖u‖p−1∞ ⋅ ‖uj − u‖1
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←←←←←←←←←←←←←←←←←←←←→
j→∞

0

where we use that
‖uj‖∞ = ‖EAj u‖∞ ⩽ EAj

(

‖u‖∞
)

⩽ ‖u‖∞.

Now for the general case where u∞ ∈ Lp. Since we are in a �-finite setting, we can set u� ∶=
(u ⋅1Aj ) ∧ j, j = j(�) sufficiently large and Aj → X an exhausting sequence of sets from A∞, and
can guarantee that

‖u − u�‖p ⩽ �.

At the same time, we get for u�j ∶= EAju� ∈ L1 ∩ L∞ that
‖uj − u�j‖p = ‖EAju − EAju�‖p ⩽ ‖u − u�‖p ⩽ �.

Thus, by the consideration for the special case where u� ∈ L1 ∩ L∞,
‖uj − u‖p ⩽ ‖uj − u�j‖p + ‖u�j − u

�
‖p + ‖u� − u‖p

⩽ � + ‖u�j − u
�
‖p + �

←←←←←←←←←←←←←←←←←←←←→
j→∞

2� ←←←←←←←←←←←←←←←←←→
�→0

0.

■■

Problem 27.15 Solution: Obviously,
mk = mk−1 + (uk − EAk−1uk).

Sincem1 = u1 ∈ L1A1, this shows, by induction, thatmk ∈ L1(Ak). ApplyingEAk−1 to both sides
of the displayed equality yields

EAk−1mk = EAk−1mk−1 + EAk−1(uk − EAk−1uk)

= mk−1 + EAk−1uk − EAk−1uk
= mk−1

which shows that mk is indeed a martingale.
■■

Problem 27.16 Solution: Problem 27.15 shows that sk is a martingale, so that s2k is a sub-martingale
(use Jensen’s inequality for conditional expectations). Now

∫ s2k d� =
∑

j ∫ u2k d� + 2
∑

j<k
∫ ujuk d�

and if j < k

∫ ujuk d� = ∫ EAj (ujuk) d� = ∫ uj E
Aj (uk)

⏟⏟⏟
=0

d� = 0.

■■
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Problem 27.17 Solution: Problem 27.15 shows that mj is a martingale.
Since a1 = EA0u1 − u0 = E{∅,X}u1 = ∫ u1 d� is constant, i.e., A0-measurable, the recursion
formula

aj+1 = aj + EAjuj+1 − uj

implies that aj+1 is Aj-measurable.
Since uj is a submartingale, we get

EAjuj+1 ⩾ uj ⇐⇒ aj+1 − aj ⩾ 0

i.e., the sequence aj increases.
Finally, if mj + aj = uj = m̃j + ãj are two such decompositions we find that mj − m̃j = aj − ãj is
Aj−1 measurable. Using the martingale property we find

mj − m̃j = EAj−1(mj − m̃j)
Martingale
= mj−1 − m̃j−1

and applying this recursively for j = 1, 2, 3,… yields

m1 − m̃1 = 0, m2 − m̃2 = 0, m3 − m̃3 = 0,…

so that mj = m̃j and, consequently, aj = ãj .
■■

Problem 27.18 Solution: Assume that Mk = EAkM . Then we know from Theorem 27.19 that
M̃ = limkMk exists a.e. and in L1. Moreover, ∫ Mk dP = 1 so that M̃ cannot be trivial. On the
other hand,

P (M̃ > 0) ⩽ P (Mk > 0) = P (Xj > 0 ∀j = 1, 2,… , k) = 2−k ←←←←←←←←←←←←←←←←←←←←→
k→∞

0

which yields a contradiction.
■■

Problem 27.19 Solution: (Compare this problem with Problem 22.16.) Recall that in finite measure
spaces uniform integrability follows from (and is actually equivalent to)

lim
R→∞

sup
n ∫{|un|>R}

|un| d� = 0;

this is true since in a finite measure space the constant function w ≡ R is integrable.
Observe now that

∫{|un|>R}
|un| d� ⩽ ∫{|un|>R}

EAnf d�

= ∫{|un|>R}
f d�
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= ∫{|un|>R}∩{f⩽R∕2}
f d� + ∫{|un|>R}∩{f>R∕2}

f d�

⩽ ∫{|un|>R}∩{f⩽R∕2}
1
2
|un| d� + ∫{|un|>R}∩{f>R∕2}

f d�

⩽ ∫{|un|>R}
1
2
|un| d� + ∫{f>R∕2}

f d�

This shows that
1
2 ∫{|un|>R}

|un| d� ⩽ ∫{f>R∕2}
f d�

R→∞
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→uniformly for all n 0.

■■
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28 Orthonormal systems and their

convergence behaviour.

Solutions to Problems 28.1�28.11

Problem 28.1 Solution: Since J (�,�)k is a polynomial of degree k, it is enough to show that J (�,�)k is
orthogonal in L2(I, �(x) dx) to any polynomial p(x) of degree j < k. We write )k for dk

dxk
and

u(x) = (x − 1)k+�(x + 1)k+� . Then we get by repeatedly integrating by parts

∫

1

−1
J (�,�)k (x)p(x)(x − 1)�(x + 1)� dx

= (−1)k

k! 2k ∫

1

−1
p(x))ku(x) dx

=
[

p(x) ⋅ )k−1u(x) − )1p(x) ⋅ )k−2u(x) +⋯ + (−1)k−1)k−1p(x) ⋅ u(x)
]1

−1

+ (−1)k ∫

1

−1
u(x))kp(x) dx.

Obviously, )lu(−1) = )lu(1) = 0 for all 0 ⩽ l ⩽ k − 1 and )kp ≡ 0 since p is a polynomial of
degree j < k.

■■

Problem 28.2 Solution: It is pretty obvious how to go about this problem. The calculations them-
selves are quite tedious and therefore omitted.

■■

Problem 28.3 Solution: Theorem 28.6: The polynomials are dense in C[a, b] with respect to uniform
convergence.

Proof 1: mimic the proof of 28.6 with the obvious changes;
Proof 2: Let f ∈ C[a, b]. Then f̃ (y) ∶= f (a + (b − a)y), y ∈ [0, 1] satisfies f̃ ∈ C[0, 1] and,
because of Theorem 28.6, there is a sequence of polynomials p̃n such that

lim
n→∞

sup
y∈[0,1]

|f̃ (y) − p̃n(y)| = 0.

Define pn(x) ∶= p̃n
(x−a
b−a

)

, x ∈ [a, b]. Clearly pn is a polynomial and we have

sup
x∈[a,b]

|pn(x) − f (x)| = sup
y∈[0,1]

|p̃n(y) − f̃ (y)|.
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Corollary 28.8: The monomials are complete in L1([a, b], dt).
Proof 1: mimic the proof of 28.8 with the obvious changes;
Proof 2: assume that for all j ∈ N0 we have

∫

b

a
u(x)xj dx = 0.

Since

∫

1

0
u((b − a)t + a)tj dx = ∫

b

a
u(x)

[

x − a
b − a

]j

dx

=
j
∑

k=0
ck ∫

b

a
u(x)xk dx

= 0

we get from Corollary 28.8 that
u((b − a)t + a) = 0 Lebesgue almost everywhere on [0, 1]

and since the map [0, 1] ∋ t → x = (b − a)t + a ∈ [a, b] is continuous, bijective and with a
continuous inverse, we also get

u(x) = 0 Lebesgue almost everywhere on [a, b].

■■

Problem 28.4 Solution: Observe that
Re

(

ei(x−y) − ei(x+y)
)

= Re
[

eix
(

e−iy − eiy
)]

= Re
[

− 2ieix sin y
]

= 2 sin x sin y,

and that
Re

(

ei(x+y) + ei(x−y)
)

= Re
[

eix
(

eiy + e−iy
)]

= Re
[

2eix cos y
]

= 2 cos x cos y.

Moreover, we see that forN ∈ N0

∫

�

−�
eiNx dx =

⎧

⎪

⎨

⎪

⎩

eiNx

iN
|

|

|

�

−�
= 0, ifN ≠ 0;

2�, ifN = 0.

Thus, if k ≠ l

∫

�

−�
2 cos kx coslx dx = Re

(

∫

�

−�
ei(k+l)x dx + ∫

�

−�
ei(k+l)x dx

)

= 0
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and if k = l ⩾ 1

∫

�

−�
2 cos kx cos kx dx = Re

(

∫

�

−�
e2ikx dx + ∫

�

−�
1 dx

)

= 2�

and if k = l = 0,

∫

�

−�
2 cos kx cos kx dx = ∫ 2 dx = 4�.

The proof for the pure sines integral is similar while for the mixed sine-cosine integrals the integ-
rand

x → cos kx sinlx

is always an odd function, the integral over the symmetric (w.r.t. the origin) interval (−�, �) is
always zero.

■■

Problem 28.5 Solution:

(i) We have

2k cosk(x) = 2k
(eix + e−ix

2

)k

=
(eix + e−ix

2

)k

=
k
∑

j=0

(

k
j

)

eijxe−i(k−j)x

=
k
∑

j=0

(

k
j

)

ei(2j−k)x

Adding the first and last terms, second and penultimate terms, term no. j and k−j, etc. under
the sum gives, since the binomial coefficients satisfy (k

j

)

=
( k
k−j

),
– if k = 2n is even

22n cos2n(x) =
n−1
∑

j=0

(

2n
j

)

(ei(2j−2n)x + ei(2n−2j)x) +
(

2n
n

)

=
n
∑

j=0

(

2n
j

)

2 cos(2j − 2n) +
(

2n
n

)

– if k = 2n − 1 is odd

22n−1 cos2n−1(x) =
n−1
∑

j=0

(

2n − 1
j

)

(ei(2j−2n+1)x + ei(2n−2j−1)x)

=
n−1
∑

j=0

(

2n − 1
j

)

2 cos(2n − 2j − 1)x.
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In a similar way we compute sink x:

2k sink(x) = 2k
(eix − e−ix

2i

)k

= i−k
(eix − e−ix

2

)k

= i−k
k
∑

j=0

(

k
j

)

(−1)k−jeijxe−i(k−j)x

= i−k
k
∑

j=0

(

k
j

)

(−1)k−jei(2j−k)x.

Adding the first and last terms, second and penultimate terms, term no. j and k−j, etc. under
the sum gives, since the binomial coefficients satisfy (k

j

)

=
( k
k−j

),
– if k = 2n is even

22n sin2n(x)

= (−1)n
n−1
∑

j=0

(

2n
j

)

(

(−1)2n−jei(2j−2n)x + (−1)jei(2n−2j)
)

+
(

2n
n

)

=
n−1
∑

j=0

(

2n
j

)

(−1)n−j
(

ei(2j−2n)x + ei(2n−2j)
)

+
(

2n
n

)

=
n−1
∑

j=0

(

2n
j

)

(−1)n−j2 cos(2n − 2j)x +
(

2n
n

)

– if k = 2n − 1 is odd
22n−1 sin2n−1(x)

= i(−1)n
n−1
∑

j=0

(

2n − 1
j

)

(

(−1)2n−1−jei(2j−2n+1)x + (−1)−jei(2n−2j−1)
)

= i
n−1
∑

j=0

(

2n − 1
j

)

(−1)n−j
(

− ei(2j−2n+1)x + ei(2n−2j−1)
)

= i
n−1
∑

j=0

(

2n − 1
j

)

(−1)n−j2i sin(2n − 2j + 1)x

=
n−1
∑

j=0

(

2n − 1
j

)

(−1)n−j−12 sin(2n − 2j + 1)x.

(ii) We have

cos kx + i sin kx = eikx =
(

eix
)k =

(

cos x + i sin x
)k

and we find, using the binomial formula,

cos kx + i sin kx =
k
∑

j=0

(

k
j

)

cosj x ⋅ ik−j sink−j x

and the claim follows by separating real and imaginary parts.
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(iii) Since a trigonometric polynomial is of the form

Tn(x) = a0 +
n
∑

k=1

(

ak cos kx + bk sin kx
)

it is a matter of double summation and part (ii) to see that Tn(x) can be written like Un(x).
Conversely, part (i) enables us to rewrite any expression of the form Un(x) as Tn(x).

■■

Problem 28.6 Solution: By definition,

DN (x) =
1
2
+

N
∑

j=1
cos jx.

Multiplying both sides by sin x2 and using the formula

cos ax sin bx = 1
2

(

sin (a + b)x
2

− sin (a − b)x
2

)

where j = (a + b)∕2 and 1∕2 = (a − b)∕2, i.e. a = (2j + 1)∕2 and b = (2j − 1)∕2 we arrive at

DN (x) sin
x
2 =

1
2 sin

x
2 +

1
2

N
∑

j=1

(

sin (2j+1)x2 − sin (2j−1)x2

)

= sin (2N+1)x2 .

■■

Problem 28.7 Solution: We have

| sin x | = 2
�
− 4
�

(

cos 2x
1 ⋅ 3

+ cos 4x
3 ⋅ 5

+ cos 6x
5 ⋅ 7

+⋯
)

.

Indeed, let us calculate the Fourier coefficients 28.8. First,

bk =
1
� ∫

�

−�
| sin x| sin kx dx = 0, k ∈ N,

since the integrand is an odd function. So no sines appear in the Fourier series expansion. Further,
using the symmetry properties of the sine function

a0∕2 =
1
2� ∫

�

−�
| sin x| dx

= 1
� ∫

�

0
| sin x| dx

= 1
�
(− cos x)||

|

�

0

= 2
�

and using the elementary formula 2 sin a cos b = sin(a − b) + sin(a + b) we get

aj =
1
� ∫

�

−�
| sin x| cos jx dx
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= 2
� ∫

�

0
sin x cos jx dx

= 2
� ∫

�

0

1
2
(

sin((j + 1)x) − sin((j − 1)x)
)

dx

= 1
�

[

cos((j − 1)x)
j − 1

− cos((j + 1)x)
j + 1

]�

0

= 1
�

[

cos((j − 1)�)
j − 1

− cos((j + 1)�)
j + 1

− 1
j − 1

+ 1
j + 1

]

.

If j is odd, we get aj = 0 and if j is even, we have

aj =
1
�

[

−1
j − 1

− −1
j + 1

− 1
j − 1

+ 1
j + 1

]

= −4
�

1
(j − 1)(j + 1)

.

This shows that we have only evenly indexed cosines in the Fourier series.
■■

Problem 28.8 Solution: This is not as trivial as it looks in the first place! Since u is itself a Haar
function, we have

sN (u, x) = u(x) ∀N ∈ N

(it is actually the first Haar function) so that sN converges in any Lp-norm, 1 ⩽ p <∞ to u.
The same applies to the right tail of the Haar wavelet expansion. The left tail, however, converges
only for 1 < p < ∞ in Lp. The reason is the calculation of Step 5 in the proof of Theorem 28.20
which goes in the case p = 1:

EA
Δ
−Mu = 2−M ∫[−2M ,0)

u(x) dx1[−2M ,0) + 2−M ∫[0,2M )
u(x) dx1[0,2M )

= 2−M1[0,2M ),

but this is not L1-convergent to 0 as it would be required. For p > 1 all is fine, though....
■■

Problem 28.9 Solution: Assume that u is uniformly continuous (Cc and C∞-functions are!). Since

sn(u; x) = EA
H
n u(x)

is the projection onto the sets in AH
n , see e.g. Step 2 in the proof of Theorem 28.17, we have

sn(u; x) =
1
�(I) ∫I

u(y) dx1I (x)

where I is an dyadic interval from the generator ofAH
n as in Step 2 of the proof of Theorem 28.17.

Thus, if x is from I we get

|sn(u; x) − u(x)| =
|

|

|

|

1
�(I) ∫I

(u(y) − u(x)) dx
|

|

|

|

⩽ 1
�(I) ∫I

|u(y) − u(x)| dx
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⩽ 1
�(I) ∫I

� dx

= �

if �(I) < � for small enough � > 0. This follows from uniform continuity: for given � > 0 there
is some � > 0 such that for x, y ∈ I (this entails |x − y| ⩽ �!) we have |u(x) − u(y)| ⩽ �.
The above calculation holds uniformly for all x and we are done.

■■

Problem 28.10 Solution: The calculation for the right tail is more or less the same as in Problem
28.9. Only the left tail differs. Here we argue as in Step 5 of the proof of Theorem 28.20: if
u ∈ Cc(R) we can assume that supp u ⊂ [−R,R] and we see

EA
Δ
−Mu(x) = 2−M ∫[−R,0]

u(x) dx1[−2M ,0) + 2−M ∫[0,R]
u(x) dx1[0,2M )

⩽ 2−MR ‖u‖∞1[−2M ,0) + 2−MR ‖u‖∞1[0,2M )

= 2−MR ‖u‖∞1[−2M ,2M )

⩽ 2−MR ‖u‖∞
M→∞

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→uniformly for all x 0

If u ∈ C∞ we can use the fact that Cc is dense in C∞, i.e. we can find for every � > 0 functions
v = v� ∈ Cc and w = w� ∈ C∞ such that

u = v +w and ‖w‖∞ ⩽ �.

Then
|

|

|

EA
Δ
−Mu(x)||

|

⩽ |

|

|

EA
Δ
−Mv(x)||

|

+ |

|

|

EA
Δ
−Mw(x)||

|

⩽ |

|

|

EA
Δ
−Mv(x)||

|

+ EAΔ
−M

‖w‖∞

⩽ |

|

|

EA
Δ
−Mv(x)||

|

+ �

and, by the first calculation for Cc-functions, the right-hand side converges, since v ∈ Cc , to 0 + �
uniformly for all x, and letting � → 0 we conclude the proof.

■■

Problem 28.11 Solution: See the picture at the end of this solution. Since the function u(x) ∶=
1[0,1∕3)(x) is piecewise constant, and since for each Haar function ∫ �k,j dx = 0 unless j = k = 1,
we see that only a single Haar function contributes to the value of sN (u; 13 ), namely where 1

3 ∈
supp�n,j .
The idea of the proof is now pretty clear: take values N where x = 1

3 is in the left ‘half’ of �N,k,
i.e. where �N,k(13 ) = 1 and valuesM such that x = 1

3 is in the opposite, negative ‘half’ of �M,l,
i.e. where �M,l(

1
3 ) = −1. Of course, k,l depend on x,N andM respectively. One should expect

that the partial sums for these different positions lead to different limits, hence different upper and
lower limits.
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The problem is to pick N’s andM’s. We begin with the simple observation that the dyadic (i.e.
base-2) representation of 1∕3 is the periodic, infinite dyadic fraction

1
3
= 0.01010101⋯ =

∞
∑

k=1

1
22k

and that the finite fractions

dn ∶= 0. 0101⋯ 01
⏟⏞⏞⏞⏟⏞⏞⏞⏟

2n

=
n
∑

k=1

1
22k

approximate 1∕3 from the left in such a way that
1
3
− dn =

∞
∑

k=n+1

1
22k

<
∞
∑

l=2n+2

1
2l
= 1
22n+2

1
1 − 1

2

= 1
22n+1

Now consider those Haar functions whose support consists of intervals of the length 2−2n, i.e.
the �2n,j’s and agree that j = j(1∕3, n) is the one value where 1

3 ∈ supp�2n,j . By construction
supp�2n,j = [dn, dn + 1∕22n] and we get for the Haar-Fourier partial sum

s2n(u,
1
3 ) −

1
3
= ∫

1∕3

dn
2ndx ⋅ �2n,j(

1
3 )

= 22n
(1
3 − dn

)

= 4n
∞
∑

k=n+1

1
22k

= 4n
∞
∑

k=n+1

1
4k

= 4n4−n−1 1
1 − 1

4

= 1
3
.

The shift by−1∕3 comes from the starting ‘atypical’ Haar function�0,0 since ⟨u, �0,0⟩ = ∫ 1∕30 dx =
1
3 .
Using the next smaller Haar functions with support of length 2−2n−1, i.e. the �2n+1,k’s, we see that
with j as above �2n+1,2j−1(13 ) = −1 (since twice as many Haar functions appear in the run-up to
dn) and that

s2n+1(u,
1
3 ) −

1
3

=
[

∫

dn+1∕22n+2

dn
2n+1dx − ∫

1∕3

dn+1∕22n+2
2n+1dx

]

⋅ �2n+1,2j−1(
1
3 )

=
[

dn +
1

22n+2
− dn −

1
3
+ dn +

1
22n+2

]

2n+1 ⋅ (−2n+1)

=
[

dn −
1
3
+ 2
22n+2

]

⋅ (−22n+2)
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= 4 ⋅ 22n
(1
3
− dn

)

− 2

= 4 ⋅ 1
3
− 2 (using the result above)

= −2
3

This shows that

s2n(u;
1
3 ) =

2
3
> −1

3
= s2n+1(u,

1
3 )

and the claim follows since because of the above inequality,

lim inf
N

sN (u;
1
3 ) ⩽ −

1
3
⩽ 2
3
⩽ lim sup

N
sN (u;

1
3 ).

■■

341



R.L. Schilling: Measures, Integrals & Martingales

✻

✲

dn dn +
1

22n+1
dn +

1
22n

2
2n
2

2
2n+1
2

dn+1
1
3

�2n,j and �2n+1,2j−1

Picture is not to scale!

2
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