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1 Prologue.
Solutions to Problems 1.1-1.5

Problem 1.1 Solution: We have to calculate the area of an isosceles triangle of side-length r, base b,

height / and opening angle ¢ := 2 /2/. From elementary geometry we know that

o _h in®_-2%
cos 7 == and sin > = =~
so that
. 1 . rro.
area (triangle) = = hb = r2cos2sin? = L sin ¢.
2 2 22
Since we have limy_, % = 1 we find
. . i I’2 . 2
area (circle) = lim 2/ — sin =
j—oo 2 2
. 2r
, . Sin3Z
=r‘z lim
Jjooo  ZZ
2
=r’z

just as we had expected.

Problem 1.2 Solution: By construction,
n+1
Coy1 = [0, 1]\ (U U Itl,...,1i>
i=1t,....,t;€{0,2}

and each interval I, _, has length 27", We have used this when calculating £(C,. )

_ 0 1 1 1 n 1
(€)= £10.11 =20 x 55 = 2! X 55 = e = 2" x o

(note that we have removed 2" intervals of length 37"~1). If we let n — oo, we get for all removed

intervals

f([] U I . t,):izqu%=l.
t;,€{0,2} i

i=11,...,

The last line requires o-additivity. (Just in case: you will see in the next chapter that the number

of removed intervals is indeed countable).
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Problem 1.3 Solution: We record the lenghts of the removed pieces in each step
1. In Step 1 we remove one (= 2°) piece of length %r;
2. In Step 2 we remove two (= 2!) pieces, each of length %r;
3. In Step 3 we remove four (= 22) pieces, each of length %r;
n. In Step n we remove 2" pieces, each of length 22,1—_1;’;

In each step we remove 2" x 272"*! x r = 27" units of length, i.e. we remove

Z 2nr—1 =

n=1

Thus, Z(1) =7¢[0,1] —r=1—r.
This means that the modified Cantor set does have a length! Consequently it cannot be empty.

Problem 1.4 Solution: In each step the total length is increased by the factor 4/3, since we remove
the middle interval (relative length 1/3) and replace it by two copies constituting the sides of an
equilateral triangle (relative length 2/3). Thus,

(K) = x 0K, == (3) kg = (3)

In particular, lim 7(K,) = oo.

n—0oo

Again o-additivity comes in in the form of a limit (compare with Problem 1.2).

Problem 1.5 Solution: In each step the total area is decreased by the factor 3 /4, since we remove the

middle triangle (relative area 1/4). Thus,

n n 3
area(sS,) = % X area(S,_;) = - = <%> area(S) = (%) 4
In particular, area(S) = lim,,_, ., area(sS,) = 0.

Again ¢-additivity comes in in the form of a limit (compare with Problem 1.2). Notice that .S is

not empty as it contains the vertices of all black triangles (see figure) of each stage.




2 The pleasures of counting.

Solutions to Problems 2.1-2.22

Problem 2.1 Solution:

(i) We have

XEA\B < xc€Aandx ¢ B
< x€ Aand x € B°

< x € An B°.

(i) Using (i) and de Morgan’s laws (*) yields

A\ B\ CZ(ANB)NC = AN B ACE

—AnBNC)Z ANBUCK = A\ (BUC).

(iii) Using (i), de Morgan’s laws (*) and the fact that (C¢)¢ = C gives

A\NB\CO) L AnBNCo)
© AnBUC)
=(ANB UuANCOC)

DU\ B UUNC).

@iv) Using (i) and de Morgan’s laws (*) gives

A\NBNO L AnBnCY
QAnBuCH)
=(ANBH UANCY

LA\ BuUMU\C)

(v) Using (i) and de Morgan’s laws (*) gives
A\ (BUC)Z AN (BUCY
Q AnB nCo)
=ANB°‘NC*
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=ANB°NANCe
®
=(A\B)n(4\O)

(vi) By definition and the distributive laws for sets we find

(AUB)\C=(AUuB)NC*
=(ANCHU(BNCY
=(A\CO)u(B\C).

Problem 2.2 Solution: Observe, first of all, that
A\CcC(A\B)U(B\Q). (*)
This follows easily from
A\C=A\O)nX
=(ANCHN(BU B°
=(ANC‘NB)U(ANCN B
c(BNC U(AnN B
=(B\C)u(A\ B).

Using this and the analogous formula for C \ A then gives

(AUBUC)\(ANBNC)

(AUBUC)N(ANBNCO)

[AN(ANBNO)FIUBNANBNO)FIU[CN(ANBNC)]

[AN(ANBNO)JU[B\(ANBNO)JU[C\(ANBNCO)]

[A\(BNC)UIB\ (ANC)U[C\ (AN B)]
2 (A\B)UA\CO)UB\ A UB\C)U(C\ A)U(C\ B)
2 A\ B UB\AUB\C)U(C\B)

= (AAB)U(BAC)

Problem 2.3 Solution: Tt is clearly enough to prove (2.3) as (2.2) follows if I contains 2 points.
De Morgan’s identities state that for any index set I (finite, countable or not countable) and any

collection of subsets A; C X, i € I, we have
c c
(a) <U A,.> =4 and (b <ﬂ A,.> = J 4

iel iel iel iel

10
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In order to see (a) we note that

ae <L€JI Ai>c

aéUAi

iel
Viel:agA
VieI:aeAf

aeﬂAf,

iel

(R

and (b) follows from
c
a€<ﬂAi> = aémAi
iel iel
— 3digel tag A
e ElioeI:aeAfO
= anAf.

iel

Problem 2.4 Solution:

(1) Theinclusion f(ANB) C f(A)N f(B)is always true since ANB C Aand AN B C B imply
that f(AN B) C f(A)and f(AN B) C f(B), respectively. Thus, f(AN B) C f(A)n f(B).

Furthermore, y € f(A)\ f(B) means that there is some x € A butx ¢ Bsuchthaty = f(x),
thatis: y € f(A\ B). Thus, f(A)\ f(B) C f(A\ B).

To see that the converse inclusions cannot hold we consider some non injective f. Take
X =10,2], A =(0,1), B=(1,2),and f : [0,2] » R with x » f(x) = ¢ (c is some

constant). Then f is not injective and
P=r 0 =rf10.DnN1,2)# (0, D)V f((1,2) = {c}.

Moreover, f(X) = f(B)={c} = f(X \ B) but f(X)\ f(B) = 0.

(ii) Recall, first of all, the definition of f~! foramap f : X - Yand BCY
fYB) :={xe X : f(x) € B}.
Observe that

x € [T (Uie/C) & f(x) €Uie/C,
e 3 el: fxeC,
= 3Jijel:xef(C)

&= x €U fIC),

11
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and
x € f_l(nielci) = f(x) € NigC;
= Viel: f(x)e(
& Viel:xef(c)
= x €N fTHC),
and, finally,

xe f(C\D) & f(x)eC\D
& f(x)€C and f(x)&D
« xe f(C) and x¢ f YD)
= xe O\ w.

Problem 2.5 Solution:

(i), (vi) For every x we have

11

xXEA x€B

= 1, (x)=1=1px)
1,4)-1g(x)=1
min{1 4(x), 1 z(x)} =1
(i), (v) For every x we have

1,,g(x)=1 < x€AUB
&< x€Aorx€eB

= 1,x)+1px)2>1
min{1,(x) +Lz(x),1} =1

max{1,(x), Lp(x)} =1

(iii) Since A = (AN B)W(A\ B) we see that 1 4 5(x) + ]lA\B(x) can never have the value 2, thus

part (ii) implies

=1 4,p(x) + ]lA\B(x)

and all we have to do is to subtract 1 4 z(x) on both sides of the equation.

12
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(iv) With the same argument that we use in (iii) and with the result of (iii) we get

1 ,p(x) = ]l(A\B)U(AnB)U(B\A)(x)

=1,(x)+1p(x) =1, ,p(x).

(vii) We have
Viily <1y, = sgp]lA[ Sy 4,
On the other hand,
Xg € UAI' = dij: x€A;.
i
Thus,
]IUiAi(xo) =1 = ]lAio(xO) =1 = s1l}p ]lAl_(xO) =1

and we getsup; 1, > 1) 4.

(viii) One possibility is to mimic the proof of (vii). We prefer to argue like this: using (iii) and de

Morgan’s identities we get

(iii) (vii) . (iii) |
= 1y—-1y4 = 1=suple=inf(1-1,) = inf1,.
;4 de Morgan X U; 4] ip Ai i ( Ai) i A

Problem 2.6 Solution:

(1) Using 2.5(iii), (iv) we see that

L4280 = Lig\ pyu\a)(X)
=1,40x) =1 4q5(x)+Lg(x) =1 4,p(x)

and this expression is 1 if, and only if, x is either in A or B but not in both sets. Thus

Lyap() < 1,0 +1(0) =1 <> 1,(x)+1z(x)mod2 = 1.

It is also possible to show that

]lAAB = |]lA - ]lB"

13
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This follows from

0, if x€e AnB;

0, if x€ A°n B¢
]].A(x)_]lB(x):<
+1, if xe A\ B;

~1, if x € B\ A.

Thus,
[1,(x)—1g(x)]=1 <= x€(A\B)U(B\ A)=AAB.
(i) From part (i) we see that
Liasacy=1a+1lgac—21,15,¢

=1 +1p+1c—21500—21,(1g+ 1, —2151,)
=1, ,+1p+1c 2000 —21,0p5 21,1, +41,1,1,

and this expression treats A, B, C in a completely symmetric way, i.e.
]lAA(BAC) = ]l(AA B)aC-

(iii) Step 1: (P(X), A, D) is an abelian group.
Neutral element: AAG =0 A A= A;
Inverse element: AAA =(A\ A)U(A\ A) =0, i.e. each element is its own inverse.
Associativity: see part (ii);
Commutativity: AA B = BAA.
Step 2: For the multiplication N we have
Associativity: AN(BNC)=(ANB)NC;
Commutativity: AN B = BN A;
One-element: AN X =X NA=A.
Step 3: Distributive law:
AN(BAC)=(ANB)A(ANC).
For this we use again indicator functions and the rules from (i) and Problem 2.5:
Lingacy=1alpac =141+ 1 mod2)

= [1,15+1¢)] mod2

=115 +1,1c] mod2

= (148 + Lgnc] mod 2

= ]l(AnB) A(ANC)*

14
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Problem 2.7 Solution: Let f : X — Y. One has

f surjective <= VBCY : fof~'(B)=B
< VBCY: fof%(B)>B.

This can be seen as follows: by definition f~!(B) = {x : f(x) € B} so that

fof'B)=f({x: fx)€B}) ={f(x): f(x)EB}C {y:y€EB)

and we have equality in the last step if, and only if, we can guarantee that every y € B is of the form
y = f(x) for some x. Since this must hold for all sets B, this amounts to saying that f(X) =Y, i.e.
that f is surjective. The second equivalence is clear since our argument shows that the inclusion

‘C’ always holds.

Thus, we can construct a counterexample by setting f : R — R, f(x) := x> and B = [—1, 1].
Then

N =1,11) = [0,1] and fof~'([~1,11) = £([0,1]) = [0, 1] & [~1, 1].

On the other hand

f injective <= YVAC X : f~lof(A)=A
— VACX: f'of(A) c A.

To see this we observe that because of the definition of f~!
flofA)={x:f(x)ef(A}D{x:x€A}=A4A (*)

since x € A always entails f(x) € f(A). The reverse is, for non-injective f, wrong since then
there might be some x, & A but with f(x,) = f(x) € f(A)ie. x5 € f~lof(A)\ A. This means
that we have equality in () if, and only if, f is injective. The second equivalence is clear since

our argument shows that the inclusion ‘D’ always holds.

Thus, we can construct a counterexample by setting f : R — R, f = 1. Then

fU0,1) = {1} and f~'of([0,1D = f~'{1H =R 20, 1].

Problem 2.8 Solution: Assume that for x,y we have fog(x) = fog(y). Since f is injective, we

conclude that

fgx) = f(gy) = gx) =g®),

15
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and, since g is also injective,

gx)=g(y) = x=y

showing that fog is injective.

Problem 2.9 Solution:

16

e Call the set of odd numbers ©. Every odd number is of the form 2k — 1 where k € IN. We

are done, if we can show that the map f : IN — O, k — 2k — 1 is bijective. Surjectivity is
clear as f(IN) = @. For injectivity we take i, j € IN such that f(i) = f(j). The latter means
that2i — 1 =2j — 1,s0i = j, i.e. injectivity.

The quickest solution is to observe that N X Z = N X INU IN x {0} U IN x (—IN) where
—IN := {—n : n € IN} are the strictly negative integers. We know from Example 2.5(iv) that
INXIN is countable. Moreover, themap f : INXIN — INX(—IN), ((i, k)) = (i, —k) is bijective,
thus #IN x (—=IN) = #IN x IN is also countable and so is IN X {0} sincey : IN - IN x {0},

y(n) := (n,0) is also bijective.

Therefore, IN X Z is a union of three countable sets, hence countable.

An alternative approach would be to write out Z X IN (the swap of Z and IN is for notational
reasons—since the map f((j, k)) := (k, j) from Z x IN to IN X Z is bijective, the cardinality

does not change) in the following form

-3, (-2,1) (-1,1) (O, 1) (1,1) 2,1) @3, D
(-3,2) (-2,2) (-1,2) (0,2) (1,2) (2,2) (3,2
(-3,3) (-2,3) (-1,3) (0,3) (1,3) (2,3) (3.,3)
-3.49 (2,4 (-1,4 ©0.,49 1,49 2,49 3.9
(3,5 (=2,5) (-1,5) (0,5 (1,5 (2,5 @3.5)
(-3,6) (-2,6) (-1,6) (0,6) (1,6) (2,6) (3,6)

and going through the array, starting with (0, 1), then (1,1) — (1,2) —» (0,2) - (-1,2) —
(=1,1), then (2,1) = (2,2) - (2,3) — (1,3) — ... in clockwise oriented | |-shapes down,
left, up.

In Example 2.5(iv) we have shown that #QQ < #IN. Since IN C @, we have a canonical
injectionj : IN — Q,i — i so that #IN < #Q. Using Theorem 2.7 we conclude that
#Q = #IN.

The proof of #(IN X IN) = #IN can be easily adapted—using some pretty obvious notational
changes—to show that the Cartesian product of any two countable sets of cardinality #IN has

again cardinality #IN. Applying this m — 1 times we see that #Q" = #IN.

° UmE]N Q™ is a countable union of countable sets, hence countable, cf. Theorem 2.6.
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Problem 2.10 Solution: Following the hint it is clear that § : IN - INx {1}, i +— (i, 1) is a bijection
andthaty : NX {1} - INXIN,(i,1) = (i, 1) is an injection. Thus, #IN < #(IN x IN).

On the other hand, N x IN = |} jeN IN x {j} which is a countable union of countable sets, thus
#(IN x IN) < #IN.

Applying Theorem 2.7 finally gives #(IN X IN) = #IN.

Problem 2.11 Solution: Since E C F themapj : E — F,e > eis an injection, thus #E < #F.

Problem 2.12 Solution: Assume that the set {0, 1}N were indeed countable and that {s;};en was an

enumeration: each S would be a sequence of the form (d{, dé, dé, - di, ...) with di € {0,1}. We

could write these sequences in an infinite list of the form:

- 1 1 1 1 1
s; = dl d) dy d; .. d|
= 2 2 2 2 2
s, = di dy d} di .. d]
= 3 3 3 3 3
sy = d) dy d] &) ... d]
s¢ = d dj d} dy .. d}

se = dyf dy dy df ... df
and produce a new 0-1-sequence S = (e;, e,, e, ...) by setting

0, if d"=1
1, if d"=0

Since S’ differs from s, exactly at position £, .S cannot be in the above list, thus, the above list did

not contain all 0-1-sequences, hence a contradiction.

N
Problem 2.13 Solution: Consider the function f : (0,1) - R given by
1 1
R
-x X
This function is obviously continuous and we have lim,_,, f(x) = —oo and lim,_,; f(x) = +o0.
By the intermediate value theorem we have therefore f((0, 1)) = R, i.e. surjectivity.
Since f is also differentiable and f’(x) = ﬁ + Lz > 0, we see that f is strictly increasing,
- X X
hence injective, hence bijective.
N

17
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Problem 2.14 Solution: Since A; C J;cy 4, it is clear that ¢ = #A; < #|J,cy 4;. On the other
hand, #A; = ¢ means that we can map A; bijectively onto R and, using Problem 2.13, we map R
bijectively onto (0, 1) or (i — 1, 7). This shows that # | J,.y A; < #J,en(i — 1,1) < #R = ¢. Using
Theorem 2.7 finishes the proof.

Problem 2.15 Solution: Since we can write each x € (0, 1) as an infinite dyadic fraction (o.k. if it
is finite, fill it up with an infinite tail of zeroes !), the proof of Theorem 2.8 shows that #(0, 1) <
#{0, 1}V,

On the other hand, thinking in base-4 expansions, each element of {1,2}N can be interpreted
as a unique base-4 fraction (having no 0 or 3 in its expansion) of some number in (0, 1). Thus,
#{1,2}N < #IN.

But #{1,2}N = #{0, 1}N and we conclude with Theorem 2.7 that #(0, 1) = #{0, 1}N.
] |

Problem 2.16 Solution: Just as before, expand x € (0, 1) as an n-adic fraction, then interpret each
elementof {1,2,...,n+1}Nasa unique (n + 1)-adic expansion of a number in (0, 1) and observe
that #{1,2,...,n+ 131N ={0,1, ..., n}N.

Problem 2.17 Solution: Take a vector (x,y) € (0,1) X (0, 1) and expand its coordinate entries x, y

as dyadic numbers:

x=0.x;x%x5..., y=0ymy3....

Then z := 0.xy,X,¥,X3y5 ... 1sanumber in (0, 1). Conversely, we can ‘zip’ each z = 0.z2,2,2324 ...

(0, 1) into two numbers x, y € (0, 1) by setting
x :=0.2p242¢2g ..., y :=0.2232527 ...
This is obviously a bijective operation.

Since we have a bijection between (0, 1) < R it is clear that we have also a bijection between
0,1)x(0,1) & RxR.

Problem 2.18 Solution: We have seen in Problem 2.18 that #{0, 1}~ = #{1,2}N = ¢. Obviously,
{1,2}N ¢ NN ¢ RN and since we have a bijection between (0, 1) < R one extends this (using

coordinates) to a bijection between (0, 1)V < RN, Using Theorem 2.9 we get
e =#{1,2}N <#NN <#RN = ¢,

and, because of Theorem 2.7 we have equality in the above formula.

18
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Problem 2.19 Solution: Let F € # with#F = n Then we can write F as a tuple of length n (having
n pairwise different entries...) and therefore we can interpret F as an element of |,y IN”'. In
this sense, # < |J,,ey IV and #% < |J,,ey IN”" = #IN since countably many countable sets are

again countable. Since N C & we get #% = #IN by Theorem 2.7.

Alternative: Define amap ¢ : & — N by

F AP G(A) =) 2°
acA
. It is clear that ¢ increases if A gets bigger: A C B = ¢(A) < ¢(B). Let A, B € F be two
finite sets, say A = {a;,a,,...,a,,} and {b, b,, ..., by} (ordered according to size with a, b,
being the smallest and a,,, b, the biggest) such that ¢(A) = ¢(B). Assume, to the contrary, that
A # B.If ay; # by, say a, > by, then

ap—1
B(A) > P({ay ) > 2% > % B z{ ¥
=
=¢({1,2,3,...ay, — 1})
> $(B),

which cannot be the case since we assumed ¢p(A) = ¢(B). Thus, a,, = by. Now consider
recursively the next elements, a,,_; and b, _; and the same conclusion yields their equality etc.
The process stops after min{ M, N } steps. Butif M # N, say M > N, then A would contain at
least one more element than B, hence ¢p(A) > ¢(B), which is also a contradiction. This, finally

shows that A = B, hence that ¢ is injective.

On the other hand, each natural number can be expressed in terms of finite sums of powers of

base-2, so that ¢ is also surjective.
Thus, ## = #IN.

Problem 2.20 Solution: (Let & be as in the previous exercise.) Observe that the infinite sets from
PN), F .= P(IN) \ F can be surjectively mapped onto {0, 1N §f {a;,ap,a5,...} = ACN,
then define an infinite 0-1-sequence (by, by, b3, ...) by setting b; = 0 or b; = 1 according to whether
a; is even or odd. This is a surjection of P(N) onto {0, 1}N and so #(IN) > #{0, 1}N. Call this
map y and consider the family y~!(s), s € {0,1}¥ in .7, consisting of obviously disjoint infinite
subsets of IN which lead to the same 0-1-sequence s. Now choose from each family y~!(s) a
representative, call it r(s) € .#. Then the map s — r(s) is a bijection between {0, 1 }N and a subset
of .7, the set of all representatives. Hence, ¥ has at least the same cardinality as {0, 1} and as

such a bigger cardinality than IN.

19
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Problem 2.21 Solution: Denote by ® themap (IN) 3 A+ 1, € {0,1}N. Lets = (d;,d,,d5,...) €

{0, 11N and define A(6) :={j € N : d; = 1}. Then 6 = (1 45(j)) ;e showing that @ is surject-

1ve.

On the other hand,
1,=15 < 1,4()=15() VjeN < A=B.

This shows the injectivity of ®, and #9°(IN) = #{0, 1} follows.
N

Problem 2.22 Solution: Since for A, A’, B, B’ C X we have the ‘multiplication rule’

20

ANBUA' NBY=(AUA)YN(AUB)N(BUA)N(BUB)

and since this rule carries over to the infinite case, we get the formula from the problem by ‘mul-

tiplying out’ the countable union
0 1 0 1 0 1 0 1
(ANADUANAYUMATNAHDUA;NAHU -
More formally, one argues as follows:

x € U(ASOA,D(:) EInOZxEAgonAiO )
nelN
while
i(k)
xe 1 U«
i=(i(k));en€{0,1} N keIN

= Vi=(i(k)ey € {0.1}N : x € U AP
kelN

& Vi=({()hey € (0,1} Tk €N : x € A4 (*%)

Clearly, (*) implies (¥*). On the other hand, assume that (**) holds but that (*) is wrong, i.e.
suppose that for every n we have that either x € A?l or x € Arll or x is in neither of AS, Aylr Thus

we can construct a uniquely defined sequence i(n) € {0, 1}, n € IN, by setting
0 ifxe AS;
i(n)=41 ifxe Arll;
0 ifx¢Alandx ¢ Al
Define by i’(n) := 1 — i(n) the ‘complementary’ 0-1-sequence. Then
xe | JA® but x g | JAl®
n n

contradicting our assumption (**).




3 o-Algebras.
Solutions to Problems 3.1-3.16

Problem 3.1 Solution:
(1) Itis clearly enough to show that A, B € & = AN B € 4, because the case of N sets

follows from this by induction, the induction step being

— ——
=:Bed

Let A, B € &. Then, by (Z,) also A€, B € & and, by (£3) and (%,)

ANB=(A‘UB) =(A°UB‘UBUPU .. ed.

Alternative: Of course, the last argument also goes through for N sets:

AjNA,N...NAy =(ATUAJU ... U A

=(AJU...UA  UgUPU . ) ed.

(i) By (2,)wehave A € & = A° € . Use A€ instead of A and observe that (A°)° = A to

see the claim.

(iii) Clearly A¢, B € & and so, by part (i), A\ B=ANB‘ € aswellas AAB=(A\ B)U
(B\A) e d.

Problem 3.2 Solution:

(iv) Let us assume that B # @ and B # X. Then B¢ & {@, B, X }. Since with B also B® must be

contained in a ¢-algebra, the family {@J, B, X'} cannot be one.

(vi) Setdp :={ENA: Aed}. Thekey observation is that all set operations in &/ are now
relative to E and not to X. This concerns mainly the complementation of sets! Let us check
(ZD-(Z3).

Clearly d = Enf € /5. If B€ o, then B= E N A for some A € & and the complement
of Brelativeto EIS E\B=ENB =EN(ENA‘=EnN(E°UA°)=EnNA® € dyas
A€ € o. Finally, let (Bj)jE]N C . Then there are (Aj)jE]N C o such that B, =En Aj.
Since A = ;e A; € o weget U ;e B; = Ujen(ENA)) = EnlJ;en A, = ENA € A,
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(vii) Note that f~! interchanges with all set operations. Let A, A j»J € IN'be sets in o/ . We know
that then A = f~'(A'), A; = f‘l(A;.) for suitable A, A} € o/'. Since o/’ is, by assumption

a o-algebra, we have

0=f"'Weod as fed

A= (AN =AY ed as ACed
UAj=Uf_1(A;.)=f‘1<UA;.>e,Qf as | JAled
JjeN JjeEN JjeEN jeN

which proves (Z;)—(25) for .
]|

Problem 3.3 Solution: Denote by £ = o({x},x € R). Let o be the c-algebra defined in Ex-
ample 3.3(v). Itis clear that {x} € &, and so £ C &/. On the other hand, if A € &, then either A
or A¢ is countable. Wlog assume that A is countable. Then A is a countable union of singletons,

as such A € X as well as A¢ € X. This means &f C X.

Problem 3.4 Solution:

(i) Since € is a o-algebra, & ‘competes’ in the intersection of all o-algebras € D & appearing
in the definition of & in the proof of Theorem 3.4(ii). Thus, & D ¢(&) while & C o(%) is

always true.

(ii) Without loss of generality we can assume that § # A # X since this would simplify the
problem. Clearly {@J, A, A°, X'} is a o-algebra containing A and no element can be removed

without losing this property. Thus {@, A, A°, X } is minimal and, therefore, = c({A}).

(iii)) Assume that & C &. Then we have & C & C o(%). Now € := o(¥) is a potential
‘competitor’ in the intersection appearing in the proof of Theorem 3.4(ii), and as such € >
o(F),1.e.0(&) D o(F).

Problem 3.5 Solution:
@ {9,(0,3), {0} U [3, 11,0, 11}.
We have 2 atoms (see the explanations below): (0, %), (0, %)C.
(i) {210, . 15,31 G, 11,10, 31,3, 11,10, ) U 5, 11,10, 11},
We have 3 atoms (see below): [0, ), [5, 31, (3, 11.
(iil) —same solution as (ii)—

Parts (ii) and (iii) are quite tedious to do and they illustrate how difficult it can be to find a o-algebra
containing two distinct sets.... imagine how to deal with something that is generated by 10, 20,
or infinitely many sets. Instead of giving a particular answer, let us describe the method to find

o({ A, B}) practically, and then we are going to prove it.
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1. Start with trivial sets and given sets: @, X, A, B.

2. now add their complements: A€, B¢

3. now add their unions and intersections and differences: AUB, AN B,A\ B,B\ A

4. now add the complements of the sets in 3.: A N B¢, A°U B¢, (A \ B)",(B\ A)°

5. finally, add unions of differences and their complements: (A\ B)U(B\ A), (A\ B)*N(B\ A)“.

All in all one should have 16 sets (some of them could be empty or X or appear several times,
depending on how much A differs from B). That’s it, but the trouble is: is this construction correct?

Here is a somewhat more systematic procedure:

Definition: An atom of a c-algebra o/ is a non-void set # # A € & that contains no other set of
.

Since o/ is stable under intersections, it is also clear that all atoms are disjoint sets! Now we can
make up every set from &/ as union (finite or countable) of such atoms. The task at hand is to
find atoms if A, B are given. This is easy: the atoms of our future o-algebra must be: A \ B,
B\ A, An B, (AU B)“. (Test it: if you make a picture, this is a tesselation of our space X using
disjoint sets and we can get back A, B as union! It is also minimal, since these sets must appear in

o({A, B}) anyway.) The crucial point is now:

Theorem. If o is a c-algebra with N atoms (finitely many!), then o consists of exactly 2V

elements.

Proof. The question is how many different unions we can make out of N sets. Simple answer:
we find (JJV), 0 < j < N different unions involving exactly j sets (j = 0 will, of course, produce
the empty set) and they are all different as the atoms were disjoint. Thus, we get Zjvz 0 (]jv ) =
(1 + DN = 2N different sets.

It is clear that they constitute a o-algebra. O

This answers the above question. The number of atoms depends obviously on the relative position
of A, B: do they intersect, are they disjoint etc. Have fun with the exercises and do not try to find
o-algebras generated by three or more sets..... (By the way: can you think of a situation in [0, 1]

with two subsets given and exactly four atoms? Can there be more?)

|
Problem 3.6 Solution:
(i) See the solution to Problem 3.5.
(i) If A, ..., Ay C X are given, there are at most 2N atoms. This can be seen by induction. If

N =1, then there are #{ A, A°} = 2 atoms. If we add a further set A 5 ;, then the worst case
would be that A, intersects with each of the 2V atoms, thus splitting each atom into two

sets which amounts to saying that there are 2 - 2N = 2N+ atoms.
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Problem 3.7 Solution: We follow the hint. Since #o/ = #IN, the following set is a countable inter-
section of measurable sets, hence itself in &/:

Vx € X : A(x) 1= ﬂ Acd. (*)
Aegdl ,ADx

Write &, for the atoms of &. Then
e A(x) € « is an atom which contains x.

Indeed: Otherwise, there is some B C A(x) such that B € &, B # @, B # A(x). We can
assume that x € B, or we would take B’ := A(x) \ B instead of B. Since x € B, B is part

of the intersection appearing in (*) so that B D A(x), hence B = A(x), which is impossible.
e Every atom A # @ of &/ is of the form (*).

Indeed: By assumption, x, € A so that A = A(x).
e of has #IN many atoms.

Indeed: Since #9/ = #IN, there are countably infinitely many disjoint sets in &/, thus the
procedure (¥) yields at least #IN many atoms. On the other hand, there cannot be more atoms

than members of &, and the claim follows.

Since &/ contains all countable unions of sets from ,, and since there are more than countably

many such unions, it is clear that #</ > #IN.

Remark: A c-algebra may have no non-empty atoms at all! Here is an example (which I learned
from Julian Hollender). Let I be an uncountable set, e.g. I = [0, 1], and consider Q = {0, 1 M. We
can construct a c-algebra on Q in the following way: Let K C I and define Py : {0,1}/ — {0,1}K
the coordinate projection. A cylinder set or finitely based set with basis K C I is a set of the form
P! (B) where #K < oo and B C {0, 1}X. Now consider the o-algebra &/ := o({cylinder sets})
on {0,1}7. Intuitively, A €  is of the form P]: 1(B) where L is countable. (The proof as such
is not obvious, a possible source is Lemma 4.5 in Schilling & Partzsch: Brownian Motion. De
Gruyter, Berlin 2012.) Assume that A; € & were an atom. Then A, has the basis L. Take
i €I\ L,consider L' = LU {i} and construct a set PL_,l(B’) where B’ = B x {0}, say. Then
P;'(B') C Agand P;(B') € 4.

Problem 3.8 Solution: We begin with an example: Let X = (0,1] and & = 9%(0, 1] be the Borel

sets. Define
d,:=c(((j-127",j27",j=12,..,2")
the dyadic o-algebra of step 27". Clearly, #</, = 2". Moreover,

Ay Gy and o, =],
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However, &/ is NOT a o-algebra.

Argument 1: 1 € o, < I € d, for some n, i.e. I is a finite union of intervals with dyadic

end-points. (More precisely: the topological boundary T \ I° consists of dyadic points).

On the other hand, every open set (a, b) C [0, 1] is a countable union of sets from &/ :

(a,b) = U I
Ied,,I1C(a,b)

which follows from the fact that the dyadic numbers are dense in (0, 1]. (If you want it more
elementary, then approximate a and b from the right and left, respectively, by dyadic numbers
and construct the approximating intervals by hand....). If, for example, a and b are irrational, then

(a,b) & o . This shows that &/ cannot be a o-algebra.
In fact, our argument shows that o(#/_ ) = %(0, 1].

Argument 2: Since #4/, = 2" we see that #4/_ = #IN. But Problem 3.7 tells us that &/, can’t be a

o-algebra.

Let us now turn to the general case. We follow the note by

A. Broughton and B.W. Huff: A comment on unions of sigma-fields. Am. Math. Monthly 84 (1977)
553-554.

Since the &, are strictly increasing, we may assume that o/, # {#, X' }. Recall also the notion of a

trace o-Algebra

Bnd,:={BNA:Aed,}.

Step 1. Claim: There exists a set E € &/, such that (EN/,,,) \ (E N &,) # @ for infinitely many
ne NN.

To see this, assume — to the contrary — that for some » and some B € &/; we have
Bnd,=Bnd,,, and B‘Nnd,=B'nNnd,,,.
IfU € o, \ &,, then

U= (BNnU) U (B°nU)
—— ——
€eBnd, ., =Bnd,cd, eB‘nd,, =B‘nd,CdA,
leading to the contradiction U € &, . Thus the claim holds with either E = B or E = B€.

Step 2. Let E be the set from Step 1 and denote by n, n,, ... a sequence for which the assertion
in Step 1 holds. Then

Fi ::Enszink, ke N
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is a strictly increasing sequence of o-Algebras over the set E. Again we may assume that & #
{0, E} As in Step 1, we find some E; € #; such that E, is not trivial (i.e. E; # @ and E, # E)
and (E; N F,1) \ (E; N %) # ¥ holds for infinitely many k.

Step 3. Now we repeat Step 2 and construct recursively a sequence of c-algebras of; C & C

;. ... and a sequence of sets E; O E, D E; ... such that

i3

Eced, and E €End, )\END).

Step 4. The sets F, := E, \ E,, have the property that they are disjoint and F;, € ;| \ &, .
Since the o-algebras are increasing, we have

Ue=U4,

nelN kelN

which means that we can restrict ourselves to a subsequence. This means that we can assume that

ik=k.

Step 5. Without loss of generality we can identify F) with {k} and assume that the &/, are o-
algebras on IN such that {k} € &, \ &,. Let B, the smallest set in &/, such that n € B,. Then
ne B, C{nn+1,n+2,...} and B, # {n}. Moreover

meB, = B, CB, since meB NB, €,

Now define n; = 1 and pick n; | recursively: n;; € B, suchthatn;, # n;. Then B, > B, D
... Set E = {ny,ny,ng, ... }. If o, were a o-algebra, then E € o, for some n, thus E € o, for
some k. Then {ny, nypis,...} € o, andthus B, ~C {ny, Ny, ...} This contradicts the fact

Moy+1 € By,

Problem 3.9 Solution:

26

0, Since §J contains no element, every element x € @ admits certainly some neighbourhood

Bjs(x) and so € 0. Since for all x € R” also Bs(x) C R”, R" is clearly open.

O, LetU,V € 0. If U NV = {J, we are done. Else, we find some x € U n V. Since U, V are
open, we find some 6,6, > 0 such that B; (x) C U and B; (x) C V. But then we can take
h :=min{6;,8,} > 0 and find

By(x)C Bs(x)NB; (x)cUNV,

ie. UNV € 0. For finitely many, say N, sets, the same argument works. Notice that already
for countably many sets we will get a problem as the radius A := min{$; : j € IN} is not

necessarily any longer > 0.
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O, Let I be any (finite, countable, not countable) index set and (U;);c; C O be a family of open
sets. SetU := U,
we find some 6; > 0 such that Bﬁj(x) C U;. But then, trivially, B(;j (x)cU; C Uie, Uu=0U0

U;. Forx € U we find some j € I withx € U, and since U; was open,

proving that U is open.
The family 0" cannot be a c-algebra since the complement of an open set U # @, # R" is closed.

Problem 3.10 Solution: Let X = R andset U, := (—%, %) which is an open set. Then (), oy Uy =
{0} but a singleton like {0} is closed and not open.

Problem 3.11 Solution: We know already that the Borel sets 8 = 9 (IR) are generated by any of the

following systems:
{la,b) : a,b € Q}, {la,b):a,be R},

{(a,b) : a,beQ), {(a,b) :a,be R}, O, or !

Here is just an example (with the dense set D = Q) how to solve the problem. Let b > a. Since

(=00, b) \ (—00, a) = [a, b) we get that

{la,b) : a,b € Q} C6({(—0,¢) : c € Q})
= B =0c({la,b):a,beQ}) Co({(—0,c) : ce€Q}.

On the other hand we find that (—o0, a) = J wew[—k, @) proving that

{(—00,a) :a€eQ} co({lc,d) :c,deQ})=AB
= o6({(—,a):a€Q})CAHB

and we get equality.
The other cases are similar.

Problem 3.12 Solution: LetB := {B,(x) : x € R", r >0} andlet B’ := {B,(x) : x€ Q", r €
Q*}. Clearly,

B' cBco"
= o(B) c o(B) C 6(0") = BIR").
On the other hand, any open set U € 0" can be represented by
v= |J B *)

BeB/, BcU
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Indeed, U D | Ben'. pcy B follows by the very definition of the union. Conversely, if x € U we

use the fact that U is open, i.e. there is some B, (x) C U. Without loss of generality we can assume

that € is rational, otherwise we replace it by some smaller rational €. Since Q" is dense in R” we

can find some ¢ € Q" with |x — g| < ¢/3 and it is clear that B, ;3(¢9) C B.(x) C U. This shows
that U C Ugep', pcy B-

Since #B’ = #(Q" x Q) = #IN, formula () entails that

0" c 6(B') = 0(0")=0c(B’) and, therefore, o¢(0") = o(B)

and we are done.

Problem 3.13 Solution:

®

(i)

O,: Wehaved=0nAec O, A=XNAEO,.

O,:LetU' =UNA€ 0, V' =VNAE€O,withU,V € 6. ThenU'nV' =UNnV)NA €
O sinceUNV e€0.

0,: LetU! =U;nA € 6, withU; € 0. Then |J, U/ = (I, U;) N A € O, since |, U; € 0.
We use for a set A and a family & C P(X) the shorthand ANF :={AnF : F e F}.

Clearly, AN O C Anoc(0O)=An PAB(X). Since the latter is a o-algebra, we have
c(ANO)C ANHB(X) ie. B(A) C AN RB(X).
For the converse inclusion we define the family
2:={BCX:AnBeoc(ANnO)}.

It is not hard to see that X is a o-algebra and that ® C Z. Thus %(X) = ¢(0) C Z which

means that

AN%BX) Co(ANO).

Notice that this argument does not really need that A € B (X). If, however, A € B(X) we
have in addition to A N %B(X) = B(A) that

BA)={BCA:BeABX)}

Problem 3.14 Solution:

28

(1) We see, as in the proof of Theorem 3.4, that the intersection of arbitrarily many mono-
tone classes (MC, for short) is again a MC. Thus,
m@) := () %,

FCg
¢ MC



(i)

(iii)

(@iv)
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is itself a MC. Note, that the intersection is non-void as the power set (X)) is (trivially)
a MC which contains &. By construction, see also the argument of Theorem 3.4, m(%)

is a minimal MC containing & .
Define
D ={Fem(F): F- e m(%F)}.
By assumption, # C &. We are done, if we can show that & is a MC.

MC,) Let(M,),cny C 9 be anincreasing family M, T M = UnE]N M,,. Since m(F)
isaMC, M € m(%) and

M = (U M,,) = ﬂ MS € m(F).
nelN ne]N\,-/

em(F)

Here we use that M, 1 = M, | and so ﬂne]N M; € m(F) because of MC,)
for the system m(%). This proves M € 9.

(MC,) Let (N,),ew C 2 be a decreasing family N, | N = (),cn N,- As in the first
part we get from N € m(¥) and N; 1 N¢ that N© € m(F) due to (MC,) for
the family m(&). Consequently, N € 9.

We follow the hint. Because of the N-stability of & we get & C Z. Let us check that
is a MC:

(MC,) Let (M,), ey C X be an increasing sequence M, T M and F € %. Then
M € m(%)and from m(F) > M, N F 1 M n F we get (using (MC,) for the
system m(%)), that M N F € m(%), hence, M € .

(MC,) This is similar to (MC;).

Therefore, X is a MC and & C X. This proves m(¥) C X and ¥ C ¥'. Since ¥’
is also a MC (the proof is very similar to the one for Z; just replace “F € & with

“F em(F)) we get m(F) C ¥/, too. This proves our claim.

Since /£ D F, we get
M =m(M) D m(F);,

so it is enough to show that m(&) is a o-algebra containing & . Clearly, # C m(&F).
(£,) By assumption, X € & C m(%).
(2,) This follows immediately from (ii).

(Z3) First we show that m(&) is U-stable: since m(%) is N-stable — by (iii) — we get
C,Dem(F) = C\D=CnD°em(%F)
and so

C,DEm(F})% CuD=X\[X\C)\D| e m%).
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If (A,),eny € m(&) is any sequence, the new sequence B, := A; U - U A, is
increasing and |,y A, = U,ew B,- Thus, (X3) follows from (MC)).

Problem 3.15 Solution: Clearly, # = m(0), i.e. it is the monotone class generated by the open sets.

Since o(0) is itself a monotone class, the minimality of m(0) yields
m(0) C 6(0).
On the other hand, the monotone class theorem (Problem 3.14(iv)) shows
mO)=M >0 = m(O)=4 D c(0).

This finishes the first part of the problem.

The answer to the additional question is: yes, we can omit the monotonicity in the countable inter-
section and union. The argument is as follows: Problem 3.14 still works without the monotonicity

(giving a slightly different notion of monotone class), and so the above proof goes through!

Problem 3.16 Solution: Write £ := J{6(®) : € C %, € is a countable sub-family}.
If€ C F wegeto(€) Co(F),and so X C o(F).

Conversely, it is clear that & C X, just take € := € := {F} foreach F € %. If we can show

that 2 is a o-algebra we get 6(%) C o(Z) = X and equality follows.

e Clearly, § € X.

o If.S € X, then S € 6(By) for some countable €y C F. Moreover, S¢ € 6(€y),1.e. S €
2.

e If (S,),>0 C Z are countably many sets, then S, € ¢(%),) for some countable €, C F and
eachn > 0. Set € := J, 6, This is again countable and we get .S, € o(&) for all n, hence
U,S,€0(®) andso |, S, € X.
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Solutions to Problems 4.1—-4.22

Problem 4.1 Solution:
(i) We have to show that for a measure y and finitely many, pairwise disjoint sets A, A,, ..., Ay €
& we have

We use induction in N € IN. The hypothesis is clear, for the start (N = 2) see Proposition
4.3(i). Induction step: take N +1 disjointsets A, ..., Ay, € &,set B := A|U...UAy € I

and use the induction start and the hypothesis to conclude
= u(B)+ u(Ay,y)
= U(A) + .o+ p(Ay) + u(Ay ).

(iv) To get an idea what is going on we consider first the case of three sets A, B, C. Applying the

formula for strong additivity thrice we get

u(AUBUC) = u(AU(BUC))
= u(A)+u(BUC) - u(An(BUC))
——
=(ANB)U(ANC)
= u(A) + u(B) + u(C) — u(BN C) — u(An B)

—u(AnC)+ u(AnBNCOC).

As an educated guess it seems reasonable to suggest that

MALU.LUA)= D (=D
k=1

oc{l,...,n}
#o=k

n A;).

JjEO

We prove this formula by induction. The induction start is just the formula from Proposition

4.3(iv), the hypothesis is given above. For the induction step we observe that

- Y .

oC{l,...,n+1} oC{l,....n,n+1} oC{l,...,n,n+1}
#o=k #o=k, n+1¢o #o=k, n+l1€oc ( )
%
= 2+ X
oC{l,....n} o'c{l,....n}
#o=k #0'=k—1, 6 :=c’U{n+1}
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Having this in mind we get for B := A; U ... U A, and A, using strong additivity and the

induction hypothesis (for A, ..., A, resp. A;N A, 1,....,A, N A1)

U(BU A1) = u(B) + p(A, ) — u(BN A,y

= u(B) + H(App) — u(jQI(A,. N Au)

;(_1)k+1 Z 'M(JQO—AJ) +/4(An+1)

ocC{l,...,n}
#o=k
n
k+1
+ (=D > #(Awy 0 A)).
k=1 oc{l,...,n}
#o=k
Because of () the last line coincides with
n+1
DD u( 04
JjEO
k=1 oC{l1,..., nn+1}
#o=k
and the induction is complete.
(v) We have to show that for a measure y and finitely many sets By, B,, ..., By € & we have

(B UB,U...UBy) < u(B)) + u(By) + ... + u(By).

We use induction in N € IN. The hypothesis is clear, for the start (N = 2) see Proposition
4.3(v). Induction step: take N +1sets By, ..., By, € &,setC := B;jU...UBy € & and
use the induction start and the hypothesis to conclude

<€)+ u(Byy )

< U(By) + ... + u(By) + p(By 1)

Problem 4.2 Solution:

(i) The Dirac measure is defined on an arbitrary measurable space (X, &) by

0, ifx¢gA
0,(A) 1= ,
1, ifxeA

where A € o and x € X is a fixed point.
(M,) Since @ contains no points, x & @ and so §,(@) = 0.

(My) Let (4;);ey C & a sequence of pairwise disjoint measurable sets. If x € J jeN A,

there is exactly one j, with x € A; , hence

5X<U Aj>:1:1+0+0+...

jEN
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=5, (A;)+ D 6.(A)
J#Jo
= ) 5.(A)).

JEN

If x & Uje]N A;, then x & A for every j € IN, hence

5x<U Aj> =0=0+0+0+...= ) 6,(4).

JjeEN JjeEN

. 0, if #A < #IN
The measure y is defined on (R, &) by y(A) := where & (= {ACR :
1, if #A¢ < #IN

#A < #IN or #A¢ < #IN}. (Note that #4 < #IN if, and only if, #4¢ = #R \ A > #IN.)

(M,) Since @ contains no elements, it is certainly countable and so y (@) = 0.

(M) Let (4;) e be pairwise disjoint o/ -sets. If all of them are countable, then A := U jeN

is countable and we get

y(U A,) =7(A)=0= ) y(A).
JjeN JjeEN

If at least one A; is not countable, say for j = jj, then A > A Jo is not countable and therefore
y(A) = y(AjO) = 1. Assume we could find some other j; # j, such that AJ-O,AJ-1 are not
countable. Since A io? A i € & we know that their complements A;O, A;l are countable, hence
A;OUA;1 is countable and, at the same time, € &/. Because of this, (A;OUA;l X=A jOnA = @
cannot be countable, which is absurd! Therefore there is at most one index j, € IN such that

A}, is uncountable and we get then

y(U Aj>=y(A)=1= T+0+0+...=7(4;)+ D r(A).

jEN J#Jo

) #A, if Ais finite
We have an arbitrary measurable space (X, &) and the measure |A| =

o0, else

(M,) Since @ contains no elements, #4 = 0 and |fJ| = 0.

(My) Let (A),ey be a sequence of pairwise disjoint sets in /. Case 1: All A; are finite and

only finitely many, say the first k, are non-empty, then A = |J,_n A ; 1s effectively a finite

jeN
union of k finite sets and it is clear that

JAl = [Af] + o+ LA+ 10+ 101+ .= D 1AL
JjEN
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Case 2: All A; are finite and infinitely many are non-void. Then their union A = U jeNA;

is an infinite set and we get
|Al=c0= ) |A)l.
jeN
Case 3: Atleast one A j is infinite, and so is then the union A = U jeN A ;- Thus,

Al =00 =) |4l

jEN

(iv) OnacountablesetQ = {w;, w,, ...} we define for a sequence (pj)jE]N C [0, 1] with Zje]N p; =

1 the set function

P(A)= ) pi= D p5, (A, AcQ

Jiw,€A JjEN
(M,) P(#) = 0 is obvious.

(M,) Let (A;),cn be pairwise disjoint subsets of 2. Then

D P(AY =Y, D p;d,, (A

kelN kelN jeIN

I NTACE

jeN kelN

=¥ o)

JjEN kelN

= Z pjéwj(ngAk)

jEN
=P(UA,).
(uay)
The change in the order of summation needs justification; one possibility is the argument

used in the solution of Problem 4.7(ii). (Note that the reordering theorem for absolutely

convergent series is not immediately applicable since we deal with a double series!)

(v) This is obvious.

Problem 4.3 Solution:

e On (R, %(IR)) the function y is not be a measure, since we can take the sets A = (1, c0),
B = (—o0, —1) which are disjoint, not countable and both have non-countable complements.
Hence, y(A) = y(B) = 1. On the other hand, A U B is non-countable and has non-countable
complement, [—1, 1]. So, y(A W B) = 1. This contradicts the additivity: y(AU B) = 1 #
2 = y(A) + y(B). Notice that the choice of the c-algebra o avoids exactly this situation. 5B

is the wrong c-algebra for y.
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On @ (and, actually, any possible c-algebra thereon) the problem is totally different: if A
is countable, then A° = Q \ A is also countable and vice versa. This means that y(A) is,
according to the definition, both 1 and 0 which is, of course, impossible. This is to say: y is

not well-defined. y makes only sense on a non-countable set X.

Problem 4.4 Solution:

®

(i)

If o = {@, R}, then y is a measure.

But as soon as & contains one set A which is trivial (i.e. either #f or X), we have actually

A€ € of which is also non-trivial. Thus,
I=uX)=u(Av A) # u(A)+ u(A)=1+1=2

and y cannot be a measure.

If we equip R with a o-algebra which contains sets such that both A and A€ can be infinite
(the Borel o-algebra would be such an example: A = (—00,0) = A° = [0, )), then v is

not well-defined. The only type of sets where v is well-defined is, thus,
o :={ACR : #A <00 or #A° < 0}.

But this is no o-algebra as the following example shows: A; := {j} € o, j € N, are

pairwise disjoint sets but |, A ; = INis not finite and its complement is R \ IN not finite

jEN
either! Thus, N & o, showijng that of cannot be a o-algebra. We conclude that v can never
be a measure if the o-algebra contains infinitely many sets. If we are happy with finitely many
sets only, then here is an example that makes v into a measure &/ = {#§, {69}, R \ {69}, R}
and similar families are possible, but the point is that they all contain only finitely many

members.

Problem 4.5 Solution: Denote by A one-dimensional Lebesgue measure and consider the Borel sets

B, :

= (k, o). Clearly [, B, =, k € IN, so that B, | @. On the other hand,

AMBy) =00 = ir]lf A(By) = 00 # 0 = A)

which shows that the finiteness condition is indeed essential.

Problem 4.6 Solution: Mind the typo in the problem: it should read “infinite mass” — otherwise the

problem is pointless.

Solution 1: Define a measure y which assigns every point n — i n € Z, k € IN the mass ﬁ:

1
K= 2 Z 2_5n—ﬁ'

neZ kelN
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(Since Z xIN is countable, Problem 4.7 shows that this object is indeed a measure!) Obviously, any
interval [a, b) of length b—a > 2 contains some integer, say m € [a, b) so that [m—1/2, m) C [a, b),
thus

ula,b) > ulm—1/2,m) = — =00

On the other hand, the sequence of sets

B := k—1,k—+
n LJ [ Zn)

k=-n

satisfies u(B,) < oo and | J, B, = R.

Solution 2: Set u(B) := #(B N Q), B € %(R), i.e. the counting measure of the rationals in IR.
Clearly, ula, b) = oo for every (non-empty) interval with a < b. On the other hand, if (g;),cn
is an enumeration of Q, the sets B, := (R \ Q) U {q,, ..., q,} satisty

B, TR and u(B,) =n,

i.e. u is o-finite.

Problem 4.7 Solution:

(i) Clearly, p :=au+bv : o — [0, o0] (since a, b > 0!). We check (M), (M,).
(M)) Clearly, p(@) = au(@) + bv(@) =a-0+b-0=0.

(Mp) Let (4)) ;e C & be mutually disjoint sets. Then we can use the o-additivity of u, v to
get

o(Ua)=ae(Ua)+or(Ua)

JEN JEN jEN
=a ) u(A)+b ) vA)
JjeEN JjEN
= )" (au(A)) +bu(A)))
JEN
= D o(A).
JjeEN

Since all quantities involved are positive and since we allow the value +o0 to be attained,

there are no convergence problems.
(i1) Since all ; are positive, the sum Y, jeN XM j(A) is a sum of positive quantities and, allowing
the value +oo to be attained, there is no convergence problem. Thus, u : & — [0, 0] is

well-defined. Before we check (M), (M,) we prove the following

Lemma. Let §;;, i, j € IN, be real numbers. Then

ij

sup sup f;; = sup sup f;;.
ielN jelN jeN ielN
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Proof. Observe that we have f,,, < sup; ey sup;eny f;; for all m,n € IN. The right-hand side

is independent of m and n and we may take the sup over all n

sup f,,, < sup sup f;; Vm e N
nelN jeN ielN

and then, with the same argument, take the sup over all m

sup sup f,,, < sup sup f;; Vm € IN.
melN nelN jeN ielN

The opposite inequality, ‘>’, follows from the same argument with i and j interchanged. [

(M) We have u(@) = 2ien GH @) =2 ena; - 0=0.

(M,) Take pairwise disjoint sets (4;),ey € <. Then we can use the o-additivity of each of

the y;’s to get

j= i=1
N M

lim lim Y'Y a;u; (4))
1

N—-o0o M- 4 4
J=1 i=

N M
= sup sup ZZ‘W}‘ (4;)

NelN MeN j=1i=1

where we use that the limits are increasing limits, hence suprema. By our lemma:

<
m
Z
Z
m
Z

I
™M
=
>
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Problem 4.8 Solution: Finite additivity implies monotonicity: A C B = B = AW (B \ A) and so
H(B) = u(A v (B \ A) = u(A) + u(B\ A) 2 u(A).

Let B, t Band D, := B, \ B,_; with B, := . This gives

u( U Bn> > sup u(B,) = SUPM< ) Di>

n=1 nelN nelN i=1

n

= sup Y u(D) = Y u(D,
i=1

nelN i=1
S ﬂ(uui) =M(UBH).
i=1 n=1

where we use finite additivity for (1) and o-subaddtitivity for (2).

Problem 4.9 Solution: Set v(A) := u(A N F). We know, by assumption, that x4 is a measure on
(X, ). We have to show that v is a measure on (X, &). Since F € of, we have F N A € o for
all A € o, so v is well-defined. Moreover, it is clear that v(A) € [0, oo]. Thus, we only have to
check

M) v(#) = u@n F) = u(@) = 0.

(My) Let (A;);ew C o be a sequence of pairwise disjoint sets. Then also (4; N F);e C o are

pairwise disjoint and we can use the o-additivity of u to get
v< U Aj> = /4<Fn U Aj> =y< U(FnAj))
JEN JEN JjEN

= D HFNA)

jEN

= D) vA).

JEN

Problem 4.10 Solution: Since P is a probability measure, P(A‘J?) = 1-P(A;) = 0. By o-subadditivity,
P< U A;) < Z P(A%),=0
JjeN jeEN

and we conclude that

A(Qe)==r(lQr]) =1 () =iome

JEN JEN jeN
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Problem 4.11 Solution: Note that

UaUs=U(a\Us ) cUwmng)
j k j k
J J J

OBV

Since J; B; € U, A; we get from o-subadditivity

Problem 4.12 Solution:
(i) We have f € o/ and u(@) = 0, thus @ € /.

(i) Since M € / (this is essential in order to apply x4 to M!) we can use the monotonicity of
measures to get 0 < y(M) < u(N) =0,1.e. y(M)=0and M € ./V” follows.

(i) Since all N; € of, we get N 1= U jen N; € &. By the o-subadditivity of a measure we
find

<u<N)=u< U N,) < D uN)=0
JjeEIN JjeN

hence u(N) =0andso N € /4,

Problem 4.13 Solution:

(i) The one-dimensional Borel sets & := 98(R) are defined as the smallest o-algebra containing
the open sets. Pick x € R and observe that the open intervals (x — %, x+ i), k € N, are
all open sets and therefore (x — %, x+ %) € 9. Since a o-algebra is stable under countable

. . 1 1
intersections we get {x} = [en(x — 7. x + ) € B.

Using the monotonicity of measures and the definition of Lebesgue measure we find

<ﬂ({X})</1((x—— x+ ))—(X+ )—(x——)—3—>0-

k koo
[Following the hint leads to a similar proof with [x — %, X+ %) instead of (x — %, X+ %).]

(i) a) Since Q) is countable, we find an enumeration {q,, g,, s, ...} and we get trivially Q =
Uje]N{qj } which is a disjoint union. (This shows, by the way, thatQ € B as {q;} € B.)

Therefore, using part (i) of the problem and the o-additivity of measures,

A(Q)=/1< U{q,-}) =Y Afgh= D 0=0.

JjEN JEN jEN
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b) Take again an enumeration Q = {q;, 5. 43, ...}, fix € > 0 and define C(e) as stated in
the problem. Then we have C(¢) € % and @ C C(e). Using the monotonicity and

o-subadditivity of 4 we get

0 < AQ) < A(C(e)
= /1( U [qk - €2_k, qi + €2_k)>
kelN
< Y A(lgy — 27, g +€27))
kelN
= Z 2. € - 2_k
kelN
1
—2¢e—2 _ =2¢

As € > 0 was arbitrary, we can make € — 0 and the claim follows.
(iii) Since x} is a disjoint union, only the countability assumption is violated. Let’s see
0<x<l ] y y p

what happens if we could use ‘c-additivity’ for such non-countable unions:

0= 0= ) z({x}>=z< U {x})=z<[o,1])=1

0<x<1 0<x<1 0<x<1

which is impossible.

Problem 4.14 Solution: Without loss of generality we may assume that a # b; set u
Then u(B) = 01if, and only if, a & B and b & B. Since {a}, {b} and {a, b} are Borel sets, all null

sets of u are given by
N, ={B\{a,b} : B€ BR)}.

(This shows that, in some sense, null sets can be fairly large!).
HE

Problem 4.15 Solution: Let us write 91 for the family of all (proper and improper) subsets of x null

sets. We note that sets in J1 can be measurable (that is: N € &/) but need not be measurable.

(i) Since # € N, we find that A = AU@ € o for every A € o; thus, o C . Let us check that

disa o-algebra.

(Z,) Since € & C o, we have § € .
(Z,) Let A* € . Then A* = AUN forAe o/ and N € N. By definition, N C M € &/

where u(M) = 0. Now

A =(AUN) = AN N°¢
=ANN‘N(M UM)
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=(A°NN°NMHYUMA NN NM)
=(A°NMHYUUA N NNM)

where we use that N C M, hence M¢ C N€¢, hence M N N¢ = M. But now we see
tht AANMcedand ANNNM e Nsincce ANNNMCMand M e Aisa
pnull set: u(M) = 0.

(Z3) Let (A;?) jen be a sequence of o -sets. From its very definition we know that each

A; = A; U N, for some (not necessarily unique!) A; € & and N; € N. So,

Uar=Jwu,un)= ( U Aj> y < U Nj> = AUN.
JEN JEN JEN JEN

Since o/ is a o-algebra, A € /. All we have to show is that N; is in . Since each N;

jEN Nj c

UJ.E]N M; = M € ¢ and all we have to show is that u(M) = 0. But this follows from

o-subadditivity,

is a subset of a (measurable!) null set, say, M ; € d, we find that N = (J

o<u<M>=u< UMj> < D (M) =0.

JEN JjEN
Thus, AUN € .

(ii) As already mentioned in part (i), A* € ol could have more than one representation, e.g.
AUN =A"=BUM with A,B € o and N, M € N. If we can show that u(A) = u(B)
then the definition of j is independent of the representation of A*. Since M, N are not
necessarily measurable but, by definition, subsets of (measurable) null sets M’, N’ € o/ we
find

ACAUN=BUM CBUM/,
BCBUM=AUNCAUN’

and since A, B, BUM', AUN’ € of, we get from monotonicity and subadditivity of measures

H(A) < u(BUM') < u(B) + u(M'") = u(B),
H(B) < u(AUN') < u(A) + u(N') = u(A)

which shows u(A) = u(B).
(ii1) We check (M;) and (M,)
(M,) Sincef=@gufed, @ed BN, wehave i@ = u@) = 0.

(M,) Let (A;) jew C d bea sequence of pairwise disjoint sets. Then A;? = A;UN, for some
A; € o and N; € . These sets are also mutually disjoint, and with the arguments in
(i) we see that A* = AU N where A* € o/, A € o/, N € N stand for the unions of
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Aj*., A; and N, respectively. Since i does not depend on the special representation of

ol -sets, we get
ﬁ(LJ@>=ﬁM5=MM=M<LL%>
JEN JjEN

= ) uA)

jEN

= D (A

jeN
showing that j is o-additive.
(iv) Let M* be a ji null set, i.e. M* € o and A(M*) = 0. Take any B C M*. We have to show

that B € o and i(B) = 0. The latter is clear from the monotonicity of j once we have

shown that B € &/ which means, once we know that we may plug B into ji.
Now, BC M*and M* = M U N forsome M € o/ and N € N. As py(M*) = 0 we also
know that u(M) = 0. Moreover, we know from the definition of 9 that N C N’ for some
N’ € o with u(N') = 0. This entails
BCM*=MUNCMUN ed
and u(M UN") < u(M)+ u(N") =0.

Hence B€ Naswellas B=@PUB € o. In particular, ji(B) = u(@) = 0.

v) Set¢={A*Cc X :3A,Beo, ACA*ACB, u(B\ A) =0}. Wehave to show that
d=%.

Take A* € of. Then A* = AU N with A € o/, N € 9 and choose N’ € o/, N ¢ N’ and
u(N') = 0. This shows that

ACA*=AUNCAUN' =:Bed
and that u(B\ A) = u((AUN")\ A) < u(N") = 0. (Note that (AUN")\ A = (AUN")N A® =
N’ n A°¢ C N’ and that equality need not hold!).

Conversely, take A* € €. Then, by definition, A C A* C Bwith A, B € &/ and u(B\ A) = 0.
Therefore, N := B\ A is a null set and we see that A*\ A C B\ A,i.e. A*\ A € N. So,
A* = AU (A* \ A) where A € of and A* \ A € 9N showing that A* € o .

Problem 4.16 Solution: Set
S:={FAN:Fe% Nes}

and denote, without further mentioning, by F, F; resp. N, N, sets from & resp. /. Since F A ) =
F,0AN =N and FAN € (%, /) we get

F, NCEZCo(F,N *)
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and the first assertion follows if we can show that X is a o-algebra. In this case, we can apply the

o-operation to the inclusions (*) and get
c(F,N)CoX) Colc(F,N))
which is just
oc(F,N)CEZCo(F,N).

To see that X is a o-algebra, we check conditions (Z,)—(Z5).
(%)): Clearly, X € #F and N € #/ sothat X = X A € &;

(2,): We have, using de Morgan’s identities over and over again:

[FAN]"=[(F\N)UWN\ B
=(FNNYN(NNF)°
=(F°UN)N(N°UF)
=(F° NNHOUG*NGUINNNYU(NNF)
=(F°NNOUINNF)
=(F\N)U(N\ F9)
= F° AN

(SN
(X5): We begin by a few simple observations, namely that for all F € % and N, N’ €

FUN=FAN\F)eZ (a)
——
eN
F\N=FA(NNF)eZ; (b)
——
eN
N\F=NA(FNnN)eZx (©)
—
eN

(FAN)UN'=(FAN)A(N'\(FAN))

—Fa (N AN\ (FAN))) e, @

. J/
v

enN

where we use Problem 2.6(ii) and part (a) for (d).

Now let (F);ey € F and (N))jey C A and set F = |J; F; € F and, because of o-
subadditivity of measures N :=J; N; € #". Then

FA\N=|JF\NMc|JF\N)c|JF=F

JEN JjEN jEN
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as well as
pc | Jw\Fpc| N, =N
JEN JjEN
which shows that
F\Nc | J(F,aN)cFUN. (%)
jEN
Since #F, /' C &/, and consequently U ; en(F ;A N j) € o, and since & -measurable subsets
of null sets are again in ./, the inclusions (**) show that there exists some N’ € ./ so that
U(FjANj) =(F\N)UN' ez
——

JEN
€, cf. (b)

where we use (d) for the last inclusion.

Problem 4.17 Solution: By definition,

44

d={AUN:Aed, Nes}.
Since
AUN = AA(N \ 4)

——
enN

and since by an application of Problem 4.16 to (X, o, i), d, N (instead of (X, o, u), &, N) we
get

o(d,N)={AAN : Aed, NN}
and we conclude that
A Co(d,N).
On the other hand,
dcd and NcCd
so that, since < is a o-algebra,

oA, N)Co(d)=d Co(d,N).

Finally, assume that A* € o and A € &/. Then A = A* A N and we get

A"AA=AANAA=(AArA)AN = N.

Note that this result would also follow directly from 4.15 since we know from there that A* = AUN

so that

A*AA=(AUN)AA=AAN\A)AA=N\A
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Problem 4.18 Solution: Denote the completion by 98* and write ¥}, for all subsets of Borel null sets
of 6. Clearly,

N.={ACR": x & A}.

Recall from Problem 4.15(i) that %™ contains all sets of the form BUN with B € % and N € /..
Now let C C R” be any set. If x € C, then write

C= {x} U(C\({x})exn"
ERB EN,
Otherwise, x ¢ C and
C=C\{x}= 0 U(C\({x})eRB"
N—— —\—
ERB e_/Vx

This shows that B* = P(RR") is the power set of R”.

Problem 4.19 Solution:

(1) Since & is a o-algebra, it is closed under countable (disjoint) unions of its elements, thus v

inherits the properties (M,), (M,) directly from pu.
(ii) Yes [yes], since the full space X € 98 so that u(X) = v(X) is finite [resp. = 1].

(iii)) No, o-finiteness is also a property of the o-algebra. Take, for example, Lebesgue measure A
on the Borel sets (this is o-finite) and consider the o-algebra € := {@, (-0, 0), [0, c0), R}.

Then 4 v is not o-finite since there is no increasing sequence of €-sets having finite measure.

Problem 4.20 Solution: By definition, y is o-finite if there is an increasing sequence (B;)) ;e C &
such that B; T X and u(B;) < co. Clearly, E; := B, satisfies the condition in the statement of the

problem.

Conversely, let (E;);cy be as stated in the problem. Then B, := E; U ... U E, is measurable,
B, 1T X and, by subadditivity,

u(B,) = u(E,U...UE,) < Z U(E;) < co.
j=1

Remark: A small change in the above argument allows to take pairwise disjoint sets E;.

Problem 4.21 Solution:
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46

1

(i)

(iii)

@iv)

Fix € > 0 and choose for A € XsetsU € O, F € ¥ suchthat F C A C U and y(U\F) < e.
SetU’ := F¢ € O and F' :=U° € %. Then we have

F CACU andU'\ F' = FF\U‘=F°nU=U\F
and so u(U’" \ F') = u(U \ F) < €. This means that A° € X.

Denote by d(x, y) the distance of two points x,y € X and write B /n(O) for the open ball
{yeX :d(y0) < %}. As in the solution of Problem 3.14(ii) we see that U, := F+ B, ;,(0)
is a sequence of open sets such that U, | F. Because of the continuity of measures we get
uU, \ F)m Oand since & > F C F c U, € 0, this means that & C .

Fix ¢ > 0 and pick for Aj € Z,j = 1,2, open sets Uj and closed sets Fj such that Fj C

AcU;and u(U; \ F;) <e. Then F; N F, and U; N U, are again closed resp. open, satisfy
FinF,CA nA,cU nU,aswellas

(U, nUY\ (Fy N Fy)) = u((U; nUy N (Ff UF))
u([U; nU)\ F1U[(U, nUy) \ F,])
Su(U NUY\ F) +u(U; nU)\ F)

2e.

A

This shows that X is N-stable.

Fix € and pick for a given sequence (A;);ey C Z open sets U; and closed sets F; such that
F,cA; cU;and u(U; \ F;) <e27.

Set A :=J; A;. ThenU :=|J;U; D Aisan open set wile F :=|J; F; is contained in A
but it is only an increasing limit of closed sets @, := F; U ... U F,. Using Problem 4.11 we
get
WUNF)< Y uU\F) < Y e27” <e.
J J

Since®, c AcUandU \ @, | U \ F, we can use the continuity of measures to conclude
thatinf, y(U \ ®,) = u(U \ F) < e, ie. u(U \ ®y) < 2e if N = N, is sufficiently large.
This shows that Z contains all countable unions of its members. Because of part (i) it is also

stable under complementation and contains the empty set. Thus, X is a o-algebra.
AsF cZand & = o(F), we have & C X.

For any Borel set B € X and any € > 0 we can find open and closed sets U, and F,, respect-

ively, such that F, ¢ B c U, and

B\ F) < u(U,\ F,) <e = u(B) < e+ u(k,),
uU N\ B) < u(U,\ F,) <e = u(B) > uU,) —e.
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Thus,

sup u(F)<u(B)<e+u(F,)<e+ sup u(F)

FCB,FEF FCB,FEF
inf U)—e<ulU)—e< ub) < inf U).
U:B,Ue@”( ) < uU,) < u( )\UDB,UE@ﬂ( )

(v) Forevery closed F € & the intersections K; N F, j € IN, will be compactand K; N F T F.
By the continuity of measures we get

u(F)=supu(K;nF)< sup  u(K) < pu(F).
J KCF,K cpt

Thus,

u(F)= sup wu(K) VFeZF. *)
KCF,K cpt

Combining (iv) and (*) we get

@iv)
u(B) = sup u(F)
FCB,FeF
)
= sup sup  u(K)
FCB,Fe¥ KCF K cpt

< sup sup  u(K)
FCB,Fe¥  KCB,K cpt

S

note: independent of FCB

= sup u(K)
KCB,K cpt

and since u(K) < pu(B) for K C B and supgcp g Cpt,u(K) < u(B) are obvious, we are
finished.

(vi) Assume now that u is o-finite. Let (B,),ey C & be an exhausting sequence for X such
that p4(B,) < oo. Then the measures y,(B) := u(B N B,) defined on & are finite and
regular according to part (iv). Since we may interchange any two suprema (cf. the solution
of Problem 4.7) we get

u(B) = sup u,(B) =sup sup  u,(F)
n n FCB,FEF

= sup suppu,(F)

FCB,FEF n
= sup u(F).
FCB,FeF
N
Problem 4.21 Solution: First of all, Problem 4.21(iv) shows that
u(B)=  sup  u(F). *)

FCB,F closed
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Let (d; ), be an enumeration of the dense set D C X and write p for the metric in X and K,.(x) :=

{y € X : p(x,y) < r} for the closed ball with centre x and radius r.

Since, for any fixed n € IN the sets

Kyd)u--VK,,dd, X for m— oo
we get from (¥)

Ve>0 Jk(n) el : y(F,,)+% > u(X)
if F, 1= Ky;,(d)) U+ UK, ,(dy)- Setting

K:=K :=()F,
n

it is clear that K is closed. Moreover, since K is, for every 1/n, covered by finitely many balls of

radius 1/n, to wit,
K C K, (d)) U+ UKy, (d)s

we see that K is compact. Indeed, if (x;); C K is a sequence, there is a subsequence (x;.‘) ; which
is completely contained in one of the balls K, /,(d)), ..., K; /,(d,)- Passing iteratively to sub-
sub-etc. sequences we find a subsequence (y;); C (x;); which is contained in a sequence of closed
balls K, /,,(cn) (c, is a suitable element from D). Thus (y 1)) is a Cauchy sequence and converges,
because of completeness, to an element x* which is, as the F, are closed, in every F,, hence in K.

Thus K is (sequentially) compact.

Since

u(X\K)=ﬂ<UX\Fn) S Y UX\F)< Y =

we have found a sequence of compact sets K, such that u(K,) — pu(X) (note that the K, need not
‘converge’ X as aset!). Obviously, K, N F is compact for every closed F and we have u(K,NF) —
u(F), hence

w(F)= sup u(K) VFeEZ.
KCF,K cpt

Now we can use the argument from the proof of Problem 4.22(v).




5 Uniqueness of measures.

Solutions to Problems 5.1-5.13

Problem 5.1 Solution: Since X € 9 and since complements are again in &, we have @ = X¢ € 9.
If A, B € 9 are disjoint, we set A} 1= A, A, := B,A; ;=0 Vj > 3. Then (A));ey C D isa

sequence of pairwise disjoint sets, and by (D5) we find that

AUB= U A €D
jEN
Since (£;) = (Djy), (£,) = (D,) and since (Z3) = (D3), it is clear that every o-algebra is also a

Dynkin system; that the converse is, in general, wrong is seen in Problem 5.2.

Problem 5.2 Solution: Consider (D;) only, as the other two conditions coincide: (X;) = (4)), j =
1,2. We show that (£;) breaks down even for finite unions. If A, B € & are disjoint, it is clear that
A, B and also A v B contain an even number of elements. But if A, B have non-void intersection,
and if this intersection contains an odd number of elements, then A U B contains an odd number

of elements. Here is a trivial example:
A={1,2} e, B=1{2,3,4,5} €9,
whereas
AUB=1{1,2,3,4,5} ¢ 9.

This means that (D5) holds, but (Z;) fails.
N

Problem 5.3 Solution: We verify the hint first. Using de Morgan’s laws we get
R\QO=R\(RNQO)=RNRNO) =(RURNQO) =(RYURNQO))

where the last equality follows since R° N (RN Q) = @.

Now we take A, B € & such that A C B. In particular A N B = A. Taking this into account and
setting QO = A, R = B we get from the above relation

B\A=( B° vA )€
——
€D

——
€D
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where we repeatedly use (D,) and (D).

Problem 5.4 Solution:

(1) Since the o-algebra & is also a Dynkin system, it is enough to prove 6(2) = 2 for any

Dynkin system &. By definition, 6(9) is the smallest Dynkin system containing &, thus
D C 6(2D). On the other hand, 9 is itself a Dynkin system, thus, because of minimality,
D D 6(D).

(i) Clearly, & C # C 6(#’). Since 6(#) is a Dynkin system containing &, the minimality of
6(%) implies that 6(&) C 6(F).

(iii) Since o(¥€) is a o-algebra, it is also a Dynkin system. Since € C ¢(&) we conclude (again,
by minimality) that 6(&) C o(%).

Combining both definitions, i.e. (Dl)—(D’3) and (D;)—(D5), we see that X € &. Stability under
incrasing limits follows from (D’3) andif D, | D we get D} 1 D¢, i.e. the stability under decreasing

limits follows from (D,), (Dg) and deMorgan’s laws.

Problem 5.5 Solution: Clearly, 5({A, B}) C o({ A, B}) is always true.

By Theorem 5.5, 6({A, B}) = 6({A, B}) if { A, B} is n-stable, i.e. if A = Bor A = B¢ or if at
least one of A, B is X or .

Let us exclude these cases. If AN B = @, then
5({A,B}) =0({A,B}) = {#,A,A°, B, B, AU B, AN B, X }.
If An B # @, then
6({A,B}) = {0, A, A°, B, B, X}

while o({ A, B}) is much larger containing, for example, A N B.

Problem 5.6 Solution: Some authors call families of sets satisfying (D,), (D'z), (D’3) monotone classes

(this is not the standard definition!). We will use this convention locally for this solution only.

Clearly, such a monotone class & is a Dynkin system:

D)
C.DeF, CnD=P=— CuD=E\[ (E\CO)\D |eZ,
(D)) —_——
E\C>D as CnD=§
i.e., F is U-stable. This and (Dg) yield (D5); (D,) is a special case of (D’z).

Conversely every Dynkin system & is a monotone class in the sese of this problem:

D)
M,NED, MCN —> N°AM=M\N=§ and N\M =(N°uM) €D,
(D3)
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i.e. (D)) holds. Thus, (D;) immediately implies (D).
L[

Problem 5.7 Solution: We prove the hint first. Let (G;);ey C @ as stated in the problem, i.e.
satisfying (1) and (2), and define the sets Fy := G, U ... UGy. As & C &, it is clear that
Fy € o (but not necessarily in &...). Moreover, it is clear that F, T X.

We begin with a more general assertion: For any finite union of G-sets A; U ... U Ay we have

Proof. Induction Hypothesis: u(A; U ...U Ay) = V(A; U ... U Ay) for some N € IN and any
choiceof A|,..., Ay € F.

Induction Start (N = 1): is obvious.
Induction Step N - N + 1: By the induction assumption we know that
(AU UANN AN ) = n((A;NAN) U UAy NAx,))

v((A1 NAN)U---U(AxN AN+1))
= v((A1 U--UApN)N AN+1)'

If,u((Al U---UAy) nAN+1) < 00, hence v((Al U--- UAN)nAN+1) < oo, we have by the strong
additivity of measures and the N-stability of & that

(A U..UANUAN,)

=u((AjU...UAN) UApN,)

=u(A U...UAN) + u(An.) — u((AjU...UAN) N Any,)

=pu(AjU...UAN) +u(Ax ) = u((A N AN DU U(Ay NAy,))
i;_J T

=v(A | U...UAN) + V(AN ) = V((A| N AN DU U (AN N Ayy))

=v(A|U...UAyUAy,)

where we use the induction hypothesis twice, namely for the union of the N &-sets A, ..., Ay as
well as for the N &-sets Ay N Ap,,..., Ay N Ay, The induction is complete.
If u((Ay U UAN)N Ay, ) = o0, hence v((A; U+ U Ay) N Ay, ) = oo, there is nothing to
show since the monotinicity of measures entails

(Al U---uU AN) n AN+1 C (Al U---u AN) U AN+1

= ﬂ((Al U= UAN)UAN+1) =00 = V((Al U - UAN)UAN+1)

In particular we see that u(Fy) = v(Fy), V(Fy) < V(G)) + ... + v(Gy) < oo by subadditivity,
and that (think!) u(G n Fy) = v(G N Fy) for any G € & (just work out the intersection, similar
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to the step in the induction....). This shows that on the N-stable system
G = {all finite unions of sets in &'}

4 and v coincide. Moreover, & C < C o so that, by assumption & = 6(%) C 0'(?7) Co(d)C d,
so that equality prevails in this chain of inclusions. This means that Cisa generator of & satisfying

all the assumptions of Theorem 5.7, and we have reduced everything to this situation.

Remark. The last step shows that we only need the induction for sets from & with finite -, hence
v-measure. Therefore, the extended discussion on finiteness is actually not needed, if the induction

is only used for the sequences (G;); and (F),),,.

Problem 5.8 Solution: [Intuition: in two dimensions we have rectangles. Take I, I’ € #. Call the

lower left corner of I a = (ay, a,), the upper right corner b = (b, b,), and do the same for I’ using
a',b'. This defines a rectangle uniquely. We are done, if I N I’ = @. If not (draw a picture!) then
we get an overlap which can be described by taking the right-and-upper-most of the two lower left

corners a, a’ and the left-and-lower-most of the two upper right corners b, b’. That does the trick.

Now rigorously: since I, I' € 7, we have for suitable a;, b;, a;., b;’s:

n n
1= % [a) and I'= % [d.5).

We want to find I N I’, or, equivalently the condition under which x € I n I’. Now

x=(x,...,x,) €l & xje[aj,bj) Vi=1,2,....n

& a;<x;<b; Vj=12,...,n

and the same holds for x € I’ (same x, but I’—no typo). Clearly a ; < x; < b;, and, at the same

time a; <x; < b; holds exactly if

max(aj,a;.) <x; < min(bj,b;.) Vi=1,2,...,n

n ’ . ’
< x € j>:<1 [max(aj, aj), min(b;, bj)).

This shows that I NI’ is indeed a ‘rectangle’, i.e. in JZ. This could be an empty set (which happens
if I and I’ do not meet).

Problem 5.9 Solution: First we must make sure that 7 - B is a Borel set if B € 9. We consider first

52

rectangles I = [[a, b) € # where a, b € R". Clearly, t- I = [[ta, tb)) where ta, tb are just the scaled

vectors. So, scaled rectangles are again rectangles, and therefore Borel sets. Now fix # > 0 and set

B, :={Bec BMR"):t-Be BR")}.
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It is not hard to see that 3, is itself a o-algebra and that . C B, C B(RR"). But then we get
BR") =0(F) Co(B,) =B, C BR"),

showing that %, = %(RR"), i.e. scaled Borel sets are again Borel sets.

Now define a new measure u(B) := A"(¢ - B) for Borel sets B € % (IR") (which is, because of the

above, well-defined). For rectangles [[a, b)) we get, in particular,
pulla, b) = A"((t - [la, b)) = A"[ta, 1b)

=[] (@b - ta))
j=1

=[]t (6;-9)
j=1

n

=[] (8- a)

j=1
= 1"A"[la, b)

which shows that y and " A" coincide on the N-stable generator # of 9B (IR"), hence they’re the
same everywhere. (Mind the small gap: we should make the mental step that for any measure
v a positive multiple, say, c - v, is again a measure—this ensures that A" is a measure, and we
need this in order to apply Theorem 5.7. Mind also that we need that y is finite on all rectangles
(obvious!) and that we find rectangles increasing to R”, e.g. [—k, k) X ... X [—k, k) as in the proof
of Theorem 5.8(i1).)

Problem 5.10 Solution: Define v(A) := uof~'(A). Obviously, v is again a finite measure. Moreover,

since ~1(X) = X, we have
u(X) =v(X) < oo and, by assumption, u(G) =v(G) VG € Z.

Thus, u = von & := & U {X}. Since &’ is a N-stable generator of & containing the (trivial)
exhausting sequence X, X, X, ..., the assertion follows from the uniqueness theorem for measures,
Theorem 5.7.

Problem 5.11 Solution: The necessity of the condition is trivial since & C ¢(%) = %, resp., # C
o(#)=%.

Fix H € % and define
u(B) := P(BN H) and v(B) := P(B)P(H).

Obviously, x4 and v are finite measures on 9% having mass P(H) such that y and v coincide on

the N-stable generator & U { X'} of 9. Note that this generator contains the exhausting sequence
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X, X, X, .... By the uniqueness theorem for measures, Theorem 5.7, we conclude
u = v onthe whole of .
Now fix B € & and define
p(C) :=P(BNC) and 7(C) := P(B)P(C).

Then the same argument as before shows that p = o on € and, since B € % was arbitrary, the

claim follows.

Problem 5.12 Solution:

(i) Following the hint we check that
D ={Aed :Ve>03G €T : u(AArG) < ¢}

is a Dynkin system.
(D;) By assumption, G := X € & and so u(X A G) = u(¥) = 0, hence X € 9.

(D,) Assume that A € 9. For every € > 0O there is some G € & such that y(AAG) < e.

From

ACAGE = (G \ AS)U (A°\ GY)
=(G°NA)U A NG)
=(A\G)U(G\ A)
=AAG

we conclude that (A€ A G°) < €; consequently, A° € & (observe that G¢ € &!).

(D3) Let(4));ew C D be a sequence of mutually disjoint sets and e > 0. Since 4 is a finite

measure, we get

Zu(A,-)=ﬂ<U A,~> < oo,

JjEN JjeEN

and, in particular, we can pick N € IN so large, that

D HAp<e

j=N+1

For j € {1,..., N} there is some G, € & such that HA; AG)) < €. Thus, G .=
Uj]\il G; € @ satisfies

<E%Aj> \G = <JL€%AJ.> ntN
“(44)(0)
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= U(Ajnfjc;;>

jeN

N [
clJa,nenu |4 4,
j=1 Jj=N+1

G\(JLE%IAJ.) cG\(}L];VJ1 AJ.>

=GN

In the same way we get

5.

AC
J
Jj=1

N
c [ J@; n A9,
j=1

J

N o
“((U Aj>AG> < ,u(U(AjAGj)U 1) Aj>
jeN j=1 j=N+1

N

< ﬂ(AjAGj)+M< > Aj>

j=1 j=N+1

Thus,

< Ne+e.

Since € > 0 is arbitrary, we conclude that |1 oy A; € 9.

Obviously, & C 9 (take G = A € ). Since & is N-stable, we get
d=0(8)=06(%)CD.
(i1) Using the family
D ={Aed :Ve>0IGEZ : nW(ArG) <L e,v(AAG) L €},

we find, just as in (i), that @' is a Dynkin system. The rest of the proof is as before.

(iii) “<”: Let A € o suchthat A C |J,e 1, and 4 (U,.en 1,,) < €. Because of the monotonicity

of measures we get

M(A><;4<U 1,,><€,

nelN
and so u(A) = 0.

“>7: SetH :={ACR": I ew C F : A=, I or A° = J, I} and observe that
1 € X = I° € #. Define, furthermore,

D :={ACR":VeaJ,Ke X, JCACK, u(K\J)<e}

We claim that & is a Dynkin system.
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(D)) Clearly, X = R" € @ (take J = K = R").

(D,) Pick A € & and € > 0. Then there are J,K € % suchthat J C A C K and
UK\ J)<e FromJ¢, K€ F, u(K°\J)=u(J \ K)<eand J¢ D A° D K we
get immediately A€ € 9.

(D3) Let(A j) jew C 9 be a sequence of mutually disjoint sets and € > 0. Pick J ;€ F and
K; € # suchthat J; C A; C K;, u(K; \ J;) < €27/ and set

J =4 K := ]k,

JEN jEN

Since # is stable under countable unions, we get J € &, K € % . Moreover, J C

Uj Aj c K and

u(K\J) = <<gq Kf) n (]Qq JJ)C)
((4e)-(07))
([y(srn2))

< M<U(Kj n J;))

JEN

c

D Z uK;nJp)
JEN  —
/"(Kj\Jj)$€2_j

Thus, [J; A; € 2.
Finally, # C 9 entails that B(R") = 6(F) C 9.

Now let A be a set satisfying u(A) = 0. Therefore, for every ¢ > O thereisaset K, = K € &
such that A € K and u(K) < e. If K = |, I;, we are done. If K¢ = | J; I; we have to argue like
this: Let J := Ji :=[-R, R)Y € 7. Then

k
K=(If and JnkK=(\IfnJ=(\J\L=[)[)/\1L
i i i k i=1

and each set J \ I, is a finite union of sets from _# (since # is a semiring), hence ﬂ:.;l J\I isa
finite union of sets from #. Since u(J N K) < u(K) < €, a continuity-of-measure argument shows
that there exists some k such that J N K C ﬂf;] J\ I; and ,u(ﬂf:] J\I) < 2e.

If we pick e = ¢/ 2R we see that we can cover A N [—R, R)? by a countable union of _#-sets, call

their union Uy, such that u(Ug) < €/ 2R Finally,

uA) < Y puUp) <e
RelN
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and we can combine all covers which make up the Ui, R € IN.

Problem 5.13 Solution:

@)

(i)

mind the misprint: we also need stability of .# under finite intersections. Clearly, any
o-algebra is also a monotone class. Conversely, if .# is a monotone class such that M €
M = M€ € M, then the condition (2,) holds, while (£,) is satisfied by the very definition
of a monotone class. If ./ is also stable under finite intersections, we get M, N € /4 =
MUN =(M°nNN°) € M, so (X3) follows from the stability under finite unions and the

stability of monotone classes under increasing limits of sets.

Since ¢(&) is a monotone class containing &, we have — by minimality — that m(&) C o(%).
On the other hand, by the monotone class theorem, we get & C m(%) = o¢(&) C m(%)
which means that m(€) = ¢(%).
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6 Existence of measures.

Solutions to Problems 6.1-6.14

Problem 6.1 Solution:

@)

(i)

Monotonicity: If x < 0 < y, then F,(x) <0< F,(».
If 0 < x < y, we have [0, x) C [0, y) and s0 0 < F,(x) = u[0,x) < u[0,y) = F,(»).

If x <y<0,wehave [y,0) C [x,0)and so 0 < —F,(y) = ply,0) < plx,0) = —F,(x), ie.
F,(x)< F,(») <0.

Left-continuity: Let us deal with the case x > 0 only, the case x < 0 is analogous (and
even easier). Assume first that x > 0. Take any sequence x, < x and x;, T x as k = oo.
Without loss of generality we can assume that 0 < x;, < x. Then [0, x,) 1 [0, x) and using

Proposition 4.3 (continuity of measures) implies
lim F,(x) = lim ul0,x,) = u[0,x) = F,(x).

If x = 0 we must take a sequence x; < 0 and we have then [x,,0) | [0,0) = @. Again by

Proposition 4.3, now (iii"), we get
]}LIEO F,(x) =- ]}Lrg Hlxy, 0) = u(@) = 0= F,(0).

which shows left-continuity at this point, too.

We remark that, since for a sequence y, | y, y, > y we have [0, y,) | [0, y], and not [0, y),

we cannot expect right-continuity in general.

Since ¥ = {[a, b), a < b} is a semi-ring (cf. the remark preceding Proposition 6.3 or Propos-
ition 6.5) it is enough to check that v is a premeasure on 7. This again amounts to showing

(M) and (M, ) relative to ,# (mind you: v is not a measure as ¢ is not a o-algebra....).
(i) vp(®@) = vgla,a) = F(a) — F(a) = 0 for any a.
(i) Leta < b < ¢ so that [a, b), [b, c) € £ are disjoint sets and [a,c) = [a,b) U [b,c) € F
(the latter is crucial). Then we have
vela, b) + vilb,c) = F(b) — F(a) + F(c) — F(b)
= F(c)— F(a)
= vgla,c)

= vp(la,b) W [b,c)).
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(iii) We mimick the proof of existence of Lebesgue measure. Let I, = [a,,b,) € F be
disjoint such that I = [a,b) = |7 [a,.b,) € F. Fix €,,e > 0 (these values will be

chosen later) and observe that
U@, —€,b,) 2 1ab—e]
n=1

is an open cover of the compact interval [a,b — €]. Thus, there exists a finite open

subcover, hence some N € IN such that

N N
U(an —€,,b,)D[a,b—¢€] = U[an —e€,,b,) Dla,b—e).
n=1 n=1

We have to show that

N
vela.b) = Y vrla,. b,)—— 0.
n=1

First note that we can de- and increase a, > a/ and b, < b/ such that

N N

Jla,.b,) c [+)1d). b)) = [a, )
=1

n n=1

so that by the finite additivity of v, we get

N N
0=vela.b) = Y veld. b)) <vela.b) = ) vila,.b,).
n=1 n=1

Thus, using only the finite additivity and sub-additivity of v

N
0 < vpla,b) = Y vilayb,)

n=1
N N
=vpla,b—¢€)— Z vrla, —€,,b,) +vplb—e,b) + Z vela, —¢€,.a,)
n=1 n=1
L 1
<0 finite covering & subadditivity

N
<vplb—e,b)+ Z vela, —€,.a,).
n=1
Now we choose € and ¢,. For any given n > 0 we can find € > 0 and €, > 0 such that

vplb—e,b)= F(b)— F(b—¢) < g

and vgla, —¢€,,a,) = F(a,) — F(a,—¢€,) < 2_"g
here we use the left-continuity of F. Thus,
o n < n
—hn
0 < vpla,b) — ;\/F[an,bn) <5 +n§2 5 <

Letting first N — oo and then # — 0 proves the claim.
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Note that v takes on only positive values because F increases.

This means that we find at least one extension. Uniqueness follows since

Vel—k,k) = F(k) — F(=k) < o0 and [—k,k)TR.

(iii) Now let p be a measure with u[—n,n) < oo. The latter means that the function F,(x),
as defined in part (i), is finite for every x € R. Now take this F u and define, as in (ii) a
(uniquely defined) measure VF,- Let us see that y = VF,: For this, it is enough to show
equality on the sets of type [a, b) (since such sets generate the Borel sets and the uniqueness

theorem applies....)

If0<a<hb,

vr la, b) = F,(b) = F,(a) = ul0, ) — ul0, a)

= u([0,5)\ [0,a))
= ula,b) vV

Ifa<b<O,

vr la,b) = F,(b) = F,(a) = —pu[b,0) = (=p[a,0))
ula,0) — u[b,0)
#([a,0) \ [5,0))
ula,b) v

Ifa<0<b,

v, la,b) = F,(b) - F,(a) = pu[0, b)) — (—ula, 0))
ula,0)) + ul0, b)
1([a,0) U [0, b))
pla,b) v

@iv) F : R —» R with F(x) = x, since Ala,b) = b —a = F(b) — F(a).

) 0, x<0 )
(v) F : R - R, with, say, F(x) = = 1 0,00)(x) since Syla, b) = 0 whenever
1, x>0

a,b < 0ora,b> 0. This means that F' must be constant on (—co,0) and (0,00) Ifa <0< b
we have, however, 6gla, b) = 1 which indicates that F'(x) must jump by 1 at the point 0.
Given the fact that F must be left-continuous, it is clear that it has, in principle, the above
form. The only ambiguity is, that if F(x) does the job, so does ¢ + F(x) for any constant
ceR.
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(vi) Assume that F is continuous at the point x. Then

M({x})=u< N [x,x+§)>

keN
43 li 1
= Jim s ([xx+7))
= im (F(x+L)-F
=l ( <x+ Z) - (x))
= i Iy _
- (x+5) o
()
= F(x)—F(x)=0
where we use (right-)continuity of F at x in the step marked ().
Now, let conversely u({x}) = 0. A similar calculation as above shows, that for every se-
quence €;, > 0 with ¢, - o
F(x+)— F(x) = lim F (x+¢) — F(x)
k— o0

def _,
= lim p[x,x+¢,)
k— o0

453/1( ﬂ[x,x+€k)>

kelN
=u({x}) =0

which means that F(x) = F(x+) (x+ indicates the right limit), i.e. F is right-continuous at

x, hence continuous, as F is left-continuous anyway.

N
Problem 6.2 Solution: Using the notion of measurability we get
[So] (o] [So]
Ty <Qn UA,) =y*<<QnUA,-> nA1> +ut <<Qn UA,.>nAj>
i=1 i=1 i=1
= (QNA)+u <Q nJ A,-)
i=2 (6.1)

n—1

2 H(ONA)+p QN UL A
i=1

for any n € IN. Thus, p*(Q N U2, 4) > Z::f U (@ N A)forall n € N. If n — oo we obtain

u* <Q nJ A,) > ) QN A).
i=1 i=1

1

Case 1: ,° u*(Q N A;) = co. Nothing to show.

Case 2: Zzl 1 (O N A;) < oo. Using the sub-additivity of outer measures we get

u* <Qn _UA,-> < Y H@NA)—=0
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and the claim follows from (6.1) as n — co.

Problem 6.3 Solution: We know already that %[0, o) is a o-algebra (it is a trace o-algebra) and, by

definition,
2={BU(-B): Be %[0,0)}

if we write —B := {—b : b € B[0, 0)}.

Since the structure B U (—B) is stable under complementation and countable unions it is clear that

2 is indeed a c-algebra.
One possibility to extend u defined on E would be to take B € % (R) and define B* := BN [0, o)
and B~ := BN (—00,0) and to set

v(B) 1= u(B* U (=B") + u((-B7)U B7)

which is obviously a measure. We cannot expect uniqueness of this extension since £ does not

generate 93 (IR)—not all Borel sets are symmetric.

Problem 6.4 Solution: By definition we have
u(Q) = inf { ; W(B)) : (B)en €. U B;D Q}.

(1) Assume first that 4*(Q) < oo. By the definition of the infimum we find for every ¢ > 0 a
sequence (B}) e C & such that B := U j B} D QO and, because of o-subadditivity,

u(B) = 1*(Q) < Y u(BS) — u(Q) <e.
J
Set B :=), BY/* € o/. Then B D Q and u(B) = u*(B) = u*(Q).
Now let N € &/ and N C B\ Q. Then

B\ ND>B\(B\Q)=Bn[(BNQO°)]=Bn[B°UQ]
=BnQ
=0Q.

So,
Q) — u(N) = u(B) — u(N) = u(B\ N) = y*(B\ N) > u*(0)
which means that y(N) = 0.

If 4*(Q) = oo, we take the exhausting sequence (A )en C & with A, T X and u(A;) < oo
and set Q, := A, N Q for every k € IN. By the first part we can find sets B, € & with
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(ii)

(iii)

B, D Oy, u(By) = u*(Q;) and u(N) =0 forall N € o with N C B, \ Q,. Without loss
of generality we can assume that B, C A,, otherwise we replace B, by A, N B,. Indeed,

u(Qy) = u(By) = u(A;, N By) > u*(Qy)

and B, \ Q, D (B, N Ay) \ O, i.e. we have again that all measurable N C (B, N A;) \ O,
satisfy u(N) = 0.

Assume now that N ¢ B\ Q, B=J, Byand N € &. Then N, := N N B, € o and we
have N = J, N, as well as

Thus u(N,) = 0 and, by o-subadditivity, u(N) < ZZ"ZI u(N,) =0.

Define i := u* e We know from Theorem 6.1 that j is a measure on &/* and, because of

the monotonicity of y*, we know that for all N* € o/* with i(N*) we have
VM CN*: py*(M) < p*(N¥) = g(N*) = 0.

It remains to show that M € of*. Because of (6.2) we have to show that
VOCX :p(Q)=p(@nM)+pu(Q\M).

Since p* is subadditive we find for all Q C X

p Q) = p*((@NM)u(Q\ M))
Su@ONM)+u*(Q\ M)
=u"(Q\ M)
< Q)
which means that M € o/*.

Obviously, (X, &%, ji) extends (X, &, u) since & C * and ji g In view of Problem
4.15 we have to show that

Ad*={AUN : Aegd, NeN} (*)
with ¢ = {N C X : N is subset of an &/-measurable null set or, alternatively,
d*={A"CcX :3A,Begd, ACA*CB, u(B\ A)=0}. (**)

We are going to use both equalities and show ‘D’ in () and ‘C’ in (*%) (which is enough

since, cf. Problem 4.15 asserts the equality of the right-hand sides of (), (s)!).

‘D’: By part (ii), subsets of &/-null sets are in &/* so that every set of the form A U N with
A € o and N being a subset of an &/ null set is in &/*.
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‘C’: By part (i) we find for every A* € &/* some A € & suchthat A D A* and A\ A* is an &/*
null set. By the same argument we get B € &/, B D (A*) and B\ (A*) = BN A* = A*\ B¢

is an o/* null set. Thus,
B°CA*CA
and
A\ B C (A\A*)U(A*\ B) = (A\ A") U (B\ (A4%))

which is the union of two &/* null sets, i.e. A \ B¢ is an & null set.

Problem 6.5 Solution: Since, by assumption, m is an additive set function such that 0 < m(X) <

#(X) < o0, it is enough to show (cf. Lemma 4.9) that m is continuous at @ and m(@) = 0.
e m(#) = 0: This follows immediately from m(#) < u(@#) = 0. (Note: § = X¢ € A.)

e mis continuous at @: Let (By);ew C %, B, | 8. Since u(B;) — 0 we get
k— o0
m(B,) < u(B;)—— 0.

This shows that m is continuous at @.

Remark. In order to be self-contained, let us check that any additive set function m on a Boolean

algebra & is a pre-measure (i.e. sigma-additive) if it is continuous at @:

Let (B,),eny C & be a sequence of mutually disjoint sets and B := |J,. B, € %. From
B Y...UB, € B we get

A, :=B\(BjU...UB)=BnN(B,Y...UB,)" € AB.

|
ERB

Since A, | @, continuity at @ proves m(A,) — 0. Since m is additive,

m(B) =m(B\ (B, ...uB,))+m(B, U...UB,)

=m(A,)+ ) m(B)
j=1

[o¢]
oo+ Y m(B)).
j=1

Problem 6.6 Solution:

(1) A little geometry first: a solid, open disk of radius r, centre 0 is the set B,(0) := {(x,y) €
R? : x?>+y? < r?}. The n-dimensional analogue is clearly {x € R”" : x%+x§+...+xﬁ <r?)

(including n = 1 where it reduces to an interval). We want to inscribe a box into a ball.
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Claim: Q,(0) := X

X |-4,~ ) c B, (0). Indeed,
,:1[ v «ﬁ) 2:(0)

e e

2
€
XE€00) = X+ + . FX, < —F+ — . — < (2e)

m N
= x € B,,(0),

and the claim follows.

Observe that A*(Q.(0)) = H;.’_l 2—\/6_ > 0. Now take some open set U. By translating it we
- n
can achieve that 0 € U and, as we know, this movement does not affect A”(U). As 0 € U we

find some € > 0 such that B.(0) C U, hence

AN(U) 2 A(B.(0)) 2 4(Q.(0)) > 0.

(i1) For closed sets this is, in general, wrong. Trivial counterexample: the singleton {0} is closed,
it is Borel (take a countable sequence of nested rectangles, centered at 0 and going down to

{0}) and the Lebesgue measure is zero.

To get strictly positive Lebesgue measure, one possibility is to have interior points, i.e. closed

sets which have non-empty interior do have positive Lebesgue measure.

Problem 6.7 Solution:

(1) Without loss of generality we can assume that a < b. We have [a + %, b) 1 (a,b) as k - .
Thus, by the continuity of measures, Proposition 4.3, we find (write A = A!, for short)
Aa,b) = lim /l[a+l,b> — lim (b—a— 1) —b-a
k—o0 k k—o0 k

Since Ala, b) = b — a, too, this proves again that

A{a}) = Mla, b) \ (a, b)) = Ala, b) — Aa, b) = 0.

(i) The hint says it all: H is contained in the union y + J wenN Ay for some y and we have
12(A;) = (2€ 27%)-(2k) = 4-¢-k27*. Using the o-subadditivity and monotonicity of measures
(the A,’s are clearly not disjoint) as well as the translational invariance of the Lebesgue

measure we get
0< A°(H) < A? <k°le Ak> < Z MA,) = 24 ce-k27F = Ce
= k=1 k=1

where C is the finite (!) constant 4 Z;ozl k27 (check convergence!). As e was arbitrary, we

can let it = 0 and the claim follows.

(iii) n-dimensional version of (i): We have I = '>n<1(aj, b;). Set I} := _)rél[aj + %, b;). Then I} 1 1
j= j=
as k — oo and we have (write 4 = A", for short)
n 1 n
=i s = i 11 (5= ) =TT, )
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n-dimensional version of (ii): The changes are obvious: A, = [—e27%, 27Ky x [k, k)*!
and A"(A;) = 2" - € - 27K . k"~ The rest stays as before, since the sum Y, 2 k"~'27 still

converges to a finite value.

Problem 6.8 Solution:

®

(i)
(iii)

@iv)

All we have to show is that A!({x}) = 0 for any x € R. But this has been shown already in
problem 6.6(1).

Take the Dirac measure: 6. Then {0} is an atom as 6,({0}) = 1.

Let C be countable and let {c|, ¢y, c3, ...} be an enumeration (could be finite, if C is finite).
Since singletons are in &/, so is C as a countable union of the sets {c; }. Using the o-additivity
of a measure we get

(€)= uUjenic;H =Y u(fe;h= Y 0=0.

JjeEN JEN

If y;, ¥, ..., yy are atoms of mass P({y;}) = - we find by the additivity and monotonicity

1
k
of measures

z

% <Y PixD)

N
=P (_U {yj'}>
j=1

=P({y;,....ynD<PR)=1

~
I
—

SO % < 1,i.e. N < k, and the claim in the hint (about the maximal number of atoms of given

size) is shown.

Now denote, as in the hint, the atoms with measure of size [l L) by y(k) &) where

K’ k=1 1 YNw
N (k) < k is their number. Since

we exhaust all possible sizes for atoms.

There are at most countably many (actually: finitely many) atoms in each size range. Since
the number of size ranges is countable and since countably many countable sets make up a
countable set, we can relabel the atoms as x4, x,, x5, ... (could be finite) and, as we have seen

in exercise 4.7(ii), the set function
vi= Y PUx -6,
J

(no matter whether the sum is over a finite or countably infinite set of j’s) is indeed a measure

on R. But more is true: for any Borel set A

W(A) = Y PUx;}) - 6, (A)
J
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= > PUx;H

Jix;€EA
= P(AN {x}.%,....}) < P(A)

showing that u(A) := P(A) — v(A) is a positive number for each Borel set A € 3. This
means that y : B — [0, oo]. Let us check M, and M,. Using M, M, for P and v (for them

they are clear, as P, v are measures!) we get
u@=P@-vi#h=0-0=0

and for a disjoint sequence (A;);cy C % we have
() =r(Yr) ~(U2)
J J J
=) P(4) - )\ v(4)
J J
=D (P(4) - v(A))
J
= D u(4))
J
which is M, for p.
|

Problem 6.9 Solution:

68

®

(i)

Fix a sequence of numbers ¢, > 0,k € IN, such that Zke]NO €, < oo. For example we
could take a geometric series with general term ¢, := 27%. Now define open intervals I, :=
(k — e,k +¢€,), k € IN; (these are open sets!) and call their union I := UkG]NO I,. As
countable union of open sets I is again open. Using the o-(sub-)additivity of A = A! we find
,1(1)=/1< U 1k> (2 DIy = ) 2e,=2 ) € <o
kel kel kel keN,

By 6.7(1), A(I) > 0.

Note that in step () equality holds (i.e. we would use o-additivity rather than o-subadditivity)
if the I, are pairwise disjoint. This happens, if all ¢, < % (think!), but to be on the safe side

and in order not to have to worry about such details we use sub-additivity.

Take the open interior of the sets A;, k € IN, from the hint to 6.7(ii). That is, take the
open rectangles B, = (—27k,27%) x (=k, k), k € IN, (we choose ¢ = 1 since we are after
finiteness and not necessarily smallness). That these are open sets will be seen below. Now set
B = [J,en By and observe that the union of open sets is always open. B is also unbounded
and it is geometrically clear that B is pathwise connected as it is some kind of lozenge-shaped
‘staircase’ (draw a picture!) around the y-axis. Finally, by o-subadditivity and using 6.7(ii)
we get

AX(B) = ,12< U Bk> < ) 4B

kelN kelN
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= Zz.z—k.z.k

keN
=4 Y k-2 <o
kelN
It remains to check that an open rectangle is an open set. For this take any open rectangle
R = (a,b) X (c,d) and pick (x,y) € R. Then we know thata < x < band ¢ < y < d and
since we have strict inequalities, we have that the smallest distance of this point to any of the
four boundaries (draw a picture!) A := min{|a—x|, |b— x|, |c—y|,|d —y|} > 0. This means
that a square around (x, y) with side-length 24 is inside R and what we’re going to do is to
inscribe into this virtual square an open disk with radius A and centre (x, y). Since the circle

is again in R, we are done. The equation for this disk is
")) € By(x,y) &= (x=x)+(y-y) <h’

Thus,

X = x| < VIx=x']P+|y—y]><h

and |y —y| < VIx—x'2+|y—y[>?<h

ieex—h<x'<x+handy—-h<y <y+hor(x',y)eE(x—hx+h)x(y—h,y+h),
which means that (x’, y’) is in the rectangle of sidelength 24 centered at (x, y). since (x’, ")

was an arbitrary point of B,(x, y), we are done.

(iii) No, this is impossible. Since we are in one dimension, pathwise connectedness forces us to
go between points in a straight, uninterrupted line. Since the set is unbounded, this means
that we must have a line of the sort (a, co0) or (—oo, b) in our set and in both cases Lebesgue
measure is infinite. In all dimensions n > 1, see part (ii) for two dimensions, we can, however,

construct pathwise connected, unbounded open sets with finite Lebesgue measure.

L[
Problem 6.10 Solution: Fix e > 0 and let {g;};cy be an enumeration of @ N [0, 1]. Then
U:=U, := U (q;— €277 q;+ €277 ) n[0,1]
JjEN
is a dense open set in [0, 1] and, because of o-subadditivity,
—i—1 —j—1\ _ €
MUY Y Mgy —e27 7! g+ 277 = 25_6.
JEN JjEN
L[ |

Problem 6.11 Solution: Assume first that for every € > 0 there is some open set U, O N such that
AMU,) < €. Then

AMN) S AMU,) €€ Ve> 0,
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which means that A(N) = 0.

Conversely, let A*(N) = inf { Zj AU;) 1 U; € 0, UiewU; D N}. Since for the Borel set N
we have A*(IN) = A(IN) = 0, the definition of the infimum guarantees that for every ¢ > 0 there is
a sequence of open sets (Uje )jen covering N, i.e. such that U := Uj Uj€ D N. Since U¥¢ is again

open we find because of o-subadditivity

AN) < AU®) = ,1< U U;) < Z AUS <e.
J J

Attention: A construction along the lines of Problem 3.15, hint to part (ii), using open sets U® :=

N + B;(0) is, in general not successful:

e itis not clear that U? has finite Lebesgue measure (0.k. one can overcome this by considering

N N [—k, k] and then letting k — ...)

e U% | N and not N (unless N is closed, of course). If, say, N is a dense set of [0, 1], this

approach leads nowhere.

Problem 6.12 Solution: Observe that the sets C, := U;’;k A,k € IN, decrease as k —> oco—we

admit less and less sets in the union, i.e. the union becomes smaller. Since P is a probability

measure, P(C)) < 1 and therefore Lemma 4.9 applies and shows that

P(ﬁ GAJ-> =P<ﬁck> = lim P(Cp).
k=1 —00

k=1 j=k

On the other hand, we can use o-subadditivity of the measure P to get
P(C) = P< UAJ.> < Z;’;k P(A))
j=k
but this is the tail of the convergent (!) sum Z;’;l P(A j) and, as such, it goes to zero as k — oo.

Putting these bits together, we see

P< N UAJ.) = lim P(Cy) < lim Z P(A;) =0,
k=1 _/=k k— o0 k—»oojzk

and the claim follows.

Problem 6.13 Solution:

70

(1) We can work out the ‘optimal’ &f-cover of (a, b):

Case 1: a,b € [0, 1). Then [0, 1) is the best possible cover of (a, b), thus u*(a, b) = u[0,1) =
1

3

Case 2: a,b € [1,2). Then [1, 2) is the best possible cover of (a, b), thus u*(a, b) = u[1,2) =
1

>
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Case 3: a € [0,1),b € [1,2). Then [0, 1) W [1,2) is the best possible cover of (a, b), thus
u*(a,b) = pl0,1) + u[1,2) = 1.

And in the case of a singleton {a} the best possible cover is always either [0, 1) or [1,2) so

that u*({a}) = % for all a.

(i) Assume that (0, 1) € *. Since & C &/*, we have [0, 1) € &*, hence {0} =[0,1)\ (0,1) €
o*. Since u*(0,1) = u*({0}) = %, and since u* is a measure on &* (cf. Step 4 in the proof
of Theorem 6.1), we get

Lo J10,1) = 4*10,1) = 40, 1) + {0} =

1
+-=1
2 2

=

leading to a contradiction. Thus neither (0, 1) nor {0} are elements of &/*.

Problem 6.14 Solution: Since &/ C &/*, the only interesting sets (to which one could extend u) are

those B C IR where both B and B¢ are uncountable. By definition,
v (B) = inf{ vy aed. | Ja; o B}.
J J

The infimum is obviously attained for A ;= R, so that y*(B) = y*(B¢) = 1. On the other hand,

since y* is necessarily additive on &/*, the assumption that B € &/* leads to a contradiction:
l=yR)=y"R) =y"(B)+r"(B) =2

Thus, o = A*.
L[ |
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7 Measurable mappings.

Solutions to Problems 7.1-7.13

Problem 7.1 Solution: We have r;‘ (z) = z + x. According to Lemma 7.2 we have to check that
' (a,b) € BR") V]ab) €S
since the rectangles # generate 8 (IR"). Clearly,
T;l([a, b)=la,b)+x=[a+x,b+x) € F C BR"),

and the claim follows.

Problem 7.2 Solution: WehadX' = {A’ c X’ : T~!(A’) € &/} where & was a c-algebra of subsets
of X. Let us check the properties (Z;)—(X53).

(X,) Take@ C X'. Then T~'(@) =0 € &, hence § € .

(X,) Take any B € X'. Then T~'(B) € o and therefore T~!(B¢) = (T!(B))° € o since all
set operations interchange with inverse maps and since & is a c-algebra. This shows that
BceY.

(X3) Take any sequence (B;) e C 3. Then, using again the fact that &/ is a c-algebra, T_I(Uj B)) =

-1 .
U; T~'(B)) € & which proves that ( J, B; € X'.

Problem 7.3 Solution:
(i) (£)) 0 € A is clear.

(Z,) Let A e . If 2n € A, then 2n 4+ 1 € A° — this follows straight from the definition
of of:if2n+1 € A, then 2n € A. In the same way we get2n+1 € A = 2n € A°.
Consequently, A° € .

(Z3) Let (A))jeny C . If2n € Uj Aj, then there is some index j, such that 2n € A .
Since A; € o, weget2n+1 € A; C Uj A;. In the same way we find that
2n+lel;A; = 2ne A,

(ii) Itis clear that the map T is bijective as T~!(n) = n — 2. Pick any set A € /. In order to
verify the measurability of T, we have to show that T~!(A) € «/, i.e.

2neT'A) e 2n+1eT (A foralln>0.
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If 2n € T~Y(A), n > 0, then we see that 2n + 2 = 2(n + 1) € A. As A € / this yields
2n+3 € Aandso2n+ 1 =T"12n+3) € T~!(A). Therefore, T is measurable.

On the other hand, T~! is not measurable: the set A = {k; k < 0} is contained in &, but
TA) =1k :k<2}&g A (use2=2-1€A,but2-1+1=3¢& A).

Problem 7.4 Solution:

(1) First of all we remark that Tl._1 () 1s itself a o-algebra, cf. Example 3.3(vii).

If € is a o-algebra of subsets of X such that T; : (X,€) — (X;, ;) becomes measurable,

we know from the very definition that T‘l(di) C ¢. From this, however, it is clear that

T~!(,) is the minimal o-algebra that renders T measurable.

(i1) From part (i) we know that ¢(T},i € I') necessarily contains Tl._1 () for every i € I. Since
U, Tl._l(.szfi) is, in general, not a c-algebra, we have 0( U, Tl._l(.szii)> C o(T;,i € I). On the
other hand, each T; is, because of T,"'(o#;) c |J, T, (o) C o(T;,i € I) measurable w.r.t.
a( U ; Tl._l(.in)> and this proves the claim.

Problem 7.5 Solution:

74

(®), (i)

(iii)

(ii1)

L@ =1 xeT'(A) & T(x) e A

S 1,(Tx)=1 o A H0T)(x)=1
Since an indicatior function can only assume the values 0 and 1, the claimed equality
follows for the value 0 by negating the previously shown equivalence.
“=”: Assume that T is measurable. We have T~1(A4’) € o/ VA’ € o/’ and since  is
a o-algebra, we conclude

oM =c({T' AN | A ed'})Co(d)=d.
“«”: o(T) C o« implies, in particular,
T'(AYe g VA e d',

1.e., T is measurable.

Theorem 7.6 shows that image measures are measures. By the definition of T', we have
T-Y(E’) = E and voT~1(E’) < o0, resp., voT~!(E’) = 1 follows from the definition
of image measures.

The image measure obtained from a o-finite measure need not be o-finite!

Counterexemple: Let y be the counting measure on Z? and define T((x,y)) = x.

While y is o-finite, the image measure T'(u) isn’t.
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Problem 7.6 Solution: We have

T-'®©) c T'6(®) = oT 1) cT ' (c(®).
———

is itself a o-algebra

For the converse consider T : (X, o(T~'(%))) = (Y, 5(¥€)). By the very choice of the c-algebras
and since T~1(¢) ¢ o(T~1(¥)) we find that T is a(T_l(S?))/a(??) measurable—mind that we

only have to check measurability at a generator (here: &) in the image region. Thus,

T Y(6(%)) c o(T(©)).

Alternative: We have

T-'®©) c T'6(®) = oT 1 (¥)cT ' (c(®).
———

is itself a o-algebra

For the converse, set T := {G € o(%) : T"Y(G) € o(T~'(¥))}. It is not hard to see that T is
itself a c-algebra and that € C £ C 6(%). Thus, 6(%) = £ and so T~ (6(¥)) C 6(T~1(%)).

Problem 7.7 Solution: We have to show that
f i (F,F)—> (X,0(T,, i € 1)) measurable
< Viel Tof :(F,%)— (X, <) measurable.
Now
Viel:Tof) (@) cF < Viel: [T/ () cF
= (Ua 1) s

2 o[ (U ren)

g f_l<0[ Uiel Ti_l(d")]) cF

CHF

Only (*) and (**) are not immediately clear. The direction ‘<=’ in (¥*) is trivial, while * = ’ follows
if we observe that the right-hand side, &, is a o-algebra. The equivalence (**) is another case of

Problem 7.6 (see there for the solution!).

Problem 7.8 Solution: Using the notation of the foregoing Problem 7.7 we put
I={12,....m} and T;:=mx;: R" - R, Xy, s Xp) 1= X;

J

L.e. z; is the coordinate projection, &/; := % (R).
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Since each g is continuous, we have o(zy,...,7,) C B(R™) so that Problem 7.7 applies and
proves

f is B(R™)-measurable <
fj=mjof is B(R)-measurable forall j = 1,2, ..., m.

Remark. We will see, in fact, in Chapter 14 (in particular in Theorem 14.17) that we have the
equality o(xy, ..., 7,) = BR™).

Problem 7.9 Solution: In general the direct image T'(&/) of a o-algebra is not any longer a c-algebra.
(%)) and (Z5) hold, but (£,) will, in general, fail. Here is an example: Take X = X’ = IN, take
any o-algebra & other than {#J,IN} inIN, and let T : IN - IN, T'(j) = 1 be the constant map. Then
T(@) =@but T(A) = {1} whenever A # @. Thus, {1} = T(A®) # [T(A)]° = IN\ {1} but equality
would be needed if T'(&/) were a o-algebra. This means that %, fails.

Necessary and sufficient for T(&f) to be a c-algebra is, clearly, that T~! is a measurable map
T7': X' > X.
Warning. Direct images of measurable sets behave badly — even if the mapping is good. For

example, the continuous (direct) image of a Borel set need not be Borel! (It is, however, analytic

or Souslin).

]
Problem 7.10 Solution: Consider for ¢ > 0 the dilation m, : R" — R", x = t - x. Since m, is
continuous, it is Borel measurable. Moreover, mt‘1 = m, ;; and so
— -l
t-B= ml/t(B)

which shows that A"(¢ - B) = /l”oml_/]t(B) =m, /t(/l")(B) is actually an image measure of A”. Now

n
show the formula first for rectangles B = _x1 la;, b)) (as in Problem 5.9) and deduce the statement
j=

from the uniqueness theorem for measures.

Problem 7.11 Solution:

(i) The hint is indeed already the proof. Almost, that is... Let u be some measure as specified
in the problem. From Problam 6.1(iii) we know that the Stieltjes function F := F, then
satisfies

pula,b) = F(b) — F(a) = A'[F(a), F (b))
#)
= 2'(F([a.b)))
()

= AoF([a,b)).

The crunching points in this argument are the steps (#) and (##).
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(#) This is o.k. since F was continuous, and the intermediate value theorem for continuous
functions tells us that intervals are mapped to intervals. So, no problem here, just a little

thinking needed.

(##) This is more subtle. We have defined image measures only for inverse maps, i.e. for
expressions of the type A!oG~! where G was measurable. So our job is to see that F can
be obtained in the form F = G~! where G is measurable. In other words, we have to
invert F. The problem is that we need to understand that, if F(x) is flat on some interval
(a, b) inversion becomes a problem (since then F~! has a jump—horizontals become
verticals in inversions, as inverting is somehow the mirror-image w.r.t. the 45-degree

line in the coordinate system.).

So, if there are no flat bits, then this means that F is strictly increasing, and it is clear

that G exists and is even continuous there.

If we have a flat bit, let’s say exactly if x € [a, b] and call F(x) = F(a) = F(b) = C
for those x; clearly, F~! jumps at C and we must see to it that we take a version of F~!,
say one which makes F~! left-continuous at C—note that we could assign any value
from [a, b] to F~1(C)—which is accomplished by setting F “1(C) = a. (Draw a graph

to illustrate this!)

There is A canonical expression for such a ‘generalized’ left-continuous inverse of an
increasing function (which may have jumps and flat bits—jumps of F become just flat

bits in the graph of F~!, think!) and this is:

G(y) =inf{x : F(x) > y}

Let us check measurability:

VWEG2 A} <= G(yy) =21
def
= inf{F 2y} =1

®
= F(D) <y

= yy € [F(4), ).
Since F is monotonically increasing, we find also ‘<=’ in step (&), hence
{G 2 4} =[F(4),0) € BR)

which shows that G is measurable. Even more: it shows that G~!(x) :=inf{G > 1} =

F(x). Thus, A'oF = A'oG™! = y is indeed an image measure of A!.

(i1)) We have F(x) = Féo(x) = 1 «)(x) and its left-continuous inverse G(y) in the sense of part
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(1) is given by
+00, y>1
G(y) =40, 0<y<l1.
—00, y < 0

This function is clearly measurable (use % to accommodate +o00) and so the claim holds in

this case. Observe that in this case F is not any longer continuous but only left-continuous.

Problem 7.12 Solution:

78

@)
(i)

(ii1)

(iv)

v)

See Figure 1.4 on page 4.

Each C, is a finite union of 2" closed and bounded intervals. As such, C, is itself a closed
and bounded set, hence compact. The intersection of closed and bounded sets is again closed
and bounded, so compact. This shows that C is compact. That C is non-empty follows from
the intersection principle: if one has a nested sequence of non-empty compact sets, their
intersection is not empty. (This is sometimes formulated in a somewhat stronger form and
called: finite intersection property. The general version is then: Let (K,),cn be a sequence
of compact sets such that each finite sub-family has non-void intersection, then (), K, #
@). This is an obvious generalization of the interval principle: nested non-void closed and

bounded intervals have a non-void intersection.

At step n we remove open middle-third intervals of length 37". To be precise, we partition
C

,—1 in pieces of length 37" and remove every other interval. The same effect is obtained if

we partition [0, o0) in pieces of length 37" and remove every other piece. Call the taken out

pieces F, andset C, = C,_; \ F,, i.e. we remove from C,_; even pieces which were already
3kt 3kt

30 3 2
k € IN, which comprises exactly ‘every other’ set of length 37". Since we do this for every

removed in previous steps. It is clear that F), exactly consists of sets of the form (

n, the set C is disjoint to the union of these intervals over k € IN; and n € IN.

Since C, consists of 2" intervals J; U ... U J,,, each of which has length 37" (prove this by a
trivial induction argument!), we get

A(Cn) = A(J1)+ +/1(J2n) =2n.37" = (%)

where we also use (somewhat pedantically) that
AMa, bl = AM[a,b) v {b}) = Ala,b) + M{b} =b—a+0=b—a.

Now using Proposition 4.3 we conclude that A(C) = inf, A(C,) = 0.

Fix € > 0 and choose n so big that 37" < e. Then C, consists of 2" disjoint intervals of length
37" < e and cannot possibly contain a ball of radius €. Since C C C,, the same applies to C.
Since € was arbitrary, we are done. (Remark: an open ball in IR with centre x is obviously an

open interval with midpoint x, i.e. (x —€,x + €).)
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(vi) Fixnandletk =0,1,2,... ,3"1 — 1. We saw in (c) that at step n we remove the intervals
F,, i.e. the intervals of the form

(3k:—1’3k:-2> _ <0‘*** o 1000, 0.k .. *2000...)
3 3 N—— —

n n

where we use the ternary representation of x. These are exactly the numbers in [0, 1] whose
ternary expansion has a 1 at the nth digit. As 0. s ... % 1 = 0. %% ... % 022222 ... has
two representations, the left endpoint stays in. Since we do this for every step n € N, the

claim follows.
(vii) Take t € C with ternary representation t = 0.f,1515...7; ..., 7; € {0,2} and map it to the

binary number b = 0%%% %’ with digits b; = %’ € {0, 1}. This gives a bijection between

C and [0, 1], i.e. both have ‘as infinitely many’ points, i.e. #C = #[0, 1]. Despite of that
AMC)=0#1=A(0,1])

which is, by the way, another proof for the fact that o-additivity for the Lebesgue measure

does not extend to general uncountable unions.

Problem 7.13 Solution:

(i) Since @ € & and ¥ € F we get
VEE&  : EUBeEebUVF = ECEUVF
and
VFeF :JUFE8UVF = FCEUVF

sothat # UF C & U F. A similar argument, using that X € & and X € %, shows
EUF CEMF.

(ii) Let A,BC X suchthat ANB # @, AUB # X andthat A ¢ B, B ¢ A. Then we find for
& :={0,A,A°, X} and & := {0, B, B¢, X} that

EUF ={0,A, B, A, B, X}
while
EUF ={0,A, B, A, B, AUB,A°UB‘,AU B, A°UB, X}.

A similar example works for & m .

(iii) Part (i) shows immediately that

c(BUF)Do(EUF) and o(EMF)Do(EUF).

79



R.L. Schilling: Measures, Integrals & Martingales

Conversely, it is obvious that
EUF Co(BUF) and EmMF Co(EUF)
so that
c(EUF)Co(EUF) and o(EMF)Co(EUF)
which proves

c(BUF)=0(EUF)=0(EMF).
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8 Measurable functions.

Solutions to Problems 8.1-8.26

Problem 8.1 Solution: We remark, first of all, that {u > a} = u~!([x, )) and, similarly, for the
other sets. Now assume that {u > f} €  for all §. Then

(u>a} =u((a,0)) = u_1< U [a + %,oo) >

SUI)

= {u>a+%} ed
ke]N%,_/

by assumption € &/

since & is a o-algebra.

Conversely, assume that {u > g} € o for all §. Then

{fu>a} = u_l([a, 00)) = u_1< ﬂ (a— %,oo))

kelN

AL

kelN

=ﬂ {u>a—%} ed.
kE]NH,_J

by assumption € &

since & is a o-algebra. Finally, as
{lu>al ={u<al and fuzal ={u<a}

we have that {u > a} €  if, and only if, {u < @} € & and the same holds for the sets {u >
al,{u<al.

Problem 8.2 Solution: Recall that B* € & if, and only if B* = BUC where B € & and C is any of
the following sets: @, {—oco}, {0}, {—00, c0}. Using the fact that & is a o-algebra and using this

notation (that is: B-sets carry an asterisk *) we see
(X)) Take B=@ € B,C =ftoseethat §* = Ul € B;

(Z,) Let B* € . Then (complements are to be taken in B

(B =(BUCO)
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=B‘NnC*
=R\ B NR\C)
=R\ BU{-00,+00})N(R\ C)
=(R\B)N(R\ O)U({-,+x} N (R \ C))
=R\ B)U({-o0,+00} N(R\ C))
which is again of the type 93-set union a set of the list §, {—oo}, {0}, {—00, 00}, hence it is
in %.
(;) Let B € B and B* = B, UC,. Then
B =JB=JB,uCcH=JB,ulJCc,=BuC
nelN nelN nelN nelN
with B € & and C from the list , {—o0}, {00}, {—00, 0}, hence B* € B.

A problem is the notation B = Qg(ﬁ). While the left-hand side can easily be defined by (8.5),
%(R) has a well-defined meaning as the (topological) Borel o-algebra over the set R, i.e. the o-
algebra in R which is defined via the open sets in R. To describe the open sets O6(R) of R we
use require, that each point x € U* € O(R) admits an open neighbourhood B(x) inside U*. If
X # zoo, we take B(x) as the usual open e-interval around x with ¢ > 0 sufficiently small. If
x = +oo we take half-lines [—o0, a) or (b, +o0] respectively with |a|, |b| sufficiently large. Thus,
@(ﬁ) adds to O(R) a few extra sets and open sets are therefore of the form U* = U U C with
U € O6(R) and C being of the form [—o0, a) or (b, +0c0] or @ or R or unions thereof.

Thus, O(R) =R n @(ﬁ) and therefore
BR) =R N BR)

(this time in the proper topological sense).

Problem 8.3 Solution:

82

(i) Notice that the indicator functions 1 4 and 1 4. are measurable. By Corollary 8.11 sums and
products of measurable functions are again measurable. Since A(x) can be written in the form
h(x) =1 ,4(x)f(x)+ 1 4(x)g(x), the claim follows.

(ii) The condition f;]| AnA, = Sil ANA, just guarantees that f(x) is well-defined if we set f(x) =

f;(x) for x € A;. Using Uj A; = X we find for B € B(R)

= anr'®=JAns B e
JEN JEN N —
ed

An alternative solution would be to make the A4;’s disjoint, e.g. by setting C; 1= A}, C :=
Ak \(Al U b U Ak—l) Then

f=z]lcjf=z]lcjfj
J J
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and the claim follows from Corollaries 8.11 and 8.10.

Problem 8.4 Solution: Since 1 5 is %-measurable if, and only if, B € % the claim follows by taking
B € 9 such that B ¢ & (this is possible as B ¢ .

Problem 8.5 Solution: By definition, f € £ if it is a step-function of the form f = Zszo a;1, with
some a; € Rand A; € &/. Since

+ _ - _
ff= Y ad, and fT= ) aly,,
0<j<N 0<j<N
a j>O a /-sO
f7 are again of this form and therefore simple functions.
The converse is also true since f}’ — f~—see (8.8) or Problem 8.6—and since sums and differences

of simple functions are again simple.

]|
Problem 8.6 Solution: By definition
ut(x) = max{u(x),0} and u”(x) = —min{u(x),0}.
Now the claim follows from the elementary identities that for any two numbers a,b € R
a+ 0 =max{a,0} + min{aq,0} and |a| = max{a,0} — min{a, 0}
which are easily verified by considering all possible cases a < 0 resp. a > 0.
HE

Problem 8.7 Solution: If we show that {u > a} is an open set, it is also a Borel set, hence u is

measurable.

Let us first understand what openness means: {u > a} is open means that for x € {u > a} we find
some (symmetric) neighbourhood (a ‘ball’) of the type (x — A, x + h) C {u > a}. What does this
mean? Obviously, that u(y) > a for any y € (x — h, x + k) and, in other words, u(y) > a whenever
y is such that |x — y| < h. And this is the hint of how to use continuity: we use it in order to find

the value of A.

u being continuous at x means that
Ve>0 36>0 Vy:|x—yl <6 |ux)—uly)| <e.

Since u(x) > a we know that for a sufficiently small ¢ we still have u(x) > a + €. Take this € and

find the corresponding 6. Then

u(x) —u(y) < lu(x) —u(y) <e  Vi|x-yl <6
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and since a + € < u(x) we get
at+e—uly)<e Vix—y|l <6

i.e. u(y) > a for y such that |x — y| < 6. This means, however, that 2 = 6 does the job.

Problem 8.8 Solution: The minimum/maximum of two numbers a, b € IR can be written in the form

min{a, b} = (a+b— |a—b|)

—_ N =

max{a, b} = 5(a+b+ |a—b|)

which shows that we can write min{x, 0} and max{x, 0} as a combination of continuous functions.

As such they are again continuous, hence measurable. Thus,
ut = max{u,0}, u~ = —min{u, 0}

are compositions of measurable functions, hence measurable.

Problem 8.9 Solution:

(i) From the definition of the supremum we get
sup fi(x) > 4 <= Jigel: f; (x)> 4
i

= i elf(x)> 4
= xe|Jif,> A

(i1) Let x € {sup; f; < A}. Then we have fj(x) < sup;er fi(x) < Aforall j € I; this
means x € {f; < A} forall j € I andso x € ﬂje,{fj < A}

(Note: ‘D’ is, in general, wrong. To see this, use e.g. f;(x) := —%, i € IN, and
A =0. Then we have {sup, f; <0} =0 # E =(,{f; <0}.)

(iii) Let x € |J,{f; = 4}. Then there is some i;, € I such that x € {f,-0 > A}, hence

sup f(x) > f; (x) > 4.

iel
(iv) This follows from

supfi(x) <A = Viel: filx) <4

iel
S Viel :xe{f, <1}
= xe[{fi <A

iel

(v)—(viil) can be proved like parts (i)—(@iv).
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Problem 8.10 Solution: The f; are step-functions where the bases of the steps are the sets Ai and
A;. Since they are of the form, e.g. {k27 <u < (k+ 1027} = {k27 <u} n{u < (k+ 127},

it is clear that they are not only in & but in o(u).

Problem 8.11 Solution:
Corollary 8.12 If u* are measurable, it is clear that u = u*t — u~ is measurable since differences

of measurable functions are measurable.

(For the converse we could use the previous Problem 8.10, but we give an alternative proof...)
Conversely, let u be measurable. Then s, T u (this is short for: lim,_,  s,(x) = u(x) and this
is an increasing limit) for some sequence of simple functions s,. Now it is clear that s* 1 u™,
and s is simple, i.e. u™ is measurable. As u = u* —u~ we conclude that u™ = u™ —u is again
measurable as difference of two measurable functions. (Notice that in no case ‘co — 00’ can

occur!)
Corollary 8.13 This is trivial if the difference u — v is defined. In this case it is measurable as
difference of measurable functions, so

fu<v}={0<u-v}

etc. is measurable.

Let us be a bit more careful and consider the case where we could encounter expressions of

the type ‘co — 00’. Since s, 1 u for simple functions (they are always IR-valued...) we get
(%)
(u< o) = {sups, <up = (s, <up=[(0<u=s,)
n n n

and the latter is a union of measurable sets, hence measurable. Now {u < v} = {u > v} and
we get measurability after switching the roles of u and v. Finally {u = v} = {u < v}n{u > v}
and {u # v} = {u = v}°.

Let me stress the importance of ‘<’ in () above: we use here

x € {sups, <u} < sups,(x) < u(x)

()

= s5,(x)<ulx) Vn
= xe s, <u)

and this would be incorrect if we had had ‘<’, since the argument would break down at ()

(only one implication would be valid: * = ’).

Problem 8.12 Solution: Since X is o-finite, there is an exhausting sequence A, T X with u(A4,) < oo.
Letu € M().
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e It is clearly enough to consider u > 0, otherwise we consider positive and negative parts
separately. By the Sombrero lemma (Theorem 8.8) there is a sequence (u,), C (&) with
0 <u,(x) T ulx)forall x € X. Since A, T X, we also get un]lAn 1 u, i.e. we can without
loss of generality assume that the standard representation of each u,, is of the form
M)

u = Z Gylla, o Cuw =0 Ay, €, u(A,,) < .

n
m=1

e From (an obvious variant of) Problem 5.12 we know that we can approximate A, ,, having

finite measure by some G, ,, € ¥ in such a way that y{]lGnm +1 Anm} < 27"/ M (n) (note:
Ly —1gl=T44p)-
Moreover,

M(n)

[i0) 1= )yl (%)
m=1

and since {f, #u,} C U, G2 A, We get u{f, #u,} <27"

As lim (x) = u(x) for all x, we find from the continuity of the measure (from above)

u(lim f, # u) < u<ﬂ Ui, ;éun})

n—00 u}’l

kelN n>k
oo
< lim Y u{f, #u,}
k—o00
n=k
0
< lim 27" =0.
k— o0
n=k

This shows that £(¥) 3 f,(x) — u(x) for all x ¢ N with u(N) = 0.

An alternative proof can be based on the monotone class theorem. We sketch the steps below

(notation as above and in Theorem 8.15):

o SetV, :={ue MA,N): 3f); CEA,NG), AN, € A, u(N,) =0, Yx & N,, : f:(x) = u(x)}.

Obviously V, is a vector space which is stable under bounded suprema (use a diagonal argu-

ment and the fact that the union of countably many null sets is again a null set).
e Observe thatl, ,1, 14 € V, forall A € & by the result of Problem 5.12.
e Use the monotone class theorem.

e Glue together the sets V, by considering u = lim, u1 4 . This leads again to a countable union

of null sets.

Problem 8.13 Solution: If uis differentiable, it is continuous, hence measurable. Moreover, since v’
exists, we can write it in the form

u(x +
u'(x) = lim
k— o0

) = u(x)

=l

1
k
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i.e. as limit of measurable functions. Thus, u’ is also measurable.

Problem 8.14 Solution: Itis sometimes necessary to distinguish between domain and range. We use

the subscript x to signal the domain, the subscript y for the range.

®

(i)

(iii)

(iv)

Since f ¢ R, — R, is f(x) = x, the inverse function is clearly f~1(y) = y. Soif we
take any Borel set B € %(Ry) we get B = f~1(B) C R, . Since, as we have seen, o(f) =
S7HBR,)), the above argument shows that /' (B(R,)) = B(R,), hence () = B(R,).

The inverse map of g(x) = x? is multi-valued, i.e. if y = x?, then y = i\/;. Sog! :
[0,00) = R, g71(y) = iﬁ. Let us take some B € %(R)). Since g~ ! is only defined
for positive numbers (squares yield positive numbers only!) we have that g '\(B) =g Y(Bn
[0, 0)) = \/B N[0, oo)U(—\/B N [0, o)) (where we use the obvious notation \/X = {\/E :
a€ A} and —A = {—a : a € A} whenever A is a set). This shows that

o(g) = (VBU(=VB) : B€ B,BC[0,00))
={VBU(-VB) : B€[0,00)Nn B}

where we use the notation of trace o-algebras in the latter identity.

(It is an instructive exercise to check that o(g) is indeed a o-algebra. This is, of course, clear
from the general theory since o(g) = g~ ([0, c0) N B), i.e. it is the pre-image of the trace

o-algebra and pre-images of o-algebras are always c-algebras.

A very similar calculation as in part (ii) shows that

oc(h)={BU(—B) : Be %,B C [0,)}
={BU(—B) : Be[0,00)NnAB}.

As warm-up we follow the hint. The set {(x,y) : x + y = a} is the line y = a — x in the
x-y-plane, i.e. a line with slope —1 and shift a. So {(x,y) : x + y > a} would be the points
above this line and {(x,y) : f=2x+y 2> a} = {(x,y) : x+y € [a, f]} would be the points

in the strip which has the lines y = « — x and y = f§ — x as boundaries.
More general, take a Borel set B € % (R) and observe that
FY(B)={(x,y) : x+y€ B}.

This set is, in an abuse of notation, y = B — x, i.e. these are all lines with slope —1 (135
degrees) and every possible shift from the set B—it gives a kind of stripe-pattern. To sum

up:

o(F) = {all 135-degree diagonal stripes in R? with ‘base’ B € B(R)}.
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(v) Again follow the hint to see that {(x,y) : x2 + y* = r} is a circle, radius r, centre (0,0). So
{(x,) : x*+ y* < r} is the solid disk, radius r, centre (0,0) and {(x,y) : R > x*+ y* >
r} = {(x,y) : x>+ y* € [r, R]} is the annulus with exterior radius R and interior radius r

about (0, 0).

More general, take a Borel set B C [0, ), B € B(R), i.e. B € [0, 0) N B(R) (negative
radii don’t make sense!) and observe that the set {(x,y) : x> 4+ y*> € B} gives a ring-pattern

which is ‘supported’ by the set B (i.e. we take all circles passing through B...). To sum up:

o(G) ={a set consists of all circles in R? about (0,0)

passing through B € &[0, c0) N B(R)}.

Problem 8.15 Solution: Assume first that u is injective. This means that every point in the range

u(R) comes exactly from one uniquely defined x € R. This can be expressed by saying that
{x} = u'({u(x)}) — but the singleton {u(x)} is a Borel set in the range, so {x} € o(u) as
o) = u~'w®) N B).

Conversely, assume that for each x we have {x} € o(u). Fix an x, and call u(xy) = @. Since u
is measurable, the set {u = a} = {x : u(x) = a} is measurable and, clearly, {x,} C {u = «a}.
But if we had another x, # x; € {u = «} this would mean that we could never ‘produce’ {x,} on
its own as a pre-image of some set, but we must be able to do so as {x,} € o(u), by assumption.
Thus, x; = x3. To sum up, we have shown that {u = «} consists of one point only, i.e. we have

shown that u(x,) = u(x,) implies x, = x; which is just injectivity.

Problem 8.16 Solution: Clearly u : R — [0,00). So let’s take I = (a,b) C [0,). Then

u~'((a, b)) = (—b, —a) U (a, b). This shows that for y := Aou~!

p(a, b) = Aou™'((a, b)) = A((—b,—a) U (a, b)) = A(—b,—a) + Aa, b)
= (—a—(=b)) + (b—a) =2(b— a) = 2A((a, b)).

This shows that y = 24 if we allow only intervals from [0, o0), i.e.
ull) = 2/1(1 N [0, oo)) for any interval I C R.

Since a measure on the Borel sets is completely described by (either: open or closed or half-open
or half-closed) intervals (the intervals generate the Borel sets!), we can invoke the uniqueness

theorem to guarantee that the above equality holds for all Borel sets.

Problem 8.17 Solution:
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(1) Because of Lemma 7.2 it is enough to check measurability for some generator. Let B =

[a,b) € #,a < b. We have

gifa,b <0
0 '(B)y=En (=Vb, +Vb)if a < 0,b> 0
(—\/3,—\/2] u [\/Z, Vb)ifa,b>0

These sets are in B (E), therefore Q is B(E)/ % (R)-measurable.

(i) Denote by T the embedding of E into R, i.e. T : x — x. Formally, we get
WT? € B) = v(+T € V/B).

More precisely: we have already seen that voQ~! is a measure (Theorem 7.6). Since #
is N-stable and voQ~! a finite measure (v comes from a finite Lebesgue measure), we get
uniqueness from Theorem 5.7, and it enough to consider sets of the form B = [a,b) € 7,

a<b.

e Part (i) gives

0, b<0ora>1
V(O™ (B)) =4 A([0, /b)), a<0,b>0
Aya,VbAa1), 0<a<l

0, b<Qora>1

\/b/\ 1- \/OVa/\ 1, otherwise.

L

e Again by part (i)

0, b<Oora>1
VO™ (B) =3 A((=Vb) v (=1), Vb A 1)), a<0,b>0

1

k;ﬂ([(—ﬁ)v(—m, VoulyaVbal), 0<a<l

0, b<Oora>1

22010V \/aA1,/bA 1), otherwise

L
-

0, b<O0ora>1

(VbA1) = (OAaAl), otherwise

Problem 8.18 Solution:
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e clear, since u(x — 2) is a combination of the measurable shift 7, and the measurable function

u.

e thisis trivial since u — ¢e" is a continuous function, as such it is measurable and combinations

of measurable functions are again measurable.

e this is trivial since u +— sin(u + 8) is a continuous function, as such it is measurable and

combinations of measurable functions are again measurable.
e iterate Problem 8.13

e obviously, sgnx = (=1) - L _, 5)(x) + 0 - Ly, (x) + I - L oy(x), i.e. a measurable function.
Using the first example, we see now that sgn u(x — 7) is a combination of three measurable

functions.

Problem 8.19 Solution: Betrachte zum Beispiel T : [0, 1) — [0, 1) mit T'(x) = % und w,, : [0,1) -
R mit w,(x) = (=1)"1; /5. 1(x).

Problem 8.20 Solution: Let A C Rbesuchthat A ¢ 9. Thenitis clear thatu(x) = 1 4,(x)—1 4.(x)is
NOT measurable (take, e.g. A = { f = 1} which should be measurable for measurable functions),

but clearly, | f(x)| = 1 and as constant function this IS measurable.

Problem 8.21 Solution: We want to show that the sets {u < a} are Borel sets. We will even show
that they are intervals, hence Borel sets. Imagine the graph of an increasing function and the line
¥y = a cutting through. Essentially we have three scenarios: the cut happens at a point where (a) u
is continuous and strictly increasing or (b) u is flat or (c) u jumps—i.e. has a gap; these three cases

are shown in the following pictures: From the three pictures it is clear that we get in any case an

/. L S L

e /

interval for the sub-level sets {u < y} where y is some level (in the pic’s y = a or = ), you can

read off the intervals on the abscissa where the dotted lines cross the abscissa.

Now let’s look at the additional conditions: First the intuition: From the first picture, the continuous
and strictly increasing case, it is clear that we can produce any interval (—oo, b] to (—o0, a] by
looking at {u < f} to {u < a} my moving up the f-line to level a. The point is here that we get

all intervals, so we get a generator of the Borel sets, so we should get all Borel sets.
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The second picture is bad: the level set {u < f} is (—oo, b] and all level sets below will only come
up to the point (—oo, c], so there is no chance to get any set contained in (c, b), i.e. we cannot get

all Borel sets.

The third picture is good again, because the vertical jump does not hurt. The only ‘problem’ is
whether {u < f} is (—o0, b] or (—o0, b) which essentially depends on the property of the graph
whether u(b) = f or not, but this is not so relevant here, we just must make sure that we can get
more or less all intervals. The reason, really, is that jumps as we described them here can only
happen countably often, so this problem occurs only countably often, and we can overcome it

therefore.

So the point is: we must disallow flat bits, i.e. o(u) is the Borel o-algebra if, and only, if u is strictly
increasing, i.e. if, and only if, u is injective. (Note that this would have been clear already from

Problem 8.15, but our approach here is much more intuitive.)

Problem 8.22 Solution: For every n € IN the function
n
g, () 1= Y 275 (x). xeX,
i=1

is o /B(R)-measurable. Therefore, g = lim,_, . g, is &/ /9B (R)-measurable (pointwise limit of

measurable functions), and so o(g) C &. For the inclusion & C o(g) we define
:={Aed : A€o(g)}.

X ist a o-Algebra:
(Z)) X €ZXsince X € & and X € o(g).

(£,) For A € £ we have A € o(g); since o(g) is a o-algebra, we see that A° € o(g); hence,
A e X

(Z3) For (A,),cn C Zwesee |J,on A, € 0(g), thus |, 4, € Z.
Since G; = {g = 27"} € 6(g) we see that € C . Consequently, o = 6(%) C o(g).

Problem 8.23 Solution: Without loss of generality, assume that u is right-continuous (left-continuity
works analogously). Approximate u with simple functions:
2n?
u,(x) 1= Z u(xly VLo (%)

i=1

where x? 1= —n + i The functions u,, are obviously Borel measurabl. We claim:

u(x) = lim u,(x).
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Indeed: For each x € R there is some N € IN such that x € [-N, N]. By definition, we find for

alln > N,
0, () = (M)
n

(% is the smallest number of the form %, k € 7., which exceeds x.) Because of the right-

continuity of u we get u,(x) — u(x) as n — oo. Therefore, u is Borel-measurable (pointwise limit

of measurable functions).

Problem 8.24 Solution: Every linear map on a finite-dimensional vector space is continuous, hence

Borel measurable.

Note that f : R — R?, f(x) := (x,0)7, is continuous, hence Borel measurable. This map is,

however, not measurable with respect to the completed Borel o-algebras:

To see this, let A C R, A & B(R), be a subset of a Lebesgue null set. For A x {0} we see
that A x {0) € B(R2): this follows from A x {0} € N := R x {0} and 22(N) = 0 (cf.
Problem 4.15, Problem 6.7). On the other hand, f~'(A x {0}) = A ¢ B[R) c BR), ie.
f (R, B(R)) — (R2, B(R2)) is not measurable.

Problem 8.25 Solution: Without loss of generality we consider the right-continuous situation. The
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left-continuous counterpart is very similar.

e Fix w € Q. Note that it is enough to show that 7 — &(t, @)1, 5, (?) =: E%b(¢, w) is measurable
for all a < b.

Indeed: Because of

£t @) = lim &G w)

the map ¢ — &(f,w) is measurable (pointwise limit of measurable functions, cf. Corol-
lary 8.10.

In order to keep notation simple, we assume that a = 0 and b = 1; the general case is similar.

Define
-1

o= B ()11 0

21 on

[2"]+1 tJ+1

For any t € [0, 1] we have | t, and because of right-continuity,

127¢] + 1
Zn

(:n(t’a)):§< ,CU) — E(I’a))ze[o 1]501(1 )
For t & [0, 1] we have &,(t,w) = 0 = £%!(¢, w) and, thus,

Ot w) = lim &, (t,w) VIER,w € Q.
n—o0
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Consequently, it is enough to show (by Corollary 8.10) that each t — &, (¢, @) is measurable.
For ¢ € R we get

(1 &0 <a) Lj[é?i;l>€£%@0
iel

——
€% (R)

where
I:={ie{Q“q2”—lk§<%%Lw><a}-

This proves that 7 — &, (¢, w) is measurable.

e Since t — £(t, w) is right-continuous, we have
sup &(7, ) = sup £(1, ). (%)
teR e

Indeed: The estimate ‘>’ is clear, i.e. we only have to show ‘<’. Using the definition of the

supremum, there is for each € > 0 some s € R such that
¢(s,w) 2 sup&(t, ) —e.
teR

Because of right-continuity we find some r € Q, r > s, such that |&(r, w) — &(s, w)| < €.
Therefore,

sup é(t, w) = &(r, ) = E(s, ) — € = sup &(t, w) — 2e.
e teR

Since € > 0 is arbitrary, the claim follows.

From (x) we get that the map @ — sup,c (7, @) is measurable (as supremum of countably

many measurable functions, cf. Corollary 8.10).

Problem 8.26 Solution: ‘<’: Assume that there are &/ /% (R)-measurable functions f,g : X - R
satisfying f < ¢ < gand u{f # g} =0. For any x € R we get

lo<sx}={d<x.f=gluld<xf#g}
gs

x, f=glu{dp<x f#g}.

'

=:A =N

= {
= {

Since f and g are measurable, we see that A € &/. For N weonly get N C {f # g},i.e. Nisa
subset of a y-null set. By the definition of o (see Problem 4.15) we find {¢p < x} € d.
‘=’: Assume, first, that ¢ is a simple function, i.e.

N

¢ =Y el (x).,  x€X,

i=1

withc; € R, A; € o (i =1,...,n). From the definition of o/ we get that the A; are of the form

A; = B;+ N,
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with B; € & and N, being a subset of a y-null set M; € <. Define

n n

f() =) edy (), gx) i= Y elp (),  xEX.

i=1 i=1

These are clearly &/ /% (IR)-measurable functions and f < ¢ < g. Moreover,

uf #8) < u <U M,.> < Y umy) =o.
i=1 i=1

This proves that the claim holds for simple functions.

Let ¢ be any y/ 2% (R)-measurable function. Using Corollary 8.9, we get a sequence (¢,),cy of
E/ 3B (R)-measurable simple functions such that ¢,(x) — ¢(x) for all x € X. By the first part of
this proof, there are &/ /9 (R)-messbare Funktionen f,, g,, n € IN, such that mit f, < ¢, < g,
and pu(f, # g,) = 0. Set

f(x) :=liminf f,(x), g(x) :=liminf g,(x), x € X.

The functions f and g are again &/ /% (IR)-measurable (Corollary 8.10) and we have f < ¢ < g.

Moreover,

ﬂ(f#g)<M<U{fn#gn}> < ) H(fu# &) =0.
nelN nelN




9 Integration of positive functions.

Solutions to Problems 9.1-9.14

Problem 9.1 Solution: We know that for any two simple functions f,g € £, we have I,(f +g) =
L,(f )+ 1 4(8) (= additivity), and this is easily extended to finitely many, say, m different positive

simple functions. Observe now that each £, 1, is a positive simple function, hence

m m

1, <2:n11,4n> - 21,, (&14,) = 2l (14,) = 2 ().

Put in other words: we have used the linearity of /,,.

Problem 9.2 Solution: We use indicator functions. Note that any fixed x can be contained in k €
{0,1,..., N} of the sets A,. Then x is contained in A, U --- U Ay as well as in ('2‘) of the pairs
A, U A, where n < k; as usual: (':) = 0if m < n. This gives

k
Z Iy, =k<l+ <2> =140.0a, t Z Ly, Ly,
n

n<k

= ]lAluu-uAN + Z ]lAnnAk-

n<k

Integrating this inequality w.r.t. u yields the result.

Problem 9.3 Solution: We check Properties 9.8(i)—(iv).
(i) This follows from Properties 9.3 and Lemma 9.5 since f Lydp=1,1,) = u(A).

(i1) This follows again from Properties 9.3 and Corollary 9.7 since for u, € £, with u = sup, u,,

(note: the sup’s are increasing limits!) we have

/audy =/(xsupund,u=suplﬂ(aun)
n n

=supal,(u,)
n

=asupl,(u,)
n
= a/udu.
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(iii) This follows again from Properties 9.3 and Corollary 9.7 since for u,,v, € &, withu =

sup, u,, U = sup, v, (note: the sup’s are increasing limits!) we have
/(u+ v)du = /nli_)ngo(u,, +v,)du= }L%I”(un +v,)
= '1131010 (1, )+ 1,(v,))
= lim 7,(u,) + lim 1, (v,)
nh—>o0 n—oo

:/ud,u+/vd/4.

(iv) This was shown in Step 1 of the proof of the Beppo Levi theorem 9.6

Problem 9.4 Solution: Consider on the space ([—1, 0], 1), A(dx) = dx is Lebesgue measure on [0, 1],

the sequence of ‘tent-type’ functions

0 “1<xg-1

flo =1 ST ke,

B(x+), -1 <x<0,
(draw a picture!). These are clearly monotonically increasing functions but, as a sequence, we do
not have f;(x) < fj,(x) for every x! Note also that each function is integrable (with integral %k)

but the pointwise limit is not integrable.

Problem 9.5 Solution: The first part is trivial since it just says that the sequence becomes increasing
only from index K onwards. This K does not depend on x but is uniform for the whole sequence.
Since we are anyway only interested in u = lim,_, , u, = sup,s g u,, we can neglect the elements

uy,...,ug and consider only the then increasing sequence (u,, x),. Then we can directly apply

Beppo Levi’s theorem, Theorem 9.6.
The other condition says that the sequence u,,, x(x) is increasing for some K = K(x). But since K
may depend on x, we will never get some overall increasing behaviour of the sequence of functions.
Take, for example, on (R, B(R), A := 1),

1, (%) = 120+ 1 0(6) = 1206 = D)1y ().
This is a sequence of symmetric tent-like functions of tents with base (—1/n, 1/n) and tip at n?
(which we take out and replace by the value 0). Clearly:

u,(x)—— 0 and /u,,(x)dx =1 Vn

Moreover, if n > K = K(x) with K(x) defined to be the smallest integer > 1/|x|, then u,(x) = 0
so that the second condition is clearly satisfied, but f u,(x)dx = 1 cannot converge to f 0dx =
f u(x)dx = 0.
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Problem 9.6 Solution: Following the hint we set s,, = u; +u, + ... +u,,. As a finite sum of positive

measurable functions this is again positive and measurable. Moreover, s, increasesto s = Y, u,

as m — oo. Using the additivity of the integral (9.8 (iii)) and the Beppo Levi theorem 9.6 we get

/Zund,u=/supsmd,u=sup/smd,u
n=1 n m

Conversely, assume that 9.9 is true. We want to deduce from it the validity of Beppo Levi’s theorem
9.6. So let (w,),c be an increasing sequence of measurable functions with limit w = sup, w.

For ease of notation we set w, = 0. Then we can write each w, as a partial sum
w, =W, —w,_)+ -+ (w; —wy)

of positive measurable summands of the form u; := w; — w,_,. Thus,

m (o)
wm=2uk and w=2uk
k=1 k=1

and, using the additivity of the integral,

o0 m
9.9
/wd,u = Z/ukd,u=sup/2ukd/4=sup/wmd/,t.
k=1 m k=1 m

Problem 9.7 Solution: Set v(A4) := / 1 ,udyu. Then v is a [0, co]-valued set function defined for
Ae d.

(M) Since 14 = 0 we have clearly v(@) = [ 0-udu = 0.

(M) Let A = -, A, adisjoint union of sets A, € &. Then

and we get from Corollary 9.9

v(A)=/<g]lAn>~ud,u=/g(]lAn-u)dy
>

/]lAn 'udﬂ
n=1

= ) WA,

n=1
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Problem 9.8 Solution: This is actually trivial: since our c-algebra is Z(IN), all subsets of IN are
measurable. Now the sub-level sets {u < a} = {k € IN : u(k) < a} are always C IN and as such

they are € &(IN), hence u is always measurable.

Problem 9.9 Solution: We have seen in Problem 4.7 that y is indeed a measure. We follow the

instructions. First, for A € &/ we get

/ Lydpu=p(A) = Y, u(A) = / Lydu;.

JEN JEN

By the linearity of the integral, this easily extends to functions of the form a1, + 1, where

A Bedanda,f >0
a/]lAd,u+ﬂ/]le/4

/1Adﬂj+ﬂ2/1gdyj
jG]N j

JEN

/(a]lA +plg)dy;

/(a]lA +Blp)du

JjeEN

and this extends obviously to simple functions which are finite sums of the above type.

/fd,u— /fd,uj VfeéE&,.
JjeEN

Finally, take u € M, and take an approximating sequence u,, € £, with sup, u, = u. Then we get

by Beppo Levi (indicated by an asterisk )

o0
*
udyu = su u, dy = su u, du;
/ H nP/nM nPZ_,/nM,
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where we repeatedly use that all sup’s are increasing limits and that we may swap any two sup’s

(this was the hint to the hint to Problem 4.7.)

Problem 9.10 Solution: Set w, := u — u,. Then the w, are a sequence of positive measurable

functions. By Fatou’s lemma we get
/ limninf w,du < limninf / w,du
= limninf (/ud,u —/un d,u>
= /udu - limsup/un du
n

(see, e.g. the rules for lim inf and lim sup in Appendix A). Thus,

/ud,u—limsup/und,uz/liminfwna’,u
n n

=/liminf(u—un)d,u
n
=/(u—limsupun)d,u

n
and the claim follows by subtracting the finite value / u d u on both sides.

Remark. The uniform domination of u, by an integrable function u is really important. Have alook
at the following situation: (IR, B (R), 1), A(dx) = dx denotes Lebesgue measure, and consider the
positive measurable functions u,,(x) = 1, ,,1(x). Then limsup, u,(x) = 0 but limsup, f u,di =

limsup,n =0 # [0d4.
L

Problem 9.11 Solution:
(i) Have a look at Appendix A, Lemma A.2.
(i) You have two possibilities: the set-theoretic version:

u(liminf 4,) = u( LkJ N A,,)

n=>k

= sup M( ﬂ An>
k n=k

——
<H(A,) Vnzk
hence, <inf 5, u(A,)

<
< sup g u(A,)

= liminf u(A,)
n
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which uses at the point * the continuity of measures, Proposition 4.3.

The alternative would be (i) combined with Fatou’s lemma:

m lim inf A,) = / Lyiming, 4, dH
= / limninf 1, du
< limninf / 1 A, du

(iii) Again, you have two possibilities: the set-theoretic version:

,u(limnsup A,) = y< O U An>

n=k

# .
= 1r]1f ,u< U An>
n=k

N——
> u(A,) VY nzk
hence, > sup,», #(4,)

> inf sup u(4,)

n=k
= limsup u(A,)
n
which uses at the point # the continuity of measures, Proposition 4.3. This step uses the
finiteness of u.

The alternative would be (i) combined with the reversed Fatou lemma of Problem 9.10:

,u(limsupAn) =/]lhmsupnAn du

n

= /limsup]lAn du
n

> limsup/llAn du

n

(iv) Take the example in the remark to the solution for Problem 9.10. We will discuss it here in its
set-theoretic form: take (R, (R), 4) with A denoting Lebesgue measure A(dx) = dx. Put
A, = [n,2n] € B1R). Then

limsup A, = (1] [ J1n.2n1 = (1k, 00) = 0

k n=k k

But 0 = A(¥) > limsup, A(A4,) = limsup,n = oo is a contradiction. (The problem is that
Ak, 00) = o)

Problem 9.12 Solution: We use the fact that, because of disjointness,

1=ﬂx=ihn
n=1
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so that, because of Corollary 9.9,

/udﬂ=/<g]lAn>-udﬂ=/g(]lAn~u)dy
=2/]1An-udﬂ.

Assume now that (X, &/, u) is o-finite with an exhausting sequence of sets (B,), C & such that

B, T X and u(B,) < oo. Then we make the B,’s pairwise disjoint by setting
Al :=B1, Ak :=Bk\(BlU"'UBk_l)sz\Bk_l

Now take any sequence (a;), C (0, oo) with Zk ap(A;) < co—e.g.aq i= 2"‘/(,u(Ak) + 1)—and
put

oo

w(x) := Z ak]lAk.

n=1
Then w is integrable and, obviously, w(x) > 0 everywhere.

Problem 9.13 Solution:

(i) We check (M), (M,). Using the fact that N(x, -) is a measure, we find

uN (@) = /N(x,ﬂ)ﬂ(dx) = /Ou(dx)=0.

Further, let (4,),ew C & be a sequence of disjoint sets and set A = |-J, A,. Then
UN(A) = / N (), 4,) ) = / 3 N, A ud)
n
9.9
=) [ N(x. A,) u(dx)

= D uN(A,).

(i1)) Wehave for A,Be o/ and a,f > 0,
Nty +f1p)00 = [ (a0 + P10) NGx.dy)

=a/]1A(y)N(x,dy)+ﬂ/ﬂB(y)N(x,dy)

=aNT1,(x)+ N1 z(x).

Thus N(f + g)(x) = N f(x)+ N g(x) for positive simple f, g € £1(&). Moreover, since by

Beppo Levi (marked by an asterisk =) for an increasing sequence f, T u

sup N £y (x) = sup / £,0) N(x,dy) = / sup f() N(x. )
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=/u(y)N(x,dy)
= Nu(x)

and since the sup is actually an increasing limit, we see for positive measurable u, v € M* ()

and the corresponding increasing approximations via positive simple functions f;, g;:
N@u+v)(x) = Sup N(fi + gi)(x)
= Sll,lp N fi () + sip Ng,(x)

= Nu(x) + Nov(x).

Moreover, x — N1 ,(x) = N(x, A) is a measurable function, thus N f(x) is a measurable
function for all simple f € £(«/) and, by Beppo Levi (see above) Nu(x), u € Mt (), is

for every x an increasing limit of measurable functions N f,(x). Therefore, Nu € M* ().

(i) fu=1,, A € &, we have
/]lA(y)MN(dy) = uN(A) = /N(x, A) u(dx)

= / N1 ,4(x) p(dx).
By linearity this carries over to f € £7(</) and, by a Beppo Levi-argument, to u € M ().

Problem 9.14 Solution: Put
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v(A) :=/u-]lA;d//t+/(l—u)-]lA;dpt.

If A is symmetric w.r.t. the origin, A* = —A~ and A* = A. Therefore,

v(A)=/u-]lAd;4+/(l—u)-]lAdy=/]lAd,u=,u(A).
This means that v extends p. It also shows that v(@) = 0. Since v is defined for all sets from B (IR)
and since v has values in [0, oo], it is enough to check o-additivity.

For this, let (4,), € %(R) be a sequence of pairwise disjoint sets. From the definitions it is clear
that the sets (An);;—F are again pairwise disjoint and that Un(An):;r = ( Un An);:. Since each of the

set functions

Bl—»/u~]le/4, Cl—)/(l—u)-]lcdy

is o-additive, it is clear that their sum v will be ¢-additive, too.

The obvious non-uniqueness of the extension does not contradict the uniqueness theorem for ex-

tensions, since X does not generate B(R)!




10 Integrals of measurable functions.
Solutions to Problems 10.1-10.9

Problem 10.1 Solution: Let u, v be integrable functions and a,b € R. Assume that either u, v are

real-valued or that au + bv makes sense (i.e. avoiding the case ‘co — c0’). Then we have
lau + bu| < |au| + [bv| = |a| - |u] + |b] - [v] < K(|u] + |v])

with K = max{|al, |b|}. Since the RHS is integrable (because of Theorem 10.3 and Properties
9.8) we have that au + bv is integrable by Theorem 10.3. So we get from Theorem 10.4 that

/(au+bv)d;4=/aud,u+/bvd,u=a/udy+b/vd,u

and this is what was claimed.

Problem 10.2 Solution: Without loss of generality we consider u on (0, 1] (otherwise we have to
single out the point x = 1, and this is just awkward in the notation...) We follow the hint and

show first that u(x) := x~'/2,0 < x < 1, is Lebesgue integrable. The idea here is to construct a

\2
sequence of simple functions approximating u from below. Set x; = (i) ,i=0,1,...,nand
n—1 n—1
n
) 1= P 1) = 2 7 L)
i=0

This is clearly a simple function. Also u, < u and lim,,_, , u,(x) = sup, u,(x) = u(x) for all x.
Since P(A) is just A(A N (0, 1]), the integral of u,, is given by

n—1

/undP:IP(un)=zl_:ll

n—1
1 1 2 1 1 .

1 1
= [2i+2]==~-2n=2
n%l l n

and is thus finite, even uniformly in n. So, Beppo Levi’s theorem tells us that

/udP=sup/undP<sup2=2<oo
n n
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showing integrability.
Now u is clearly not bounded but integrable.

Problem 10.3 Solution: Clearly, v is defined on & and takes values in [0, oo]. Since 14 = 0 we have

v(ﬂ)=/]lﬂ-ud;4=/0d,u=0.

If (A,),enw C & are mutually disjoint measurable sets, we get

(Ya:) = [tz -t
n=1 .
=/21An-udu
n=1
=Z/1An-udﬂ = 2 vA4,)
n=1

n=1

which proves o-additivity.

Problem 10.4 Solution: ‘=’: since the A; are disjoint we get the identities

HUI.A]-:];HAJ. and so ”']IUjA,-zgu']lAj»

hence |ul 4 | = u|l, < |”|]1U-A, = |”]lU-A,| showing the integrability of eachul , by Theorem
n n J J "
10.3. By a Beppo Levi argument (Theorem 9.6) or, directly, by Corollary 9.9 we get

o0 [So] [Se]
Y [ an=3 [luitydu= [ Pty an
j=174; j=1 Jj=1

:/|u|]1UjAj du < oo.

The converse direction ‘<=’ follows again from Corollary 9.9, now just the other way round:

00 o0
[ty g an= [ Rty an= 3 [ 1t
i j=i
= Z/ luldu < oo
j=174;

showing that ullyy A, is integrable.
J

Problem 10.5 Solution: For any measurable function u we have u € L' () < |u| € L£!(u). This

means that we may assume that u > 0. Since

k
Z ]1{2n<u<2n+] }Ll T u]l{u>0}

n=—k
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we can use Beppo Levi’s theorem to conclude

/udu=/ udy = Z/ udy.
(u>0} nez J (2r<u<artl)

Because of the monotonicity of the integral,

c:=2/ 2"d;4<2/ udpu < Z/ 2l gy,
ne? {2n<u<2n+l} ne? {2n<u<2n+l} ne? {2n<u<2n+l}

1.e.

c<) / udu < 2C.
ne?, {2n<u<2n+l}

Therefore the following assertions are equivalent:
uel'(y < Y udp < oo
ne” {2n<u<2n+l }

&= C=) 22" <u<2"} < oo
nez

Problem 10.6 Solution: Let us show the following inequalities:

00 o0
2 ]]‘{|u|>l}(x) < |u(x)| < 2 ]]-{|u|>l}(X) Vx € X.
i=1

i=0
First proof:
e 0o o k 00
D s = 2 2 Ltttz = 0 O Likwtstuisiy = D KL (ki fufi)
i=1 i=1 k=i k=1 i=1 k=1
and
o0 o0
Z KL pisuziy S Z [l L s pupshy = 16l L1y
k=1 k=1
and

(] o0
Dk iz > (0l = DL pispugsiy = Gl = Dl jsny > 1l 1) = Lisoy-
k=1 k=1

So,
o0 o0 o0
D Vs < Bl sy < Tl < T4 ) Tsiy = D L jjusiy-

Second proof: For x € X, there is some k € IN;, such that k < |u(x)| < k + 1. Therefore,
xe{lul=2i} Vie{o,...,k}

and

x & {|ul =i} Vizk+1.
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Thus,
2 s () = k+ 1.

i€N,
Since k < |u(x)| < k+ 1 we get
D L@ =k+12ux)| >k=k+1)-1= ( > ]l{|u|>i}(x)> ~1.
i€, i€N,

As 1 =1{,50) (u 2 0, by assumption) we get the claimed estimates.

Integrating these inequalities we get

and (ii) follows. If u € L£'(u), then we get Z,.Zl u(lu| = 1) < oo. On the other hand, if u is
measurable, and Y. u(|u| > i) < oo, then we get f lu|dp < o0, i.e.u € L'(y) and (i) follows.

The finiteness of the measure x4 was only used for f ldu < ocoor pu{|u] =0} < oo —which is only

needed for the second estimate in (ii). Hence, the lower estimate in (ii) holds for all measures!

Problem 10.7 Solution: One possibility to solve the problem is to follow the hint. We provide an

alternative (and shorter) solution.

(i) Observe thatu; —v > 0 is a sequence of positive and integrable functions. Applying Fatou’s
lemma (in the usual form) yields (observing the rules for lim inf, lim sup from Appendix A,

compare also Problem 9.10):

/lim_infujdy—/vd,u=/lim,inf(uj—v)dy
J J

< lim inf /(uj —v)du
J

:lim,inf/ujd/,t—/vd,u
J

and the claim follows upon subtraction of the finite (/) number f vdpu.

(i) Very similar to (i) by applying Fatou’s lemma to the positive, integrable functions w—u; > 0:

/wd,u—/limsupujdu=/lim'inf(w—uj)d;4
j J

<1im_inf/(w—uj)dy
J

:/wdy—limsup/ujdy
J

Now subtract the finite number f w d u on both sides.
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(iii) We had the counterexample, in principle, already in Problem 9.10. Nevertheless...
Consider Lebesgue measure on R. Put fj(x) = —]l[_Zj’_j](x) and gj(x) = ]l[j,zj](x)-

Then liminf f;(x) = 0 and limsup g;(x) = O for every x and neither admits an integrable

minorant resp. majorant.

Remark. Here is an even stronger version of Fatou’s Lemma. For this we introduced the extended

integrable functions

L'y = {ueM(d) : /u+d,u<oo,/u_d;4<oo}

L) = {ueM(d) : /u+dﬂe[0,oo],/u_dﬂ<oo}.

Foru € £'(u) or u € £1¢(u) we may define [udy = [utduy— [u"duinRor RU {+oo},
respectively. Note that £'(u) is not a vector space, but it is still additive and positively homogen-
eous. Then we have
Let (u,),ey C M(H) such that u,, > u for some u € che(p).

i) liminf,_ u, € L1¢(u);

ii) liminf,_ o [ u,du > [ liminf du;

n—oo ul’l

iii) ifliminf,_ . [ u,dp < oo, then liminf,_  u, € L1(p).
Proof. 1) We have

(liminf, un)+ >ut

u, >u = liminfu, >u = B
" (liminf, u,)” <u”

and so [ (liminf,u,)” du < [u”dp < o, ie.liminf,u, € L1¢(n).

ii) Note that u, —u > 0. By (the ordinary) Fatou’s lemma,
lim inf /(un —uw)du > /liminf(un —u)du.
n n
Adding on both sides f udyu — this is possible since we do not get an expression of type
“oo — 007, we get
liminf/un du > /liminfu,, du.
n n
iii) We have
+ -_—
/ <liminf un> dy = /liminf u, + <liminf un> du
< /liminf u,+u dyu
n
= /liminfun du +/u_ du
n

Slimninf/und,u+/u_dy<oo.
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This proves the claim. (Note that in the inequality-step in the last formula we could have used

directly the ordinary Fatou lemma, and not step ii), as u,, + u~ > 0). O

Problem 10.8 Solution: Foru =15 and v = 1, we have, because of independence,

/uvdP:P(AnB):P(A)P(B):/udP/UdP.

For positive, simple functionsu = ¥ ; a;1 p andv = 2 Bl we find

/uvdP=Zkajﬂk/llAj]lBde
Js
=) a4, P(A; N By)
J.k

= ) a4, P(A)P(By)
k

Js

=<;%H%O<E&H&O

=/udP/UdP.

For measurable u € M*(%) and v € M™*(€) we use approximating simple functions u;, €
ET(RB), u; 1 u,and v, € ET(E), vy 1 v. Then, by Beppo Levi,

/uvdP:lign/ukvde=li]£n/udelim/ude
J
=/udP/udP.

Integrable independent functions: If u € £'(%) and v € L!(®), the above calculation when

applied to |u|, |v| shows that u - v is integrable since

/|uu|dP</|u|dP/|u|dP<oo.

Considering positive and negative parts finally also gives

/uUdP=/udP/vdP.

Counterexample: Just take u = v which are integrable but not square integrable, e.g. u(x) =

v(x) = x~1/2. Then f(o h x~ 12 dx < oo but f(o b x~! dx = o0, compare also Problem 10.2.

Problem 10.8 Solution:
(i) Since the map g : C — R? is continuous, we have g~!(B(R?)) ¢ B(C).

On the other hand, for z € C and € > 0 we have B,(z) = g7 (By,(¢)) € g~ (BR?));
thus, o(Og) C g 1 (B(R?)) (Note that the o-algebra 0(O¢) is generated by the open
balls B.(z), z € C, € > 0, cf. the proof of Problem 3.12.)
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Part (i) shows thatamap 2 : E — Cis of /%-measurable if, and only if, goh : E — R?
is of / B(R?)-measurable.

Indeed: Themap h : (E,d) — (C, ) is, by definition, measureable if 1~ (A) € o for
all A € €. Since € = g~ (B(R?)), this is the same as h~' (g~ (B)) = (goh)"'(B) € o«
for all B € %B(IR?), hence it is the same as the measurability of goh.

"=": Assume that 4 : E — Cis &/ /%-measurable. Then we have that

Reh
(goh) = < )
Imh

is of /B (R?)-measurable. Since the projections T R? 5 (x1, %) = x; € R are

Borel measurable (due to continuity!), we get that Re 4 = 7(goh) and Im h = 7z,(goh)

are measurable (composition of measurable functions).

"«": Assume that Re 4 and Im A& are o/ /9% (R)-measurable. Then the map (goh) =
(Re h,Im h) is o/ /B (R?)-measurable. With the above arguments we conclude that
h: (E,o) — (C,%)is measurable.

We show first additivity: let g, A € L,(u). From
|Re(g+h)| < |Reg|+|Rehl € L),  |Im(g+h)| < |Im(g)|+|Im(h)| € L' (u)

we conclude that g + A € £'(u). Since Re(g + h) = Re(g) + Re(h) and Im(g + h) =
Im(g) + Im(h), we get from the definition of the integral

/(g+h)dy=/Re(g+h)d/4+i/lm(g+h)d/4
= / (Re(g) + Re(h)) du + i(Im(g) + Im(h)) du

=/Re(g)dy+/Re(h)du+i/Im(g)d,u+i/Im(h)dy

= </Re(g)d,u+i/lm(g)dy>+</Re(h)du+i/lm(h)d,u>
=/gd,u+/hd/4.

Note that we have used the R-linearity of the integral for real-valued functions. The

homogeneity of the complex integral is shown in a very similar way.

Since Re A and Im A are real, we get / Rehdu € R and / Imhdu € R. Therefore,

Re </hd,u> =Re</Rehdﬂ+i/Imhdﬂ>

= / Rehdu.
Similarly, we see

Im </hd;4> =Im </Rehd/4+i/lmhd,u>
=/Imhdu.
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(v) Wefollow the hint: as / hdyu € C we can pick some € (—r, ] such that e’ f hdu >
0. Thus, (iii) and (iv) entail

'/hdﬂ'=ei9/hdu
=Re <ei9/hdu>

= / Re(e®h)du

< / 16 h] dy

(vi) We know from (ii) that 2 : (E, &) — (C,¥) is measurable if, and only if, Re 4 and
Im h are o/ / B(R?)-measurable. If Re 4 and Im h are p-integrable, then so is

|| = V(Re h)2 + (Im h)? < | Re h| + | Im A|.

If |h| € £]1R(/4), then we conclude from |Re 4| < |A] and | Im A| < |A|, that Re 4 and

Im A are u-integrable.
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11 Null sets and the ‘almost everywhere'.
Solutions to Problems 11.1-11.12

Problem 11.1 Solution: True, we can change an integrable function on a null set, even by setting it to
the value +o00 or —co on the null set. This is just the assertion of Theorem 11.2 and its Corollaries
11.3,11.4.

Problem 11.2 Solution: We have seen that a single point is a Lebesgue null set: {x} € Z(R) for
all x € R and A({x}) = 0, see e.g. Problems 4.13 and 6.7. If N is countable, we know that
N={x;:jeN}= UJ.e]N{xj} and by the o-additivity of measures

A(N)zi(U{xﬂ)z D A(lx)) =D 0=0.

JjeN JjeN JjEN

The Cantor set C from Problem 7.12 is, as we have seen, uncountable but has measure A(C) = 0.

This means that there are uncountable sets with measure zero.

In R? and for two-dimensional Lebesgue measure A” the situation is even easier: every line L in
the plane has zero Lebesgue measure and L contains certainly uncountably many points. That
A*(L) = 0 is seen from the fact that L differs from the ordinate {(x,y) € R> : x = 0} only
by a rigid motion T which leaves Lebesgue measure invariant (see Chapter 4, Theorem 4.7) and
A2({x = 0}) = 0 as seen in Problem 6.7.

Problem 11.3 Solution:

(i) Since {|u|] > ¢} C {|u] = c} and, therefore, u({|u| > c}) < u({|lu] = c}), this follows
immediately from Proposition 11.5. Alternatively, one could also mimic the proof of this

Proposition or use part (iii) of the present problem with ¢(r) =, > 0.

(i) This will follow from (iii) with ¢(t) = t?, t > 0, since u({|u| > c}) < u({|u| = c}) as
{lul > c} € {lul = c}.

(iii)) We have, since ¢ is increasing,

u({lul = c}) = u({e(ul) = ¢(e)})

=/1{x:¢(|u(x>|>>¢<c)}(x)ﬂ(dx)
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d(Ju(x)|)
mﬂ{x - B(u(x) (o)} (X) H(dX)
< [ 20D
¢(c)
< [ ¢4uD
¢(c)

/¢(IM(X)|)/4(dX)

L gueonz e (X) u(dx)

u(dx)

0

(iv) Letussetb =« f udyu. Then we follow the argument of (iii), where we use that u and b are

strictly positive.
u({u> b)) = / 1 uysp) () H(dx)

= [ 551 oy )

< / ”(;‘)11{x sy () (dx)

S/%dﬂ

and substituting « f udy for b shows the inequality.

(v) Using the fact that y is decreasing we get {|u| < ¢} = {w(Ju]) > w(c)}—mind the change
of the inequality sign—and going through the proof of part (iii) again we use there that ¢
increases only in the first step in a similar role as we used the decrease of y here! This means

that the argument of (iii) is valid after this step and we get, altogether,

u({lul <c}) = u{y(lul) > w(c)})
:/1{x:w<|u(x)|>>u/<c>}(x)M(dx)

=/Mﬂ{x:w(|u(x>|)>¢(c>}(x)ﬂ(dx)

w(lu(x))
w(u(x)|)
S / WH{XIWIM(x)I»W(c)}(X) u(dx)
S / PUOD ax)
w(c)
=00 / v (|u(x))) pu(dx)
w(c)
(vi) This follows immediately from (ii) by taking u = P, ¢ = a/VE& u = & —EE and p = 2.

Then

1
P(|é - E¢| > aEé) < —/ & — B dP
(ay/VE?

1
a?Vé ¢ a?
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Problem 11.4 Solution: We mimic the proof of Corollary 11.6. Set N = {|u| = o0} = {|u|? = oo}.
Then N = (), o {|ul? > k} and using Markov’s inequality (MI) and the ‘continuity’ of measures,

Proposition 4.3(vii), we find

HN) = < M)t > k}> T Jim > k)

kelN
MI 1 )
< lim = du = 0.
< Jim - |ul” du
——
<00

For arctan this is not any longer true for several reasons:
e ... arctan is odd and changes sign, so there could be cancelations under the integral.

e ... even if we had no cancelations we have the problem that the points where u(x) = oo are
now transformed to points where arctan(u(x)) = % and we do not know how the measure
u acts under this transformation. A simple example: Take u to be a measure of total finite
mass (that is: u(X) < o), e.g. a probability measure, and take the function u(x) which is
constantly u = +oo. Then arctan(u(x)) = % throughout, and we get

/arctanu(x),u(dx) = / %du = %/d,u = %,u(X) < oo,

but u is nowhere finite!

Problem 11.5 Solution:

(i) Assume that f* is o/ -measurable. The problem at hand is to construct & -measurable up-
per and lower functions g and f. For positive simple functions this is clear: if f*(x) =
E;V:o d)j]lB; (x) with ¢; > 0 and B;.k € o/, then we can use Problem 4.15(v) to find B;.C; e
o with u(C; \ B;) =0

Bj C B;.k C Cj = ¢j]lBj < ¢j]137 < ¢j]1C_,~

and summing over j = 0,1, ..., N shows that f < f* < g where f, g are the appropriate

lower and upper sums which are clearly &/ measurable and satisfy

u({f #g}) < u(Cy\ Byu--UCy \ By)
< u(Cy\ By) + -+ u(Cy \ By)
—04 40 = 0.

Moreover, since by Problem 4.15 u(B;) = u(C;) = ﬁ(B;'.‘), we have

; ¢, 1(B;) = Z ¢ A(BY) = 2 ,u(C))
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which is the same as

/fdﬂ=/f*dﬂ=/gdu-

(ii), (iii) Assume that u* is o/*-measurable; without loss of generality (otherwise consider pos-

itive and negative parts) we can assume that u* > 0. Because of Theorem 8.8 we know that
fi 1w for £ € EX(*). Now choose the corresponding o/ -measurable lower and upper
functions f,, g, constructed in part (i). By considering, if necessary, max{ fi, ..., f,} we

can assume that the f, are increasing.

Setu := sup, f; and v := liminf, g,. Then u,v € M(Z), u < u* < v, and by Fatou’s

lemma
/vd,u = /limkinfgk du < limkinf/gk du

= limkinf/f; dp

Since f}, T u we get by Beppo Levi and Fatou

/ud,u=31]1<p/fkd,u=limkinf/fkdy
=limkinf/gk du
Z/limkinfgk du
=/Ud/4
Z/ud/t

This proves that [ udu = [ vdu = [ u* du. This answers part (iii) by considering positive

and negative parts.

It remains to show that {u # v} is a y-null set. (This does not follow from the above integral
equality, cf. Problem 11.10!) Clearly, {u # v} = {u < v}, ie.if x € {u < v} is fixed, we

deduce that, for sufficiently large values of k,

fr(x) < gi(x), klarge

since u = sup f, and v = liminf g;. Thus,
w#oyc | Jifi#e)
k

but the RHS is a countable union of yg-null sets, hence a null set itself.
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*

Conversely, assume first that u < u* < v for two &/-measurable functions u, v with u = v

a.e. We have to show that {u* > a} € o/*. Using that u < u* < v we find that
{u>a} Cc{u*>a}C{v>al

but {v > a},{u > a} € o and {u > a} \ {v > a} C {u # v} is a y-null set. Because of
Problem 4.15 we conclude that {u* > a} € o/*.

Problem 11.6 Solution: Throughout the solution the letters A, B are reserved for sets from &f.

®

a) Let A ¢ E Cc B. Then u(A) < u(B) and going to the sup,. and inf gz proves
H(E) < p*(E).

b) By the definition of u, and y* we find some A C E such that
|u.(E) — u(A)| < e.
Since A¢ D E€ we can enlarge A, if needed, and achieve
|u*(E®) — u(A%)| < e.
Thus,

[u(X) — u (E) — u*(E°)|
< | (E) = u(A)| + |u*(E€) — u(A°)|

< 2e,

and the claim follows as ¢ — 0.

c) Let A D E and B D F be arbitrary majorizing &/-sets. Then AU B D E U F and
W (EUF) < (AU B) < u(A) + u(B).
Now we pass on the right-hand side, separately, to the inf , ;. and inf 5z, and obtain
U (EUF) < u*(E)+ u*(F).

d) Let A C E and B C F be arbitrary minorizing &/-sets. Then Ay B C EW F and

U (EYF) 2 u(Au B) = u(A) + u(B).

Now we pass on the right-hand side, separately, to the sup - and supp.r, where we

stipulate that A N B = @, and obtain

u(EYF) 2 p (E)+ p(F).
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ii) By the definition of the infimum/supremum we find sets A, C E C A" such that
(ii) By p n

|1, (A) — u(A] + |1(A) — u(A")] < %

Without loss of generality we can assume that the A, increase and that the A” decrease. Now
A, :=UU,A, A" :=[), A" are o/-sets with A, C A C A*. Now, u(A") | u(A*) as well
as u(A") - u*(E) which proves u(A*) = pu*(E). Analogously, u(A,) 1 u(A,) as well as
u(A,) = u,(E) which proves u(A,) = p,(E).

(i11) In view of Problem 4.15 and (i), (i1), it is clear that

{ECcX :p(E)=u"E)}=
{EcX:3ABed, ACECB, u(B\ A)=0}

= ji is now trivial since

but the latter is the completed o-algebra o/*. That ,u*LZ{* = Myl

u, and p* coincide on o/*.

Problem 11.7 Solution: Let A € ¢ and assume that there are non-measurable sets, i.e. P(X) 2 .
Take some N ¢ & which is a y-null set. Assume also that N N A = (. Thenu = 1, and
w:=1,+2 1, are a.e. identical, but w is not measurable.

This means that w is only measurable if, e.g. all (subsets of) null sets are measurable, that is if

(X, d, n) is complete.
N

Problem 11.8 Solution: The function 1, is nowhere continuous but u = 0 Lebesgue almost every-

where. That is
{x : L1g(x) is discontinuous} = R
while
{x : 1g # 0} = Q is a Lebesgue null set,
that is 1, coincides a.e. with a continuous function but is itself at no point continuous!
The same analysis for 1 . yields that
{x 1 Ljp,c0)(x) is discontinuous} = {0}

which is a Lebesgue null set, but 1, ., cannot coincide a.e. with a continuous function! This,
namely, would be of the form w = 0 on (—oc0,—6) and w = 1 on (e, o) while it ‘interpolates’

somehow between 0 and 1 if —6 < x < e. But this entails that

{x 1 wx) # Lo e0)(0)}
cannot be a Lebesgue null set!
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Problem 11.9 Solution: Let(A;);cn C & be an exhausting sequence A; 1 X such that (A;) < oco.
Set

1

IO 2y + 1)

]lAj (x).

M

Then f is measurable, f(x) > 0 everywhere, and using Beppo Levi’s theorem

1
/fd”‘ /(Zfzf(y(A)H) )d’“’

oo

12’(M(A)+1)/ 4 ¥

H(A;)
2(u(Ap)+1)

~.
I

~.
I

n
D¢
~
I

~.
1l
—_

Thus, set P(A) := f 4 J dpu. We know from Problem 9.7 that P is indeed a measure.
If N e ./Vﬂ, then, by Theorem 11.2,

11.2
P(N):/ fdu =0
N

so that 4, C Hp.

Conversely, it M € M p, we see that

/fdy=0
M

but since f > 0 everywhere, it follows from Theorem 11.2 that 1,, - f =0 p-a.e.,i.e. y(M) =
Thus, #p C A,

Remark. We will see later (cf. Chapter 20 or Chapter 25, Radon-Nikodym theorem) that /#, = //p
if and only if P = f - u (i.e., if P has a density w.r.t. ) such that f > 0.

Problem 11.10 Solution: Well, the hint given in the text should be good enough.

Problem 11.11 Solution: Observe that

/ud,u=/wd,u = /(u++w_)d,u=/(u_+w+)d,u
C C C C

holds for all C € €. The right-hand side can be read as the equality of two measures A +—
fA(u+ +w)du, A fA(u‘ + w*)du, A € o which coincide on a generator € which satisfies

the conditions of the uniqueness theorem of measures (Theorem 5.7). This shows that

/ud,u=/wdu VAe d.
A A

117



R.L. Schilling: Measures, Integrals & Martingales

Now the direction ‘=’ follows from Corollary 11.7 where % = .
The converse implication ‘<’ follows directly from Corollary 11.6 applied to ul and w1l.

Problem 11.12 Solution:
(1) “c”: Letx € Cp,ie. f(x)=Ilim _,_ f,(x) exists; in particular, (f,(x)) is Cauchy:
f n—oo J n p n nelN y

for all kK € IN there is some £ € IN such that

| /() = ()| < Vmn>=¢.

x|

This shows that x € en Uew Npopy {10 = £ < 1},
%} This means that for

“>” Assume that (Ve Ugew Nypes LX) = fn()] <
every k € IN there is some £ € IN with

Vmn="?¢.

|fn () = fn()] <

This shows that (f,(x)),cy 1s a Cauchy sequence in IR. The claim follows since R is

complete.
(i) From the definition of limits we get (as in part (i))
¢, = U Nirm - reol <k
keN £eN m=¢

Observe that
AN -r@i<iisc

=1 m=¢

as n — oo. Using the continuity of measures, we get

M(Ak)Tﬂ<Uﬂ{|f ()~ F()] < }>=M(X)-

1 m=¢

(Note: if A C B is measurable and u(A) = u(X), then we have u(B) = u(X).) In
particular we can pick n = n(k, €) in such a way that ,u(A’;) > u(X) — €27, Therefore,

u(X \ A* u(X) - (Ak(k o) < <e27k,

n(k, e)) -

(iii) Fix € > 0, pick n = n(k, €) as in part (ii), and define

m An(k e)

keN

Using the sub-additivity of u we get

HX\ Ao = M(U (X\An(ke))> < X\ AL )< Y e
kelN

kelN kelN
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It remains to show that f, converges uniformly to f on the set A,. By definition,

n(k,e) oo

A= U NOUf=ral <

kelN =1 m=¢

i.e. forall x € A, and k € IN there is some £(x) < n(k, €) such that

lfG) = [ < - Vm 2 £(x).

x| =

Since Z(x) < n(k, €) we get, in particular,

[fG) = [ < - Vx €A, m2n(k,e).

x|

Since k € IN is arbitrary, the uniform convergence A, follows.

(iv) Consider one-dimensional Lebesgue measure, set f(x) := |x| and f,(x) 1= [x|1_, ;-
Then we have f,(x) T f(x) for every x, but the set {|f, — f| > €} = [-n,n]° has

infinite measure for any ¢ > 0.
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12 Convergence theorems and their
applications.
Solutions to Problems 12.1-12.37

Problem 12.1 Solution: We start with the simple remark that

la = bl” < (la| + [b])?
< (max{|al, |b|} + max{|al, |b|})”
= 2 max{|al, |b|}¥
= 2 max{|al|?, |b|’}

< 2(lal” + [b17).

Because of this we find that |u; — u|P < 2Pg? and the right-hand side is an integrable dominating

function.

Proof alternative 1: Apply Theorem 12.2 on dominated convergence to the sequence ¢; := |u; —

u|? of integrable functions. Note that ¢ ;(x) > Oand that 0 < ¢p; < @ where ® = 2Pg? is integrable
and independent of j. Thus,

lim/luj—ulpd,u=1im/¢jd/4=/lim¢jd/4
j—ooo jooo j—ooo

=/0d,bl=0.

Proof alternative 2: Mimic the proof of Theorem 12.2 on dominated convergence. To do so we

remark that the sequence of functions

O<y; :=2PgP —u, —ulpm 2PgP

Since the limit lim; y; exists, it coincides with liminf; y;, and so we can use Fatou’s Lemma to

get

/2”g1’d/,t=/liminf1//jd,u
j—oo
<liminf/u/jd,u
j—o o
:liminf/(2pg”—|uj—u|”) du

J—©
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:/2pg”d,u+liminf<—/|uj—u|pdu)

Jj—oo

=/2”g”d,u—limsup/|uj—u|”dy
Jj—oo

where we use that liminf ;(—a;) = —limsup; ;. This shows that lim sup; f lu; —ulPdu =0,
hence

Ogliminf/|uj—u|1’dy<1imsup/|uj—u|”d;4<0
j— oo i

J—00

showing that lower and upper limit coincide and equal to 0, hence lim; [ lu ;—ulPdu=0.

Problem 12.2 Solution: Assume that, as in the statement of Theorem 12.2, u; — u and that |u;| <
felLl(u. In particular,

—f<u; and u; < f

(j € IN) is an integrable minorant resp. majorant. Thus, using Problem 10.7 at * below,

/ud,u:/lir_ninfujdy
Jj—ooo

< liminf/uj du

J—0o0

< limsup/uj du

j—oo

</h?ligpujdﬂ = /ud,u.

This proves [ udu =1lim; [ u; du.

Addition: since 0 < |u —u;| < [lim;u;| + |u;| < 2f € L£'(u), the sequence |u — u;| has an
integrable majorant and using Problem 10.7 we get

Oglimsup/|uj—u|a',u</limsupluj—uld,uz/Od,u=O

j—oo j— oo

and also (i) of Theorem 12.2 follows...

Problem 12.3 Solution: By assumption we have

0<fk—gkmf—g,

Using Fatou’s Lemma we find

[ =odu= [ time - goan
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=/lirnkinf(fk—gk)du

< lim inf / f — g du

=limkinf/fkd/,t—/gd,u,

[G=nau= [ imG, - ryan

and

= /limkinf(Gk—fk) du
< limkinf/(Gk —fdu

=/Gd,u—limsup/fkdﬂ.
k

Adding resp. subtracting / g dy resp. f G d u therefore yields

limsup/fkd,u</fdyélimkinf/fkdy
k

and the claim follows.

Problem 12.4 Solution: Using Beppo Levi’s theorem in the form of Corollary 9.9 we find

[ S wtan=3 [lau<s, *)
=1 =1

which means that the positive function Z‘fl |u.| is finite almost everywhere, i.e. the series Z‘xi U
j= J j=1"J

converges (absolutely) almost everywhere.

In order to show the second part, we want to apply dominated convergence. Set v, = Zle u,

and notte that

<l < lu,l Sw € L w).

n=1 n=1

|og] =

k
2t
n=1

Clearly, v, = u =Y u,as k — co. Thus, we get with dominated convergence

/Zu du = /udy /hm Ve du = hm/vkdy— lim Z/undy

Problem 12.5 Solution: Since £!(y) > u; | 0 we find by monotone convergence, Theorem 12.1,
that / u;dp | 0. Therefore,

o= E(—l)juj and § = Z(—l)j/uj du converge
J=1 Jj=1
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(conditionally, in general). Moreover, for every N € IN,

N N
/Z(—l)fuj du = Z/(-nfuj dy—— S.
oy} s N-o

All that remains is to show that the right-hand side converges to / o du. Observe that for Sy =

Z;V:I(—l)fuj we have
Son S SHNp S-S S

and we find, as S; € L£'(u), by monotone convergence that

lim SZNd,u=/0'd/4.

N-oo

Problem 12.6 Solution: Consider u;(x) :=j- L,1/5(x), j € IN. It is clear that u; is measurable and

Lebesgue integrable with integral

/ujd/l=j

Thus, lim ; / u; dA = 1. On the other hand, the pointwise limit is

| =

- =1 VjeN.

~

u(x) .= limuj(x) =0
J

sothat0=fud/1=flimjujd/17é 1.

The example does not contradict dominated convergence as there is no uniform dominating integ-

rable function.

Alternative: a similar situation can be found for v, (x) := i]l[o’k](x) and the pointwise limit v = 0.
Note that in this case the limit is even uniform and still lim; [ v, dA =1 # 0 = [vdA. Again
there is no contradiction to dominated convergence as there does not exist a uniform dominating

integrable function.

Problem 12.7 Solution: Using the majorant (e’* < 1 € L£(u), r,x > 0) we find with dominated

convergence

lim e ™ u(dx) = / lim e ™ u(dx) = / Loy u(dx) = u{0}.
[0,00) [ [0,00)

— —
r—oo 0,00) [

Problem 12.8 Solution:
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(i) Lete > 0. As u € £!(4), monotone convergence shows that

lim lu|dA = 0.
R—0 BR(0)

In particular, we can pick an R > 0 such that

/ luldA < e.
Br(0)

Since K is compact (in fact: bounded), there is some r = r(R) > 0, such that x + K C
Br(0)¢ for all x satisfying |x| > r. Thus, we have

/ |u|dﬂ</ lufldi<e VxeR" |x|>r.
x+K BR(0)°

(ii) Fix e > 0. By assumption, u is uniformly continuous. Therefore, there is some 6 > 0 such
that

lu(y) —u(x)| <e VxeR" yex+K :=x+ Bs(0) = Bs(x).
Hence,

u()|? = m ()P d A()
K+x

1 p
175 K+x(|u(y)—u(X)|+|u(y)|) dA(y).

<€
Using the elementary inequality

(a+ b < 2max{a,b})? <2°(a” + b)), a,b>0 (%)

we get for C = 27

C
lu(x)|” < Fis) </K+X eP dA(y) +/K+X lu(y)| di(y)>

MK+x) C

¥4

< Ce 74 +/1(K) K+x|u(y)|d/1(y)'
——

1

Part (i) now implies

. e—0
limsup |u(x)|? < Ce? — 0
|x]—=00

and this is the same as to say lim,|_,, [u(x)| = 0.

Problem 12.9 Solution:
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(i) Fix e > 0, R > 0 and consider B := {|u| < R}. By definition, sup,cp |u(x)| < co. On

the other hand, dominated convergence and Corollary 11.6 show that

R—

lim lu(x)| dx = / lu(x)| dx = 0.
lul>R lu|=c0

In particular, we can choose R so large, that f g lu(x)| dx < e. Using Markov’s inequality

(Proposition 11.5) yields
MB) = allul > R) < g [ luol dx <o

(i) Fix ¢ > 0 and let B € $B(R") be as in (i). Further, let A € B(R") with A(A) < e. Then

we have
/luld/1=/ |u|a’/1+/ lul dA
A ANB ANB¢

< sup |u(x)| - (AN B)+ luldA
xXEB | — B¢
<A(A)

< sup |u(x)| - e +e.
xXEB

(Observe that sup,cp |u(x)| < o0.) This proves

lim /luld/l:O.
AMA)=0 f 4

Problem 12.10 Solution:

(i) Fromu, € £'(u) and ||u, — u||, < 1 (for all sufficiently large n) we infer

[ddus [, -dans [ uan <, = uonco+ [l du< o,

i.e.u € L'(u). A very similar argument gives

‘/undﬂ—/udﬂ‘ - V(u,,—u)du's/wn—uwus ity — ull o X0,

Since p(X) < oo, uniform convergence ||u, — u||, — O implies that

(]

lim '/und,u—/ud/,t‘=0.
n—>oo

(ii) False. Counterexample: (R, B(R), A') and u,(x) := %]l[_mn](x), x € R. Clearly,u, —» 0
uniformly, u, € £'(A'), but

lim und,u=17é0=/ud/,t.

n—>oo
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Problem 12.11 Solution: Without loss of generality we assume that u is increasing. Because of the

monotonicity of u, we find for every sequence (a,),cy C (0, 1) such that g, | 0, that
u(a,) = u(0+) :=inf u(?).
>0

Ifa, :=1t"1t€ (0, 1), we get u(t") | 0 and by monotone convergence

1 1 1 1
lim/ u(t™) dt = inf/ u(t”)dt=/ inf u(t")dtz/ u(0+) dt = u(0+).
n—oo Jq nelN 0 0 nelN 0

Problem 12.12 Solution: Setu,(r) := t"u(t), t € (0, 1). Since |t"| < 1 for ¢ € (0, 1), we have

lu, (O] = 1" - | f O] < |f@®)] € L1, ).

Since 1" —— O for all t € (0,1) and | f(#)| < oo a.e. (Corollary 11.6), we have |u, ()] — O a.e.

n—>oo
An application of dominated convergence (Theorem 12.2 and Remark 12.3) yields

1 1 1
lim t"u(t) dt = lim u,(t)dt = / lim u,(t) dt = 0.
n—>oo 0 0

n—>o0 0 n—oo

0

Problem 12.13 Solution: From the geometric series we know that i = X0 X" for x € [0, 1).

This implies that for all > 0

1 _1 1 — —\n _ —nt
-1 edl-et ¢ Z(e ) _Ze

n=0 n=1

(observe that e™” < 1 for t > 0!). Set u; () := sin(r) - ZI;=1 e~ then we get the estimate

k

S

n=1

k

. _ . _ sin ¢
=|s1nt|2e"’<|smt|2e | | (%)

lu ()] < |sint] - =1

n=1 n>1

for all k € IN und ¢ > 0. Using the elementary inequalities ¢/ — 1 > ¢ (t > 0) and e — 1 > ¢'/?
(t = 1) we see

i (D] < Ly, (0 + €721 ) (1) =2 w(@).

Let us now show that w € £1(0, c0). This can be done with Beppo Levi’s theorem:

0 1 0
/ w(t)dt = / w() dt+ / w(t) dt
0 0 e — 1 N~

1 e—t/2

n
=1+ sup/ e”2dt =1+ sup [—Ze_’/z]:'_l < oo.
nelN J 1 nelN -
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We use here that every Riemann-integrable function f : [a,b] - C, —© < a < b < o,
is Lebesgue integrable and that Riemann and Lebesgue intgrals coincide (in this case, see The-

orem 12.8). By dominated convergence,

k
® sin(?) , o , ©
/0 —— 1= lim /0 u (1) dt = lim ; /O sin(t)e™ dt.

With Ime'’ = sint we get

/ sin(t)e™™ dt = Im < / e’<"—">dz>,
0 0

(cf. Problem 10.9). Again by dominated convergence,

o0 R
/ sin(t)e™" dt=Im<1im / e!i=m dt>
0 R—co J1/R
i-n) R
=Im|( lim [e ]
R |iI—n i=1/R

(o) =7
=Im - | = .
n—i n?+1

Problem 12.14 Solution: We know that the exponential function is given by e = 3 . (z‘:,)n. Thus,

zx)"
( ') —k——>u(x)ezx.
n! —00

k
u(x) 1= u(x) 2
n=0

By the triangle inequality,

(zx)"
!

n:

|zx]"
< lue)l Y, —
n.

n=0

= Ju(x)|e!?!I¥!.

k
| ()] < JuCx)] Y
n=0

As x — e*u(x) is integrable for fixed 1 = +|z|, we get
i (O] < JuCo)le™ L g 0(0) + [u() el pg o) (x) € L (R).

An application of dominated convergence and the linearity of the integral give

/u(x)ezxdx=/kli_)rrolouk(x)dx

=klim /uk(x)dx

k

lim Z % / (zx)"u(x) dx

=0

e n

E Z—/x"u(x)dx.
n!

n=0
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Problem 12.15 Solution: We get |fA udp| < /A |u| d u straight from the triangle inequality. There-

fore, it is enough to prove the second estimate. Fix ¢ > 0.

Solution 1: The Sombrero lemma ensures that there is a sequence (u,),cy C (&) with |u,| < |u]

and lim u, = u (Corollary 8.9). From dominated convergence we get / lu, —uldy——- 0;
n—oo

n—oo 'n

in particular, we can choose n € IN such that f |u, —u| du < e. Since each u, is bounded (b/o the

definition of a simple function) we get

[l < - ) < ¢
A

for any A € o with u(A) <6 :=e€/||u,l|- Using the triangle inequality we get

/luld,uS/lun—uld/,t+/|un|d,u</|un—u|d/4+/|un|d,u<2€
A A A A

for any A € o with u(A) < 6.

Solution 2: Obviously,

/|u|d/4=/ |u|dy+/ ul dy )
A An{|u|=R} An{|u|<R}

We estimate each term by itself. For the first expression on the RHS we use Beppo Levi:

/ ul dy—— ul du.
ANn{Jul>R} R=co JAn{lul=co)

By assumption, u € L£!(u), we get u(Ju| = c0) = 0 (see the proof of Corollaryr 11.6) and we get

with Theorem 11.2,
/ luldu = 0.
An{|ul=c0}

Therefore, we can pick some R > 0 with

/ Ul dp < e.
An{|u|>R}

For the second expression in (%) we have

/ lul du < R/ ldu < Ru(A).
An{|u|<R} An{|u|<R}

If A € o satisfies u(A) < 6 :=¢/R, then

/|u|dﬂ=/ |U|dﬂ+/ lu|du < € + Ru(A) < 2e.
A An{|ul>R) An{|ul<R}

Problem 12.16 Solution: Let y be an arbitrary Borel measure on the line R and define the integral

function for some u € £!(u) through

I(x) :=IZ(x) Z=/

0.x)

u(t) p(d1) = / 10,0(0u(t) ().
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For any sequence 0 < /; — x, I; < x from the left and r, — x, r;, > x from the right we find
ﬂ(o’lj)(t)ﬁ ]l(o’x)(t) and ]l(ovrk)(t)m ]l(O,X](t)

Since |1 ul < |u| € £! is a uniform dominating function, Lebesgue’s dominated convergence

theorem yields
1) = 1(x=) = lim I(ry) = Tim 1(7,)
= / 1o, (Du(t) u(dr) — / 1 g, (Du(t) u(dr)
= / (10 = L .0(®))u(®) p(dt)
= / 1y (Ou®) u(d)
u(x) p({x}).

Thus I(x) is continuous at x if, and only if, x is not an atom of u.

Remark: the proof shows, by the way, that I Z(x) is always left-continuous at every x, no matter

what u or u look like.

Problem 12.17 Solution:

(i) We have
/ 1 1 (x)dx
x L)

= lim / l]1[1,,,)(x) dx by Beppo Levi’s thm.
n—oo X

= lim 1 dx usual shorthand
n—>o0 [1,}1) X

n 1 n

= lim (R) —dx Riemann- / exists

n—oo 1 X 1

= lim [log x]rll

n—>oo

= lim [log(n) — log(1)] = o0

which means that % is not Lebesgue-integrable over [1, o0).

(i1)) We have

1
/ ; ]1[1500)(x) dx
= nll)nolo/ é]l[l,n)(x) dx by Beppo Levi’s thm.
= lim L dx usual shorthand
n—>o0 [l,n) X
= lim (R) iz dx Riemann- / exists
n—00 1 X 1
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= lim [_1]”

n—o0 X1
= lim[l1-1]=1<
n—oo n

which means that % is Lebesgue-integrable over [1, c0).

(iii)) We have

/ % ]1(0,1](3‘) dx

= nlgg) %ﬂ(l/n’l](x) dx by Beppo Levi’s thm.
= lim L dx usual shorthand
=00 J1/n,1] \/;
Iy 1
= lim (R) —dx Riemann- / exists
n—oo 1/n X 1/n

Il

5
—

\)

=
—_—
= —
=

I

5
—

[\

|

[\

| —
[E—]

which means that - is Lebesgue-integrable over (0, 1].
X

N
(iv) We have

1
-1 d
/ X (O,IJ(X) X
= lim l]l(l/n 1(x) dx by Beppo Levi’s thm.
n—00 X ’
= lim 1 dx usual shorthand
n—oo (1/’1’1] X
1 1
= lim (R) —dx Riemann- / exists
n=oo 1/n X 1/n

. 1
= tim [ioe=],

fim [log(l) —log l]

n—oo

=0

which means that % is not Lebesgue-integrable over (0, 1].

Problem 12.18 Solution: We construct a dominating integrable function.
If x < 1, we have clearly exp(—x%*) < 1, and /(0 1 1dx =1 < oo is integrable.

If x > 1, we have exp(—x*) < M x~2 for some suitable constant M = M, < oo. This function
is integrable in [1, o), see e.g. Problem 12.17. The estimate is easily seen from the fact that

x > x? exp(—x%) is continuous in [1, o) with lim__, ., x? exp(—x%) = 0.
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This shows that exp(—x®) < 1 ) + M x‘2]l[ 100y With the right-hand side being integrable.

Problem 12.19 Solution: Take a € (a,b) where 0 < a < b < oo are fixed (but arbitrary). We show

that the function is continuous for these @. This shows the general case since continuity is a local

property and we can ‘catch’ any given a, by some choice of a and b’s.

We use the Continuity lemma (Theorem 12.4) and have to find uniform (for « € (a, b)) dominating

<M

sin x

. \3
bounds on the integrand function f(a, x) := <% ) e~ **, First of all, we remark that

which follows from the fact that % is a continuous function such that lim, _, % = 0 and
sin x

lim, |, = 1. (Actually, we could choose M = 1...). Moreover, exp(—ax) < 1 for x € (0,1)
and exp(—ax) < C,,x "2 for x > 1—use for this the continuity of x? exp(—ax) and the fact that

lim,_,  x* exp(—ax) = 0. This shows that

| f (e, )] € M (Lg,1)(%) + Cppx 1y ) (%))

and the right-hand side is an integrable dominating function which does not depend on a—as long
as @ € (a,b). Butsince @ — f(a,x) is obviously continuous, the Continuity lemma applies and

proves that /(0 ) f(a, x) dx is continuous.

Problem 12.20 Solution: Fix some number N > 0 and take x € (=N, N). We show that G(x) is
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continuous on this set. Since N was arbitrary, we find that G is continuous for every x € R.

sin u

._ sin@x) ___ sin(tx) 1 . sinu
Set g(t,x) = et =X T Then, using that | =—=| < M, we have
1 1
8] <x- M - = <M N (L0 + 5100

and the right-hand side is a uniformly dominating function, i.e. G(x) makes sense and we find
G©0) = /t 40 g(t,0)dt = 0. To see differentiability, we use the Differentiability lemma (Theorem
12.5) and need to prove that |d, g(#, x)| exists (this is clear) and is uniformly dominated for x €
(=N, N). We have

sin(zx) cos(tx)
0 t,x = 0 =
198(t, ) A+ ) (1 +12)
< 1
1+172

1

and this allows us to apply the Differentiability lemma, so

G'(x) = ax/ g(t,x)dt = / d,8(t, x)dt
120 10
_ / cos(tx) it
20 1+ 12

:/ cos(x) it
R 1+172
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(use in the last equality that {O} is a Lebesgue null set). Thus, by a Beppo Levi-argument (and

using that Riemann=Lebesgue whenever the Riemann integral over a compact interval exists...)

n
G (0) =/ L dt = lim (R) L dt
r1+7 n—00 n l+12
= lim[tan™'()]"
n—>oo
=T.
Now observe that

0, sin(tx) = tcos(tx) = ! x cos(tx) = ! 0, sin(x).
x x

Since the integral defining G’(x) exists we can use a Beppo Levi-argument, Riemann=Lebesgue
(whenever the Riemann integral over an interval exists) and integration by parts (for the Riemann

integral) to find

XG'(x) = / xcos(tx)
R

1+
" x0, sin(t
= lim (R)/ xx—(x)dt
n—oo _n t(1+12)
" to, sin(tx
= lim (R) f—()
n—co _n t(1+12)
" 0. sin(t
= lim(R) M
n—co o 1+
8 1
= lim (R) 0, sin(tx) - dt
n—co 1+172

—n

n—-oo

~ [sin@x) 1" . / ) 1
=1 — lim (R sin(tx) - 0 dt
[1+z2]t=_n A (R) o (tx) 1412
2t

= lim (R sin(tx) - ————dt
B )/_n () (1+172)?

:/ 2t sin(tx) dr.
r (1 + 12)2

Problem 12.21 Solution:

(i) Note thatfor0 <a,b<1

1 1
1—(1—a)b=/ btb-ldt>/ bdt = ba
1—a 1—a

sothat we getforO < x < kanda :=x/k,b :=k/(k+1)

_k_
(-7 <1i-g osxsk
or,
xk X k+1
(1-7) tow < (1= 57)  Lowsn@.
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Therefore we can appeal to Beppo Levi’s theorem to get

. X k 1 X k 1
fim [ (1-2) Inxal@o=sup [ 1,@(1-F) Inxil@)
(LK) k keN ’ k

k— o0
X k 1
= [ sup [10,0@(1-F) | nxdl@n)
kelN k

= / 1) ) (X)e™ Inx A'(dx).
That e™ In x is integrable in (1, oo) follows easily from the estimates
e <Cyx™N and Inx < x

which hold forall x > 1 and N € IN.

(i) Note that x — In x is continuous and bounded in [e, 1], thus Riemann integrable. It is easy

to see that x In x — x is a primitive for In x. The improper Riemann integral
1
Inxdx =lim[xlnx —x]' = -1
0 e—0 €

exists and, since In x is negative throughout (0, 1), improper Riemann and Lebesgue integrals
coincide. Thus, Inx € L'(dx, (0, 1)).

Therefore,

<|Inx|, Vxe(@,1)

k
‘(1 — i) Inx
k

is uniformly dominated by an integrable function and we can use dominated convergence to

) x\* . x\*
hm/ <1——> lnxa’xz/ 11m<1——> Inxdx
=/ e *Inxdx
0.1)

get

Problem 12.22 Solution: Since the integrand of F(¢) is continuous and bounded by the integrable
function e™, x > 0, it is clear that F(¢) exists. With the usual approximation argument,
" t

/ e —1 Adx)=lim | ¥ —— dx
Oc) PP Hx2 n=e [, 124 x2

(the right-hand side is a Riemann integral) we can use the classical (Riemann) rules to evaluate

the integral. Thus, a change of variables x =¢-y = dx =tdy yields

F(1) = / e —1 jdx)
(0,00)

2+ x2

_ t
= e v t /l(dy)
A,m) 2+ (ty)?
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= / eV 1 5 Aldy).
(0,00) I+y

Observe that

o
1+)?

uniformly for all ¢t > O,
T 142 Y

and that the right-hand side is Lebesgue integrable (the primitive is the arctan). Therfore, we can
use dominated convergence to conclude

F(04) = lim e Ad
0+) o) 1+ > Aldy)

= / lime™ L
(0,00) tl0 1+ y2

= lim [arctan y]:'/n =

Problem 12.23 Solution: For the existence of the integrals we need |e™¢| € L£!(u) and |e™"¢] -
lu(-)] € L£L'(dx). Since |e™"¢| = 1, it is reasonable to require that y is a finite measure (such that
the constant 1 is integrable) or u € £!(dx). Under these assumptions, the continuity of the Fourier

transform follows directly from the continuity lemma: set
f&x) : =—e‘”‘§, ¢eR,xeR.

By assumption, | f(x,&)| < 2z)~! € £1(u) and & — f(&, x) is continuous. Using Theorem 12.4,

we get the continuity of the map

g /f(f, x)u(dx) = ().

The argument for # is similar.

Sufficient conditions for n-fold differentiability can be obtained from the differentiability lemma.

Since

d (- lx) o1 E
dgf(g x) =

we get

f(é >' Il

By the differentiabiliy lemma the derivative = ,u(f) exists, if / |x| u(dx) < oo. Iterating this

argument, we get that /i is n times differentiable, if
/ |x]" u(dx) < oo.

Similarly one shows that # is »n times differentiable, if f [x|" [u(x)| dx < oo.
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Problem 12.24 Solution:

(i) Lett € (=R, R) for some R > 0. Since |¢p(x) — t] < |px)| + |t] < |¢p(x)]+ R €
£1([0, 1], dx) and since t — |¢p(x)—1]| is continuous, the continuity lemma, Theorem 12.4,

shows that the mapping

(-R,R)>1t+~ f(t)=/ lp(x) — 1] dx

[0,1]
is continuous. Since R > 0 is arbitrary, the claim follows.

Alternative solution: Using the lower triangle inequality we get that
11 (0) = )] < / [16G0) = 1] = ) 51| dx < / ls =t dx = |s —1l,
[0,1] [0,1]

i.e. f is Lipschitz continuous.
(i) ‘«<’: Lett € R and assume that A{¢ =t} = 0. For 1 € R we define

f(t+h>—f(t):/ |p(x) = (1 + h)| = [p(x) — 1] dx
¢<t—h

h h
+/ |p(0) — @+ M| — |p(x) — 1 dx
t—h<p<t+h h
+/ l6() =t + W] = |pC) — 1]
¢=>t+h h

and we consider the three integrals separately. We have

I,(h) = / —(p(x)—(t+h)+ (Pp(x)—1) "
¢<t—h

h

:/ dx = Mp <t — h)— A{p <1}
b<i—h h—0

Similarly,

h

=,1(¢>t+h)h—_)0> Mo >t}

1k = / (G =+ M) = (P =0
p=t—h

By our assumptions, A{t —h < ¢ <t + h} W M@ =t} = 0, and using dominated

convergence we arr ive at

Iz(h)z/ |p(x) — (¢ + h)| — [p(x) — 1] dx 0
t—h<p<t+h h h—0

(notice that ||¢(x)_(’+h2|_|¢(x)_’” < 2 b/o the lower triangle inequality!). Putting together

all calculations, we get

5 S(x+h)— f(x)
1m
h—0 h

=AM >t} + M <t}

136



Solution Manual. Last update 18th July 2019

‘=’: We use the notation introduced in the direction ‘<’. If f is differentiable at t € R,
we find as in the first part of the proof that

. — ’ _ . _ .
%T})Iz(h)—f O] }111_1}(1)11(h) }112(1)13(}1)

exists. We split I, once again:

12(h)=/ |p(x) — (t + h)| — |p(x) — ] dx
{t—h<p<t+h}\{p=t} h
+/ |p(x) — (t + h)| — |p(x) — 1] dx
{g=1) h
=: I)(h) + I;(h)

Obviously, we have
1 1
I2(h) = — ldx=-—A¢p=t
,(h) - x== {p=1}

and with dominated convergence we get
lim 1. (h) = 0.
70 2 ()

Therefore, lim,,_, I,(h) can only exist, if

N e 1Al
i 50 = 4o =0 i

exists, and this is the case if A(¢p =1) = 0.

Problem 12.25 Solution:

(i) The map t — u(t,x) := x> sinz(x)e_tx is continuous on [0, co) and differentiable on
(0, 00) differenzierbar. Because of the continuity and differentiability lemmas (The-
orem 12.4 and 12.5) it is enough to find suitable majorants for the function and its

sin x —tx

derivatives. Fix ¢t > 0. Using the elementary inequalities — < 1 and e™™ < 1 we get

1
lu(z, x)| < Ljp (%) + ;1(1,00)(36) = w(x).

Since w € L£'([0,)) (cf. Beispiel 12.14), continuity follows from the continuity

lemma. Assume now that ¢ € (r, c) for some r > 0. Then we get

)
10,u(t, x)] = [0 (et
X
< Lo y(x) + xe™ 1 o) (x) € L1([0, 00))
-2
102u(t, x)] = | 20 (e
X2

< Ly () + x2e 71y (%) € L£1([0, 00)).
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(i)

(iii)

138

Now the differentiability lemma shows that f has two derivatives which are given by

co .+ 2
== [ g
0

X

@) = / " sin?(x)e ™™ dx.
0

In order to calculate f” we use that Riemann and Lebesgue integrals auszurechnen

coincide if a function is Riemann integrable (Theorem 12.8).

Using sin2(x) = %(1 —cos(2x)) = %Re(l —e'2%) we get

JOE lRe (/00(1 — e/ ?X)eix dx) ,
2 0

(cf. Problem 10.9). Using dominated convergence, we see
0o ) R )
/ (1-e2e™dx = lim (1-e)e ™ dx.
0 R—o 0

Since x — (1 — e/ ?¥)e™* is Riemann integrable, we can integrate ‘as usual’:

® i2xy\,,—tx : 1 —tx R . 1 x(2i—t) R 1 1
(= ePe ™ dx = lim [Ze|  — fim [——e @] =2-
0 R—-oo L—t x=0 R—ooo l2i—1t x=0 t t—2i

Thus,

" 1 <1 1 ) 1/1 t 2
t:—R —_ ) = — - — = .
/70 2\ T 2\t 244 1@ +4)

The limits lim,_, ., f(¢) and lim,_, ., f'(¢) follow again with dominated convergence (the

necessary majorants are those from part (i)):
3] - 2
lim f(1) = / lim (Me—”‘) dx =0,
t—00 o 1o x2

) s 2
lim f'(t) = —/ lim (Me_tx> dx =0.
=00 0 =00 X

We begin with a closed expression for f”: from the fundamental theorem of (Riemann)

integration we know
R
'R~ f'() = / f"(s)ds.
t

Letting R — oo we get using (ii)

R
£/ == lim / "(s)ds
-0 t
— 1 jim [10 s—11o (s2+4)]R
=72 gs—508 o

R—> =t

- % <logt - %mg(ﬂ + 4))
t

V2 T4

= llog

[\e]
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Finally,

R Y]
. 1 s
f() =— lim / fl(s)ds=—= log ———ds.
R—oo [, 2 ¢ /S2+4

(In this part we have again used the fact that the Lebesgue integral extends the Riemann

integral.)

Problem 12.26 Solution: We follow the hint: since e™"* > 0 we can use Beppo Levi to get

[e¢] n n
/ e dx = sup/ e dx = lim e dx.
0 }’IE]N 0 n—>oo 0

~™ is continuous, hence measurable and Riemann-integrable on compact inter-

Moreover, x — e

vals, and we may (Theorem 12.8) use the Riemann integral to evaluate things.

Thus, e € £1(0, ) and fO°° e XMdx = % Now we use the differentiability lemma, The-

orem 12.5. For u(t, x) := e™"* we have
|0,u(t, x)| = |x|e™™ < |x|e™® € £1(0,00) V1€ (a,0), a> 0,

(cf. Example 12.14). Therefore (use the differentiability lemma)

d (o8]

— e ™dx = / (=x)e ™ dx YVt € (a, o).

Since a > 0 is arbitrary, we get differentiability on (0, co). Iterating this argument, we inver that

we can swap derivatives of any order with the integral. Morover,

n o n
()=
den \ J, den \ ¢t

o —1)'n!
=> </ (=x)"e™ dx> (=1)7nt
0 i+l

If t = 1, the claim follows.

Problem 12.27 Solution: Throughout we fix (a, b) C (0, o) and take ¢ € (a, b). As in Problem 12.17

we get
/ x%dx<oo Vé<1 and / xOdx<oo V6> 1.
O,1) (1,00)

(1) Note that differentiability implies continuity, so it suffices to show that I" is m times

differentiable for every m.

Induction Hypothesis: T exists and is of the form as claimed in the statement of the

problem.
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Induction Start m = 1: We have to show that I'(¢) is differentiable. We want to use
the differentiability lemma. For this we remark first of all, that the integrand function

t — y(t, x) is differentiable on (a, b) and that
0,y(t,x) = d,e™™ x=e*x"1 logx.

We have now to find a uniform (for ¢t € (a, b)) integrable dominating function for

|0,y (t, x)|. Since log x < x for all x > O (the logarithm is a concave function!),

e *x! € e*xP < Cbx_2 Vx>1, te&€(ab)

(for the last step multiply with x? and use that x”e™* is continuous for every p > 0 and

lim x?e™ = 0 to find C,). Moreover,

X—>00

e x" ! log x| < x* | log x|

= x! 1ogl < Cx'?  vxe(,1), te(ab)
X

where we use the fact that lim _ , x” log % = 0 which is easily seen by the substitution

x = e " and u — oo and the continuity of the function x” log %

Both estimates together furnish an integrable dominating function, so the differentiab-

ility lemma applies and shows that

') = / 0,7t x)dx = / e x" ! logxdx = T'D(x).
(0,00) (0,00)

Induction Step m ~ m+1: Set y™(t, x) = e™* x'~! (log x)™. We want to apply the dif-
ferentiability lemma to I'")(x). With very much the same arguments as in the induction
start we find that y™*+D(z, x) = (3,;/(’")(1, x) exists (obvious) and satisfies the following

bounds

e ™ xt—l (10g x)m+1 =X xt—l (log x)m+1

e—xxt+m

N

e—xxb+m

/A

V/A)

Comx>  Vx21, te(ab)

e X xt—l (log x)m+l| < xa—l I logx|m+l

a1 < 1 )m+l
=X log —
X

<C,,x "7 ¥xe(01), t€(ab)

and the differentiability lemma applies completing the induction step.
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(i) Using a combination of Beppo Levi (indicated by ‘BL’), Riemann=Lebesgue (if the
Riemann integral over an interval exists) and integration by parts (for the Riemann in-

tegral, indicated by ‘parts’) techniques we get

(1) = lim e tx'ldx (BL)
n—0o0 (l/n,n)
n

= lim (R) e 0. x"dx

n—o0o 1/n

n
=lim [e™*x'|"_ - lim(R) [ o, x"dx (parts)

n—oo n—00 1/}’!

n

lim (R) e X xUTD=1 gy

n—co 1/n

lim e X xU+D-1 gy
n—oo (l/n,n)

=~/' =% D=1 g (BL)
(0,00)

=I'(t+1).

(iii)) We have to show that
logT'(At + (1 — A)s) < AlogIl'(®) + (1 — A logI'(s) Vs, t>0, A€ (0,1).
This is clearly equivalent to
(At + (1= A)s) < [COF T Vs,t>0, 1€ (0,1).

Fix s, > 0 and write A4 = l andl —A=-=1- % where p, g € (1, co0) are conjugate

Rl

exponents. We get using Holder s inequality

(o]
(At + (1= As) = / W (B I
0

©
:/ e_; x;(_) —;x G dx
0
1
<[ xtldx] [/ xs)dx]

< [TO ()1

(iii) Alternative — direct calculuation Since log and I are in C? we can apply the convexity

criterion: logI" is convex if, and only 1f log I'(¢) = 0 holds. We have

d _ T’

ar gt =T

d? T (@) — (1))
i el = (T(1))2

which is non-negative iff

0 < TOI(1) - (' (1)
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So with the notation from part (ii), along with the dominated convergence theorem
(indicated by ‘DC’ — this is needed for I, since its integrand will take negative values,

so Beppo Levi does not apply), we get

IOr'@ - '@y = lim / e (xy)'(log y)* dxdy (BL)
(1/n,n) J (1/n,n)
— lim / / eV (xy)logxlogydxdy (DC)
n—oo (1/n,n) J (1/n,n)

n—-oo

n n
lim (R) / / e V(xy)ogy(logy —logx)dxdy
n n

n n
lim (R) / / e ¥(xy) ' log ylog Y dx dy
nJdl/n X

n—-oo

In the last expression we can change the roles of x and y without changing the value of

the integrals (Fubini), so we get

= lim (R)/ / X V(xy) 1logylog dxdy
n n

n—o0o 2

+ lim —(R)/ / XY (xy)'T 1logxlog dxdy
n n

n—oo

n—oo

= lim (R)/ / X (xy)'T 1(logylog +log xlog )dx dy.
n n
At last, using well-known logarithmic identities, we get
log ylog Y + log x log X = log ylog Y log x log Y
b y X X
= log X(log y —logx)
X
2
- (s2)
X

and inserting this into the above integral gives

= lim —(R)/ / XY (xy)'T 1<log ) dxdy

=1 / / ey~ log 2)? dxdy > 0. (BL)
2 (0,00) (O,oo)\ X D]

¥ 9

This finishes the proof.

Problem 12.28 Solution:

(i) The function x — xInx is bounded and continuous in [0, 1], hence Riemann integrable.
Since in this case Riemann and Lebesgue integrals coincide, we may use Riemann’s integral
and the usual rules for integration. Thus, changing variables according to x = e™', dx =
—e~'dtand then s = (k + 1)t, ds = (k+ 1) ds we find,

1 o)
/ (xInx)*dx = / [e_’(—t)]k e 'dt
0 0
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= (—1)"/mzke—f“‘+” dt
0
o k
=(_1)k/ <—S ) o5 48
o \k+1 k+1

_ (_l)k( 1 >k+1 /oo kD=1 s g
ke1) ),

_ (_1)k(k+r1>k+lr(k +1).

(i) Following the hint we write

[o0] k
-x _ —xInx _ k(xlnx)
x *=e = k_EO(—l) o

Since for x € (0, 1) the terms under the sum are all positive, we can use Beppo Levi’s theorem

and the formula I'(k + 1) = k! to get

o0
1
xXdx= ) (-DF= (xInx)*dx
/<o,1) ;;) k!

.n

o

- Z(_Dk%(—l)k(k%rl)k“r(k +1)
k=0 :
> 1\ k+l

=2 (77)

)"

3
Il
—_

Problem 12.29 Solution: Fix (a,b) C (0, 1) and let always u € (a, b). We have for x > 0 and L € IN,

eux
eX+1

IxL £, x)| = |x|-

< g 1y(0) + Myl gy () x72

where we use that u — 1 < 0, the continuity and boundedness of x?e™* for x € [1, o) and p > 0.

If x < 0 we get

IxEfu, x)| = |x| -

ex+1‘

— |X|L e—ulxl

S L0 (X) + Nyl ooy [x] 7%

Both inequalities give dominating functions which are integrable; therefore, the integral fR xL f(u, x)dx

exists.
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To see m-fold differentiability, we use the Differentiability lemma (Theorem 12.5) m-times. Form-
ally, we have to use induction. Let us only make the induction step (the start is very similar!). For
this, observe that

xn eux xn+m eux

e+ 1 - e*+1

but, as we have seen in the first step with L = n + m, this is uniformly bounded by an integrable

(X" f(u,x)) =9

function. Therefore, the Differentiability lemma applies and shows that

0;”/x"f(u,x)dx=/x"a;"f(u,x)dx=/x”+mf(u,x)dx.
R R

R

Problem 12.30 Solution: Because of the binomial formual we have (1 4+ x2)" > 1 + nx?; this yields,

in particular,
1 + nx?

(1 + x| =

Since
1 + nx?

im ————
n—oo (1 4+ x2)n
(exponential growth is always stronger than polynomial growth!) we can use dominated conver-

1 2
lim/ ﬂdx:
e Jo (14 22y

=0 Vxe(,1)

gence and find

Problem 12.31 Solution:

(1) We begin by showing that f is well defined, i.e. the integral expression makes sense. Recall

the following estimates
T
| arctan(y)| < |yl, | arctan(y)| < 5 yER,

(the first inequality follows from the mean value theorem, the second from the definition of

arctan.) Moreover,

. 1 _ 1 1
smhx:E(ex—e X)zz(ex—l)z Ex2 Vx > 1.

| =

For u(t, x) := arctan (L) we see
sinh x

T t
lu(t, x)| < E]l(o,l)(x) + 'm' L) o0y (2)

< 21010 + 5 e € £1((0.00))
This proves that the integral f(¢) = ./(O,oo) u(t, x) dx exists. In order to check differentiability
of f, we have to find (Theorem 12.5) a majorizing function for the derivative of the integrand.
Fix R > 0 and letr € (R™!, R). By the chain rule

0 1 1

Eu(t,x) - - < ; )2 sinh x

sinh x
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_ 1

= — - .
L 4 sinhx
sinh x

. 1 . . .
Since x = ———— is continuous, there is a constant C; > 0 such that
R2+sinh x
1

sup ——— <
xe[0.1] R~2 + sinh x h

Using 0 < sinh x < 1 for x € [0, 1], we get
1 < 1 '
+sinhx R +sinhx

|0,u(t, )| < — <C, Vxelo,1]

sinh x

Similarly we get for x > 1

112 1 |
01, 0] > —— =2 = =~ € £1((1, o).
——

<Cy<0
Therefore,
1
|0,u(t, x)| < Cy Lo (%) + 2Cze—xll(1’oo)(x) e £, »)).

Using the differentiability lemma, Theorem 12.5, we find that f is differentiable on (R™!, R)
and that

f’(t):/ Z;dx Vie (R, R).
(0,0) —— + sinh x
sinh x

Since R > 0 is arbitrary, f is differentiable on (0, o). That lim, | f ’(t) does not exist, follows

directly from the closed expresson for f’ in part (ii).

Note that £(0) = 0. In order to find an expression for f’, we perform the following substitu-

tion: u = cosh x and we get, observing that cosh? x — sinh® x = 1:

ﬂm:/ - ! L
(Leo) —E— 4 VU2 — 1 Vu2 — 1

u?—1

(1,00) 2 —-1+u? '

1 . . . . .
(Observe: x —» ———— is continuous, hence Riemann-integrable. Since we have estab-
——+sinh x
sinh x

lished in part (i) the existence of the Lebesgue integral, we can use Riemann integrals (b/o

Theorem 12.8).) There are two cases:

e t> 1: We have 2 — 1 > 0 and so

PN 1
ro=o [
(1,00) < u )
1+

= — — arctan
2—1\2 2 -1

= 1 arctan( t2—1>.
2 -1
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e 1 < 1: Then C := V/1 — 12 makes sense and we get
W+t —1=u*-C*=@u+C)u-o).

Moreover, by partial fractions,

11 111
w2—-C?2 2Cu+C 2Cu-C

)
/ #Chl:/ 4 Cdu
(1,00) U +t-—1 (1,00)
R R
=Llirn / ! du — L du
2C R— 1 u+C 1 u—C
=L jim <1n(1+c>+ln(R+C>>
2C R 1-C R-C
1 <1+C>
=—In({——
2C 1-C
1 <1+\/1—12>

2V1 -2 1- —1?

and so

The first part of our argument shows, in particular,

/oof'(t)dt=
1

Since f(t) = f(1) + flt fl(s)ds, t =1, we getlim,_,  f(f) = o0
L[ |

Problem 12.32 Solution:
(i) Since

i

dﬂ1éqX'='XW€4X|<AXm

m applications of the differentiability lemma, Theorem 12.5, show that ¢(;(")(0+) exists and
that

0 (0+) = (=1)" / X™dP.

(i) Using the exponential series we find that

(1)krk ¢k CDAF
ZX" 2 X

k=m+1
) L+isi
e 31 ey D
= m+1+))!

Since the left-hand side has a finite IP-integral, so has the right, i.e.

o _ (_1)m+l+jtj
( Z X / —) dIP  converges
= (m+1+))!
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and we see that

I RIS

k=0
ast — 0.
We show, by induction in m, that

m—1
“u (—w)t
=2 ku!

k=0

Because of the elementary inequality
le™ —1| < u Yu>0

the start of the induction m = 1 is clear. For the induction step m — m + 1 we note that

[(e-E )0y

k=0 k=0
u m—l k
_ =y
</ y o dy
0 k=0
(*) u m
< y—,dy
0 m!
um+l
S (m+ D’

and the claim follows.

Setting x = ¢tX in (¥), we find by integration that

k m m
NS e e

If  is in the radius of convergence of the power series, we know that

o lgm [ xmap
lim ———m8 — =

m—oo m!

which, when combined with (iii), proves that

¢x(1) = lim Z( l)ktkf

Problem 12.33 Solution:

®

Wrong, u is NOT continuous on the irrational numbers. To see this, just take a sequence of

rationals ¢; € Q N [0, 1] approximating p € [0, 1]\ Q. Then

limu(gy) = 1 # 0 = u(p) = u(limg;).
J J
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(i) True. Mind that v is not continuous at 0, but {n~!,n € IN} U {0} is still countable.

(iii) True. The points where u and v are not O (that is: where they are 1) are countable sets, hence
measurable and also Lebesgue null sets. This shows that u, v are measurable and almost
everywhere 0, hence f udi=0= f vda.

@iv) True. Since Q N[0, 1] as well as [0, 1]\ Q are dense subsets of [0, 1], ALL lower resp. upper

Darboux sums are always
S [ul =0 resp. S"[u] =1

(for any finite partition x of [0, 1]). Thus upper and lower integrals of u have the value O resp.

1 and it follows that u cannot be Riemann integrable.

Problem 12.34 Solution: Note that every function which has finitely many discontinuities is Riemann

integrable. Thus, if {4;} ;e 1s an enumeration of @, the functions u () =14 a (x) are

As- 4}
Riemann integrable (with Riemann integral 0) while their increasing limit u,, = 1 is not Riemann

integrable.

Problem 12.35 Solution: Of course we have to assume that u is Borel measurable! By assumption

we know that u; :=ul, ;; is (properly) Riemann integrable, hence Lebesgue integrable and

Jj 0
/ ud/1=/ u; d/1=(R)/ ux)dx—— / u(x)dx.
[0./1 [0,/] 0 J=eeJo

The last limit exists because of improper Riemann integrability. Moreover, this limit is an increas-

ing limit, i.e. a ‘sup’. Since 0 < u; T u we can invoke Beppo Levi’s theorem and get

/ud/l=sup/ujd/1=/ u(x)dx < o
J 0

proving Lebesgue integrability.

Problem 12.36 Solution: Observe that x> = kzx < x = Vkz,x >0,k € INy. Thus, Since

sin x? is continuous, it is on every bounded interval Riemann integrable. By a change of variables,

2
\/—
/ |sm(x2)|dx—/ |smy| /lsmyl
\/(_1

y = x°, we get
V+1 2
which means that for a = a; = kx and b = b, = (k + 1) = a,,, the values | | sin(x?)| dx

\/—

are a decreasing sequence with limit 0. Since on [1/ /A +1] the function sin x? has only one
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sign (and alternates its sign from interval to interval), we can use Leibniz’ convergence criterion

to see that the series

Z/msin(xz)dx (*)
kI Va

converges, hence the improper integral exists.
The function cos x? can be treated similarly. Alternatively, we remark that sin x?> = cos(x? — 7 /2).

The functions are not Lebesgue integrable. Either we show that the series (*) does not converge
absolutely, or we argue as follows:

sin x? = cos(x* — 7 /2) shows that f | sin x2| dx and f | cos x| dx either both converge or diverge.

If they would converge (this is equivalent to Lebesgue integrability...) we would find because of

sin? 4+ cos? = 1 and |sin|, |cos| < 1
00 = / ldx = / [(sinx*)? + (cos x*)*] dx
0 0

= / (sin x2)2 dx + / (cos x2)2 dx
0 0

(o] 0]
</ |sinx2|dx+/ | cos x?| dx < oo,
0 0

which is a contradiction.

Problem 12.37 Solution: Let r < s and, without loss of generality, a < b. A change of variables
yields

/f(bX) flax) , /f(bx} . sf(aX)d
X

bs as
_ (MW, [P0,
br y ar y
bs br
1014, [ 10,

Using the mean value theorem for integrals, .12, we get

s _ bs br
/ de=f(5s)/ 1dy_f(§r)/ 1,
r x as y ar y

= f(€)In2 - f(&)In2.

Since &, € (as, bs) and &, € (ar, br), we find that £, —— oo and ér—0> 0 which means that
S—00 r—

S £(bx) — s—>00
/ S ( x)xf(ax)d — [f(gs)_f(ér)] IHST()) (M—m)lns.
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13 The function spaces L?.
Solutions to Problems 13.1-13.26

Problem 13.1 Solution:

(1) We use Holder’s inequality for r, s € (1, o0) and % + % =1 to get

lull = [ 1wl du= [ 1t van
1/r 1/s
<(fura) (o)
1/r
= </ |”|qrdﬂ> (XS

Now let us choose r and s. We take

r=£>1=> 1=
q

9 ad Lo log_g
roop s P

hence

q/p1/q
llull, = (/ |u|? dy) (u(X))\1-9/P /o)

q/p1/q
= ( / Iul"dﬂ) ()t
= [lull, - (u(x )17,

(ii) If u € £” we know that u is measurable and ||u||, < co. The inequality in (i) then shows that
llull, < const - [[u]|, < o,

hence u € L£9. This gives L? C L4. The inclusion L? C L' follows by taking p ~ ¢q, ¢ w 1.

Let (u,),en C L be a Cauchy sequence, i.e. lim u, —uy|l, = 0. Since by the inequal-

mn—co |l

ity in (i) also

. 1/g—1 .
im flu, = yll, < 4OV Tim lu, = u,, = 0
m,n— oo m,n— oo

we get that (u,,),ey C £9 is also a Cauchy sequence in L9,

(iii) No, the assertion breaks down completely if the measure u has infinite mass. Here is an
example: y = Lebesgue measure on (1, o0). Then the function f(x) = i is not integrable
over [1, ), but f2(x) = é is. In other words: f & L'(1,00) but f € £(1, ), hence
£2(1,0) ¢ £1(1, ). (Playing around with different exponents shows that the assertion also

fails for other p,q > 1....).
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Problem 13.2 Solution: This is going to be a bit messy and rather than showing the ‘streamlined’
solution we indicate how one could find out the numbers oneself. Now let A be some number in

(0,1) and let a, § be conjugate indices: é + % = 1 where a,f € (1,0). Then by the Holder

/ ul” dy = / 4l 0D dp
1 1
a p
< ( / |u|”°'du) ( / 1= dﬂ)

ri r(1-2)

a (=1
— </|u|r/ladﬂ> </|u|r(l—ﬂ)ﬁdﬂ> .

Taking rth roots on both sides yields

A (=4
ria r(1-1)p
lull, < ( / Iul’“dﬂ> ( / 1= dﬂ>

A 1-4
raal#l 020

inequality

= |l
This leads to the following system of equations:
p=ria, q=r(1—-21)p, 1=l+
a

with unknown quantities «, §, A. Solving it yields

Problem 13.3 Solution:

(1) Ifu,v € LP(u), then u+ v and au are again in L£P(u); this follows from the homogeneity
of the integral and Minkowski’s inequality (Corollary 13.4. Using the Cauchy—Schwarz
inequality, the product uv is in £LP(u), if u,v € L£*(u). More generally: if there are
conjugate numbers @, f € [1, 0] (i.e. a~! + p~' = 1), such that u € £ and v € LP?,
then uv € LP(u).

(ii) Consider the measure space ((0, 1), (0, 1), A) and set u(x) := v(x) := x~/3. This
gives
1 1 X
/ lu(x)|? dx = / x 2P dx = 3[x1/3] =3 <00,
0 0 =
i.e. u,v € L?(u). On the other hand, u - v & L£L>(u) as

1 1
/ lu(x)v(x)|* dx = / x 3 dx = lim [—3x'1/3] 1_ = 00.
0 0 r—=0 X=r

2

This proves that £2(y) is not an algebra. Define # := u? and ¥ := v?, we get a similar

counterexample which works in £!(y).

152



Solution Manual. Last update 18th July 2019
(iii)) From Minkowski’s inequality we get

lull, = I —v) + vll, < |lu—oll, + ol
= lull, = llvll, < [lu—wvll,

If we change the roles of u and v, we obtain

loll, = llull, < llv—ull, = llu—10ll,
and, therefore,

lull, = llvll,| = max{|lull, — [[oll,, l0ll, = lull,} < llu—ovll,

Problem 13.4 Solution:
(i) We consider the three cases separately.

(a) Everymap u : (Q,{0,Q}) - (R, {#,R}) is measurable. Indeed: u is measurable if,
and only if, u='(A) € {#,Q} forall A € o = {#,R}. Since

=0 'R =Q

this is indeed true for any map u.

(b) Every measurable map u : (Q, {#,Q}) - (R, B(R)) is constant Indeed: Suppose, u
is not constant, i.e. there are w;,w, € Q and x,y € R, x # y, such that u(w;) = x,
u(w,) = y. Then u=!({x}) & {0,Q} as w; € u~'({x}) (and so u~'({x}) # @) and
w, & u'({x}) (and so u~'({x}) # Q).

(¢) Every measurablemapu : (Q, {#,Q}) —» (R, P(R))is clearly {#J, Q} /B (R)-measurable.
From (b) we know that such functions are constant. On the other hand, constant maps
are measurable for any o-algebra. Therefore, every {@, Q} /% (IR)-measurable map is

constant.
(i1) We determine first the o(B)-measurable maps. We claim: every o(B)/%(IR)-measurable
map is of the form

uw) =clgl®) +cylp(w), weQ, (%)

for ¢, c, € R. Indeed: If u is given by (%), then

-

Q, cj,cy EA,

B, ¢ €Ac, & A,
w(A) =4 ! ?
B¢, ¢ &€ A, c, €A,

B, cLgA

\
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for any A € B(R). Therefore, u is 6(B)/%(R)-measurable. Conversely, assume that
the function u is o(B)/%B(R)-measurable. Choose any w; € B, w, € B° and define
c; = u(wy), ¢; = u(w,). If u were not of the form (), then there would be some w € Q
such that u(w) & {c;,c,}. In this case A := {u(w)} satisfies ul(A) ¢ {0,Q, B, B°},

contradicting the measurability of u.

By definition,

LP(Q,6(B), u) = {u : (Q,06(B)) - (R, % (R)) messbar : / lul? du < oo} .

We have already shown that the o(B)-measurable maps are given by (). Because of the

linearity of the integral we see that
[ 1 i = 1) + el

Consequently, u € LP(Q, o(B), u) if, and only if,
o ¢, =0o0r u(B) < ©
e ¢, =0or u(B°) < o.
In particular, every map of the form (x) is in £LP(€, o(B), u) if u is a finite measure.

Problem 13.5 Solution: Proof by induction in N.

154

Start N = 2: this is just Holder’s inequality.
Hypothesis: the generalized Holder inequality holds for some N > 2.

Step N » N + 1:. Letug,...,uy,wbe N + 1 functions and let p,, ..., py,q > 1 be such that
pilHp o+ py +g7 =1 Setpm! i=pit +p3! + ...+ pl. Then, by the ordinary Holder

1/p
/lul Uy Uy - w|dp < (/ luy -uz-...-uNlpdu> llull,
1/p
= (/ |y |7+ Jug|? - .- quvlpdﬂ) llull,

Now use the induction hypothesis which allows us to apply the generalized Holder inequality for

inequality,

N (!) factors A; 1= p;/p, and thus Zjvzl AJTl = p/p = 1, to the first factor to get

1/p
[ty - wldu (/ |u1|f’-|u2|f’-...-|uN|Pdu) lul,

<llully, - Nall, - .. - lell, Nl
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Problem 13.6 Solution: Draw a picture similar to the one used in the proof of Lemma 13.1 (note
that the increasing function need not be convex or concave....). Without loss of generality we can
assume that A, B > 0 are such that ¢(A) > B which is equivalent to A > y(B) since ¢ and y are

inverses. Thus,

B w(B) A
AB=/0 l//(ﬂ)dﬂ+/0 ¢(§)d§+/ Bd¢.

v (B)

Using the fact that ¢ increases, we get that

d(w(B)=B = ¢$(C)>2B VC=y(B)

and we conclude that

B w(B) A
AB = / w(n)dn+ / P& dé + / Bd¢
0 0 v (B)

B v (B) A
< /0 wn dn + /0 p@de+ | o de

v(B)
B A
=/0 ll/(ﬂ)d'?+/0 $(©)de

= Y(B) + ©(A).

Problem 13.7 Solution: Let us show first of all that £P-lim;_, , u;, = u. This follows immediately

from limy_, , [[u — u, ||, = O since the series 2;021 llu — uyll, converges.

Therefore, we can find a subsequence (1)) ey such that

lim u; ;) (x) = u(x) almost everywhere.
Jj—o

Now we want to show that u is the a.e. limit of the original sequence. For this we mimic the trick

from the Riesz—Fischer theorem 13.7 and show that the series

00 K

Z(ujH —u;) = 1}1_1:130 Z(ujH —u;) = I}l_rgo Ug

J=0 Jj=0
(again we agree on u; := 0 for notational convenience) makes sense. So let us employ Lemma
13.6 used in the proof of the Riesz—Fischer theorem to get

[e9)
PUCHEL
=0

(o]

Z j+1

j=0

p
o0
Z |uj+l
o0
< (g = ull, + llu—u;l,)
Jj=0
< 00
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where we use Minkowski’s inequality, the function u from above and the fact that Zj’;l llu;—ull, <
oo along with ||u; ||, < co. This shows that limy_, , ug(x) = Zﬁo(uﬂl(x) — u;(x)) exists almost

everywhere.

We still have to show that limg_,  ug(x) = u(x). For this we remark that a subsequence has

necessarily the same limit as the original sequence—whenever both have limits, of course. But

then,
u(x) = lim uy;y(x) = lim w(x) = E (Uj41(x) —u;(x))
j—oo k— o0 =0

and the claim follows.

Problem 13.8 Solution: That for every fixed x the sequence

u,(x) := n]l(o’l/n)(x)m 0

is obvious. On the other hand, for any subsequence (u,;)); we have

n(j
» p p—1
luypl? dA =n(j)P — =n(j)’' " —— ¢
n(j) jmeo

withc = lincase p =1 and ¢ = oo if p > 1. This shows that the £?-limit of this subsequence—Ilet
us call it w if it exists at all—cannot be (not even a.e.) u = 0.

On the other hand, we know that a sub-subsequence (Ek( ;i of (uy )); converges pointwise almost
everywhere to the £P-limit:

Since the full sequence lim, u,(x) = u(x) = 0 has a limit, this shows that the sub-sub-sequence

limit w(x) = 0 almost everywhere—a contradiction. Thus, w does not exist in the first place.

Problem 13.9 Solution: Using Minkowski’s and Holder’s inequalities we find for all € > 0

156

”ukvk - uU”l = ”ukvk - ukU + ukU - uU”
< g - (g = O + [y — w0l
< lwgellpllog = ollg + llug = ull,llvll,
<M + [jvllpe

for all n > N.. We use here that the sequence (||uy|l,)ren is bounded. Indeed, by Minkowski’s

inequality

NIl = Mg = ull, + llull, < €+ lull, =: M.
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Problem 13.10 Solution: We use the simple identity
ity = 3 = [ Gty = 0%
= /(ui —2uu,, +u,)du @)

= Nty I2+ g 2 = 2 / ity L

Case 1: u, — uin £2. This means that (u,,),cy is an £2 Cauchy sequence, i.e. that lim, u

m,n— oo “ n—

u,, ||§ = 0. On the other hand, we get from the lower triangle inequality for norms
lim |llu,ll; = llully| < lim flu, —ull, =0
n—oo h—0oo

so that also lim,,_, ||un||§ = lim,,_, ||um||§ = ||u||§. Using (*) we find

2 2 2
> / Ut gt = Nty 12 + Nty 2 = i, = 10,12

2 2
—— lully + llull; = 0

n,m—co

2
= 2full5.

Case 2: Assume that lim,, , , [ u,u,, du = c for some number ¢ € R. By the very definition of

this double limit, i.e.

Ve>0 IN.elN : '/unumdu—c <e Vmm>=N,_,

we see thatlim,,_, o, [ u,u,dy = c =lim,,_, [ u,u,, dp hold (with the same c!). Therefore, again

by (*), we get

2 2 2
ity — 12 = Mty 12 + Nt 2 = 2 / wu dy

—>c+c—2c = 0,
n,m— 0o

i.e. (u,) e is @ Cauchy sequence in £2 and has, by the completeness of this space, a limit.

Problem 13.11 Solution: Use the exponential series to conclude from the positivity of 4 and u(x)
that
hjuj > l’lN N

exp(hu) = j‘ Z ﬁ u

J=0

Integrating this gives

hN N
N u ' du< [ explhu)dy <

and we find that u € £V . Since y is a finite measure we know from Problem 13.1 that for N > p

we have LN c CP.
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Problem 13.12 Solution:

(i) We have to show that |u,(x)|? 1= nP*(x + n)~PP has finite integral—measurability is clear
since u,, is continuous. Since #”* is a constant, we have only to show that (x + n)~PPisin L.

Sety := pp > 1. Then we get from a Beppo Levi and a domination argument

/ (x+n)7 Adx) < / (x+ 1)77 Adx)
(0,00)

(0,00)

< / 1 A(dx) +/ (x+1)77 Adx)
0.1) (1,00)

<1+ lim x77 Adx).
k— o0 (1,k)

Now using that Riemann=Lebesgue on intervals where the Riemann integral exists, we get

k
lim x77 A(dx) = lim x7dx
k—o0 (1,k) k—o0 1

T _ —1 1-y k
fim [0 =07
— _ -1 1z 1=y _
(= g (67
=y-D! < =
which shows that the integral is finite.

(i1) We have to show that |v,(x)|? := n%e™9" is in £'—again measurability is inferred from

continuity. Since n?” is a constant, it is enough to show that e~?"* is integrable. Set 6 = gn.

Since

lim(6x)%e®* =0 and e %<1 Vx>0,

X—>00
and since e~%* is continuous on [0, o), we conclude that there are constants C, C(§) such
that

—5x . C
e <min< 1, —
h { (6x)? }

< C(8)min { 1, iz}
X
1
=C(5) (]1(0’1)(30 + ]l[l,oo) ;)

but the latter is an integrable function on (0, o).

Problem 13.13 Solution: Without loss of generality we may assume that ¢ < f. We distinguish
between the case x € (0,1) and x € [1, 00). If x < 1, then

L > 1 > 1 = 1/2 YV x

1.
=z =z
X7 x¥4xP T X% x% X4 X% '

/AN

this shows that (x* + x#)~1 is in £1((0, 1), dx) if, and only if, & < 1.
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Similarly, if x > 1, then

L > ! > ! 1/2

X7 xt4xP T xP+xP T xP+xP

Vx>1

this shows that (x* + x#)~!is in £'((1, ), dx) if, and only if, § > 1.
Thus, (x* + x#)~!is in £!(R, dx) if, and only if, both @ < 1 and § > 1.

Problem 13.14 Solution: If weuse X = {1,2,...,n}, x(j) = Xj, 4 =€+ + ¢, we have

n 1/p
(Zrr) " = et

j=1

and it is clear that this is a norm for p > 1 and, in view of Problem 13.19 it is not a norm for
p < 1 since the triangle (Minkowski) inequality fails. (This could also be shown by a direct

counterexample.

Problem 13.15 Solution: Without loss of generality we can restrict ourselves to positive functions—
else we would consider positive and negative parts. Separability can obviously considered separ-

ately!

Assume that Ei is separable and choose u € Ei. Then u” € L£! and, because of separability, there

is a sequence (f,), C &, C L! such that

in £! in !
fr— W = —— v’
n— oo " n-oo

ifwesetu, := f,f ? e £ In particular, u,,,(x) — u(x) almost everywhere for some subsequence

and ””n(k)”pk—’ [lull ,- Thus, Riesz’s theorem 13.10 applies and proves that

P in LP
L > un(k)—k—> u.
—00

Obviously the separating set 9, is essentially the same as 2, and we are done.

The converse is similar (note that we did not make any assumptions on p > 1 or p < 1—this is

immaterial in the above argument).

Problem 13.16 Solution: We have seen in the lecture that, whenever lim lu — u,ll, = 0O, there

n—oo

is a subsequence u,,, such that lim,_, ., u,,,(x) = u(x) almost everywhere. Since, by assumption,
lim; uj(x) = w(x) a.e., we have also that limj_)oo un(j)(x) = w(x) a.e., hence u(x) = w(x)

J— 0

almost everywhere.
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Problem 13.17 Solution: We remark that y — logy is concave. Therefore, we can use Jensen’s

inequality for concave functions to get for the probability measure u/u(X) = u(X)~'1 x M
du du
(logu) < log </u—)
/ uX) = #(X)
f udu
= log
H(X)
= log <—1 )
uXx))’

and the claim follows.

Problem 13.18 Solution: As a matter of fact,

/ u(s)ds-/ logu(t)dté/ u(x)logu(x)dx.
O,1) 0.1) O,1)

We begin by proving the hint. logx > 0 < x > 1. So,
Vy>1: <10gy<ylogy = 1<y)
and Vy<l1: <logy<ylogy S IZy).

Assume now that /(0 pux)dx = 1. Substituting in the above inequality y = u(x) and integrating

over (0, 1) yields

/ logu(x)dx < / u(x)logu(x)dx.
O,

0.1)

Now assume that a = /(0 0 u(x)dx. Then f(o D u(x)/a dx = 1 and the above inequality gives

/ log@de/ wlog@dx
(0,1) o o1 @ a

/ logu(x)dx — loga
0,1

=/ logu(x)dx—/ loga dx
(0,1) (0,1)

=/ log@dx
(,1) @

0,1)

which is equivalent to

[04 (04

=l/ u(x)log@dx
a ©o,D [0

=l/ u(x)logu(x)dx—l/ u(x)loga dx
©,1) @

o ,1)

=l/ u(x)logu(x)dx—l/ u(x)dxloga
@ Jo,n @ Jon
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= l'/ u(x)logu(x)dx — log a.
0.1)

(01

The claim now follows by adding log @ on both sides and then multiplying by a = /(0 b u(x)dx.
|

Problem 13.19 Solution:

(1) Letp € (0, 1) and pick the conjugate index g := p/(p—1) < 0. Moreover, s :=1/p € (1, o)

and the conjugate index f, % + % =1, is given by

)
< =
—

‘= = = e (1, ).
p

Thus, using the normal Holder inequality for s, t we get
P
/upd,u=/u1’w—d/,t
wP
1/s 1/t

<(fwra)(foa

p 1-p

= </uw d,u> </w”/(”_1) d/l) .

Taking pth roots on either side yields

</”pd“>l/p< </uw du></wp/<p-1) df/'>(1p)/p
(Joan)(foon)

(ii) This ‘reversed” Minkowski inequality follows from the ‘reversed’ Holder inequality in exactly

and the claim follows.

the same way as Minkowski’s inequality follows from Holder’s inequality, cf. Corollary 13.4.

To wit:
/(u+v)pd,u=/(u+v)-(u+v)"_1d,u
=/u~(u+v)"_1d,u+/U-(u+u)p_ld/,¢
(Q p—1 p—1
> lll, - |t 07|+ el [+ 07!

Dividing both sides by |||u + v|?~|| 4 broves our claim since

1/q 1-1/p
(u + v)P~ = w+v)Pdy = w+vY¥du .
oot orl, = (fwrorrean) "=  froran)

Problem 13.20 Solution: By assumption, |u| < ||u||,, < C < oo and u # 0.

161



R.L. Schilling: Measures, Integrals & Martingales

(i) We have
M, = / lul"du < C" / du=C"u(X) € (0, ).

Note that M, > 0.

(i) By the Cauchy—Schwarz-Inequality,

M, = [

il ol
lul 2" |u| > dp

([ (o)

=V n+1M

(iii) The upper estimate follows from

M,,+1=/|u|"+1 dﬂ</|u|"~||u||oodu=||u||ooM

Set P := u/u(X); the lower estimate is equivalent to

1/n n+l _dp_
()" Lt
X
#x) e 40
1+1/n
= </|u|"dP) </|u|"+1 dP
(n+1)/n
= (/Iul”dP) </|u|"+1 dP

and the last inequality follows easily from Jensen’s inequality since P is a probability meas-

(n+l)/n n+1
</|u|”dP> /|u|"'7 dp=/|u|"+1 dP.

(iv) Following the hint we get

ure:

1/n n—oo
lully > (s> ullos = €}) ™ (lullos = €) === Il
ie.
liminf |lull, > |lull
n—oo
Combining this with the estimate from (iii), we get

llull oo < timinf p(X)~/"lull,

(iii)
< liminf

n—oo

M,

n

Mn+l

< lim sup
n— oo n

< ullo
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Problem 13.21 Solution: The hint says it all.... Maybe, you have a look at the specimen solution of
Problem 13.20, too.

Case 1: |[u]| ;o < 00. For A5 1= {u > |lull, — 6}, 6 > 0, we gave u(A;) > 0 and

p 1
llull, = ( (lull — 6 du) = (|lull o — 6)u(As)r.
As
Therefore,
.. .. 1
lim inf fluf, > lim inf <<||u||oo - 5)#(A,s)") = lull o, — 5.

Since 6 > 0 is arbitrary, this shows that liminf ,_, . [[ul|, 2 ||lul[-

On the other hand, we have for p > g

[ e i = [ 1ol lucol® du <

Taking pth roots on both sides of the inequality, we get

r=q 4
lim sup [|ull, < lim sup <||u||°;’ ||u||;;> = llullo-

p—)OO p—)OO
This finishes the proof for all [|u||;« < 0.

Case 2: ||u||;» = . The estimate

lim sup [Jull, < [lullq,
peo

is trivially true. The converse inequality follows like this: Define A := {u > R}, R > 0. We
have u(A,) > 0 (otherwise ||u||;»~ < oo!) and, as in the first part of the proof, we find

1

b 1

llull, > </ R? dM) = Ru(Ag)’.
AR

Thus, lim inf > R and since R > 0 is arbitrary, the claim follows:

p—oo Nl

liminf [[u]|, Z o0 = [lu]| -
p—)OO

Problem 13.22 Solution: We begin with two observations

o If r < 5 < g, then |[u]|, < ||ull,. This follows from Jensen’s inequality (Theorem 13.13) and
the fact that V' (x) := x*/", x € R, is convex (cf. also Problem 13.1). In particular, ||u]| , < 00
for all r € (0, q).
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e We have
/10glu|d/4<10g llull, Vpe@©q). )
This follows again from Jensen’s inequality applied to the convex function V' (x) := —log x:
~tog ([ an) < [ ~toxtuyau~p [10g ity
therefore,

1
log [lull, = - log < / |“|pdﬂ> > / log |u] dp.

Because of (x) it is enough to show that lim,_,, [|u]], < exp(/ In |u| d u). (Note: by the monoton-

icity of ||ul[, as p | O we know that the limit lim,,_, [|u||, exists.) Note that

p_
log a = inf a 1, a>0. (%%)

p>0 D

(Hint: show by differentiation that p — % is increasing.

al—1

Use I'Hospital’s rule to show that lim,,_,,

P—1
/logluldunécinf/ Jul du
p>0 D

ulPdu—1
_p L rdu—1

p>0 D

= log a.) From monotone convergence (mc) we get

for all p > 0. Letting p — O finishes the proof.
N

Problem 13.23 Solution: Without loss of generality we may assume that f > 0. We use the following

standard representation of f, see (8.7):

N
f= Z ¢j]lAj
j=0

with 0 = ¢y < ¢; < ... < ¢y < oo and mutually disjoint sets A;. Clearly, {f # 0} =
AU UAy.

Assume first that f € £ N LP(u). Then
N N
00 > /f"du = 2 B uA) > Y uA) = u(f #0));
j=1 j=1

thus u({ f # 0}) < .

Conversely, if u({f # 0}) < oo, we get

N N
/f”dﬂ = Y 0" u(A) < Y W u(Ay) = ¢y u((f #0)) < .
j=1 j=1
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Since this integrability criterion does not depend on p > 1, itis clear that E-NLP(u) = EF nLl( u,

and the rest follows since & = £t — €T,

Problem 13.24 Solution: (i) < (ii) and (iii) < (iv), since A is concave if, and only if, V = —A

is convex. Moreover, (iii) generalizes (i) and (iv) gives (ii). It is, therefore, enough to verify (iii).

Since u is integrable and takes values in (a, b), we get

a:/a,u(dx)</u(x)y(dx)</by(dx):b.

This shows that the 1.h.S. of the Jensen inequality is well-defined. The rest of the proof is similar to
the one of Theorem 13.13: take some affine-linear £(x) = ax + f < V' (x) — here we only consider

x € (a, b) — and notice that

f(/udu)=a/ud,u+ﬁ=/(au+ﬁ)d,u</V(u)d,u.

Now go to the sup over all affine-linear £ below V' and the claim follows.

Problem 13.25 Solution:

(1) Note that A(x) = x!/4 is concave—e. g. differentiate twice and show that it is negative—and

using Jensen’s inequality for positive f, g > 0 yields
/fgdu=/gf_”/qﬂ{f¢0}f”du
- 1/q
</fpdﬂ<f8qf p]l{f#)}fpd”)

[ frdu

<(fra) " (o)

where we use 1 s, < 1 in the last step.
Note that fg € L' follows from the fact that (gqf"’]l{#o}) P=gielh

(ii) The function A(x) = (x'/? + 1)? has second derivative
1-—
N = —L(14x/) x=1r <0
4

showing that A is concave. Using Jensen’s inequality gives for f,g > 0

g p
/(f"'g)p]l{faéo} dﬂ:/(}“{#oﬁl) TPL pz0y dp
gP1 du 1/p
</ £ da </ (££0) > o
(£#0) 20y FPdu

1/p 1/pyp
(L) (o) |
{f#0} {f#0}

p
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Adding on both sides f{f:o}(f +g)VPdu = ./{f:O
inequality A? + B < (A+ B, A,B>0, p>1,

| gP d u yields, because of the elementary

/(f+g)”du

1/p 1/p
(J )+ ([ 77 0)
{f#0} {f#0}

1/p 1/p1p
(Jou)"(f )T

p

< +

<X

p/p
/ = N dﬂ]
{f—O}

<

Problem 13.26 Solution: Using Holder’s inequality we get
|f —al” <(f1+laly = - |f1+1-laly <27'Af1P + 1al?).

Since u(X) < oo, this shows that both sides of the asserted integral inequality are finite.

Without loss of generality we may assume that a > 0, otherwise we would consider — f instead of
f.

Without loss of generality we may assume that m = f fdu = 0, otherwise we would consider
f—ffdy instead of f.

Observe that
/ 1P du < Qap™! / 1/ du
{0<f<2a} {0<f<2a}

< Qay! / |fldu
(/>0)

— ay-! / /ldu
{f<0}

In the last line we use the fact that

/ |f|du=/f+du”i”=°/f-du=/ Ly
{f>0} {f<0}

Thus,
/ 1P du < Qay! / 1/ du
{0<f<2a} {f<0}
< 2”‘1/ @ VvI|fIP)du ()
{f<0}
<2P—1/ \f —al du.
{f<0}
Moreover,

/ Ifl”du<2”/ /= al? du, (+%)
{f>2a} (f>2a}

which follows from

f>2a = |f—al=f—-a>a.
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Finally,
/ Iflpdu<2”/ I/ —al dp. (+5%)
(/<0) 1/<0)

If we combine (*)—(***) we get

/Ifl"dﬂ={/ +/ +/ }Ifl”du
{f>2a} {0<f<2a} {f<0}

<2P/ [ —alPdu+@ 1) [ 1f —al du
{f>2a}

{f<0}
/ \f —al dp.

Solution 2 to 13.26: We need the following inequality for a,b € R which follows from Holder’s

inequality:

ja=b1” < (lal + 161 = (1 - al + 1 - [B))" <27 ([al” + [BI7).
Set b = f(x). Since u(X) < oo, this shows that both sides of the claimed integral inequality are
finite.

Assume first that 4(X) = 1. Then we find

If(x) = ml? < (|f(x) —al + |m —al])’

<27 (x) - al” + 277 m — af?
p
=2 f(x) —al” + 2!

/f(y)/t(dy) —a

/ (S

<27 f(x) — al? + 277! / |f(») — al” u(dy)

=271 f(x) — a|P + 27!

by Jensen’s inequality. Now we divide by 27 and integrate both sides with respect to u(dx) to get

_ 1 1
2 ”/ |f(x) = m|P u(dx) < E/If(X)—al”M(dXH E/If(y)—al"u(dy)
which proves our claim for probability measures.

If p is a general finite measure we set g := f — f f du and use the previous estimate

/||P (X)< P1/|g (X) Va € R.

Since a is arbitrary, we see from this

/If m|" <2P1/|f b| —— (X) Vb € R.

Remark: the same argument shows that we get for any convex function ¢ with the ‘doubling

property” ¢(2x) < cyp(x) for all x:
/¢(f—m)d,u<c¢/q§(f—a)d,u Va € R.
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14 Product measures and Fubini’'s theorem.
Solutions to Problems 14.1-14.20

Problem 14.1 Solution:

e We have
(x,y)€<UA,~>><B = xGUA,-andyeB
i i
— dij:x€ A andye B
= Elio:(x,y)eAioxB
= (x,y el Ju xB).
i
e We have

(x,y) € <ﬂAi)><B = xeﬂA[andyeB
i i
< Vi:.x€A,andye B
< Vi:(x,y) €A, XB
= (x5 €[ (A xB).
i

e Using the formula A x B = z'(A) n z;'(B) (see page 135 and the fact that inverse maps
interchange with all set operations, we get
(AX B)N (A’ x B') = [nl_l(A) n nz_l(B)] n [nl_l(A') n ngl(B’)]
= |7 @@ n |5 B 0 @)
=r'(AnA)nz;'(BnB)
=ANnA)xX(BnB.

e Using the formula A X B = 77,'1_1 (AN Ty 1(B) (see page 135 and the fact that inverse maps

interchange with all set operations, we get

A°x B =n7'(A) n ;' (B)
= [z7' W] nz;'(B)
=27 X) Nz (B)n [27 (A
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=5 00z @ { 7' @W] v 5B
=X xB)n [z (A nz'(B)
=(XxB)n[AxB|

=(X X B)\ (AX B).

e We have

AXBCA XB < [(x,y) EAXB = (x,y) € A’ x B'|
< [x€eAyeB = xeA,ye B

<~ AcA', BcPH.

Problem 14.2 Solution: Pick two exhausting sequences (A;), C & and (B;), C % such that
u(A),v(B,) <ooand A, T X, B, 1T Y. Then, because of the continuity of measures,

Mxv(AxN)=li]£n/4><V((A><N)ﬂ(Ak><Bk))
= li]in,uxv((AﬂAk)X(Nan))
=lim [ (4N A - V(N N BY)]

e o e -

<oo <V(N)=0

=0.

Since AX N € of X B C o ® B, measurability is clear.
[ | |

Problem 14.3 Solution:

e (a) = (b): If f is p; X u,-negligible, we can use Tonelli’s theorem to infer that

0=/ ( |f(x1,x2)|d,u2(x2)> dpy(xy).
E, \JE,

Using Theorem 11.2 we find

Hy ( [ f (5 x0)| dpy(xy) # 0) 0.
Ey

This means that f(x,, -) is for y;-almost all x; u,-negligible.

e (b) = (a): Set

N := {x1€E1§ |f(x1,x2)|d,uz(x2)7é()}.

E,

By assumption, y;(N) = 0. Therefore,

/ < |f(x1’x2)|dﬂ2(x2)> dui(xy) =/ < |f(x1,x2)|dl42(x2)> duy(xy)
E, E, N \JE,
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+/ < |f(x1,X2)|d,uz(x2)> dpy(xy).
EA\N \JE,

The first integral on the right-hand side is, by Theorem 11.2 equal to 0. The second integral

is also 0, due to the definition of the set N. Using Tonelli’s theorem we see
/ | f e X))l dpy X pp(x1,x2) =0
E\XE,

e (a) & (c): Use the symmetry in the variables or argue as in “(a) < (b)”.

Problem 14.4 Solution: Since the two expressions are symmetric in x and y, they must coincide if

they converge. Let us, therefore only look at the left hand side.

The inner integral,

/ e sinx Adx)
(0,00)

clearly satisfies

/ |e xy smx| AMdx) < / e A(dx)
(0,00) (0,00)
/ —Vdx
0

Since the integrand is continuous and has only one sign, we can use Riemann’s integral. Thus, the

Il
><|»—i_|

integral exists. To calculate its value we observe that two integrations by parts yield

o0 © —x
— ye Y cosxdx
0 Jo

xX=

o0
=1 —y/ e cosxdx
0

00 o0
=1- y<e"‘y sin x + / ye sinxdx>
x=0 0

(o]
=1—y2/ e sinxdx.
0

And if we solve this equality for the integral expression, we get

(o]
/ e sinxdx = —e Y cosx
0

o0 (o] 1
a1+ y2)/ e Vsinxdx=1 = / e sinxdx = .
0 0 1+)2
Alternative: Since sin x = Im e™* we get
/ e sinxdx = Im/ e 0¥ dx = Im L =1Im y+i = 1 .
0 o y—i »+1 41
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Thus the iterated integral exists, since

1 00
x < 5 dx = arctanx| =
(0,00) 0

(0,00) 1+x
(Here we use again that improper Riemann integrals with positive integrands coincide with Le-

sin x
1+ x2

besgue integrals.)

In principle, the existence and equality of iterated integrals is not good enough to guarantee the
existence of the double integral. For this one needs the existence of the absolute iterated integrals—
cf. Tonelli’s theorem 14.8. In the present case one can see that the absolute iterated integrals exist,

though:

On the one hand we find

—X

y|I® o1
Y o y

/ e sin(x)| A(dx) < &
(0,00)

and % is, as a bounded continuous function, Lebesgue integrable over (0, 1).

On the other hand we can use integration by parts to get

(k+ D)z oY (k+1)z (k+D)x —
Xy o _ .
e sinxdx = sin x — cosxdx
k k

4 -y ka T -y

ey (k+1)m (ktDx o —xy .
= 5 COS X - 2(—l)smxabc
-y ex kx -y
which is equivalent to
2 (k+1)z _ _
+1 . (k+1)zy kxy
4 . / e sinx dx = e—z(—l)k“ - e—z(—1)’<
y km -y -y

1 k
( yz) (e—(k+1)7z'y e—kzz'y)’
ie. fk(:ﬂ)” e sinx dx = (_1)k_y21+1 (e=k+Dmy 4 o=kmyy,

Now we find a bound for y € (1, o).

0 (k+)x
/ e ™| sin(x)|dx = )’ / e sin x(=1)¥ dx
(0,00) k=0 k

/3

— Z(—l)k(—l)k%(e_(k-i_l)ﬂy + e—k]ry)
k=0 y-+1

o0
2
< (e7™)k
2+ 1 /é)
y>1 2 b
< e—ﬂ' k
< a ,Zs( )

which means that the left hand side is integrable over (1, o0).

Thus we have

/ / |e™™ sin x sin y| A(dx) A(dy)
(0,00) J (0,00)
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/ s1nyﬁ(d)+/ 22
o1 Y (leoy Y- +1

< o0.

/AN

By Fubini’s theorem we know that the iterated integrals as well as the double integral exist and

their values are identical.

Alternative proof for the absolute convergence of the integral:' Let
f(x,y)=e|sinxsiny| >0 Vx,y>0.

By monotone convergence and Tonelli’s theorem

/f(x,y)dxdy— lim // fx,y)dxdy
A.B=c JJ 0, 41%(0,B]

= Sup/ f(x,y)dydx.
A,B20 J (0,A] J (0,B]

Since the integrands are bounded and continuous, we can use Riemann integrals. Fix A > 1 and

B > 1. Then
A /B 1 o1 1 B p1 (A A /B
Lh=L bl L)
o Jo o Jo 0o J1 o Ji 1 J1

Now we can estimate these expressions separately: since | sin?| < |¢| we have

//f(xy)dydx //ldxdy—l

1
// fx,y)dydx < / /xe"‘ydx] dy
1 0
1 eB-1 1
=1--+ <1l--.
e B e
1 ,A Al r1
// f(x,y)dxdyS/ /ye‘xydy dx
0o J1 1 [Jo
—A _
—1-1.¢ I L1
e e
A B B A
/ / f(X,,V)dXdy</ [/ xe_xydx] dy
1 J1 1 1
1 4 e AB_ B
=-—e’+ <=
e ¢ B e

These estimates now show

[ee] (e o] 1

/ / e |sinx siny| dxdy <3 — -.

o Jo €
L[ |

'This much more elegant proof was communicated to me in July 2012 by Alvaro H. Salas from the Universidad Nacional de

Colombia, Department of Mathematics
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Problem 14.5 Solution: Note that

d y B x2 _y2
dy x2 + y2 (x2 + y2)2'

Thus we can compute

1 Iz
dydx—/ dx = arctanx| = —.
A)l) /0 1 2+ 22 y2)2 o1 x> +1 0 4

By symmetry of x and y in the integrals it follows that

[ e
o1 o1 (3€2+J/2)2 4

and therefore the double integral can not exist. Since the existence would imply the equality of the

two above integrals. We can see this directly by

dydx > / / dydx
/(0,1) /(;),1) g 0 (2422 )’2)2

x? —y
(xz + y2)2

Problem 14.6 Solution: Since the integrand is odd, we have for y # O:

[
— ax
1.1 (X2 +y2)?

and {0} is a null set. Thus the iterated integrals have common value 0. But the double integral

does not exist, since for the iterated absolute integrals we get

1/1y 1
Xy 3 2 &
S| =T — 54 > — [ ———d¢&.
/(—1,1> w22 Iyl/o (&2 4+ 1) d vl Jo (€2 +1)2 ¢
——

Here we use the substitution x = £|y| and the fact that |y| < 1, thus 1/|y| > 1. But the outer
integral is bounded below by

/ — dy which is divergent.
1 ¥l

Problem 14.7 Solution: We use the generic notation f(x, y) for any of the integrands.

a) We have

| -1
/0 f(x,y)dy= W
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and this function is not integrable (in x) in the interval (0,1). For0 < y < % we have

/Olf(x,y)dx=/0%_y<x—%>_3 dx+[l <x—%>_3 dx =0.

2ty
For % < y < 1 this integral is again 0. Therefore,
1 1
/ / fx,y)dx |dy=0.
0 0
Finally,
/ £ Cx, y)Idy— x—— / / |G, »ldxdy = co.
b) We have

=1
X+y y
dydx = dx
/ /0 <x2+y2>3/2 Y / [x<x2+y2>1/2] "

/ [ x+1 ]
= ——T " |dx
0 [Vx2+1-1
=1
_lln x+VxZ+1 ]x
1+ Vx2+1-1

=1In2.

Bcause of (anti-)symmetry we find

//(x2+y2)3/2dxdy:—ln2.
dx = ———dydx
y / /o <x2+y2>3/2 g

y |7
- ] e
1
=(\/5—1>/ dx
0

= 0.

Morevoer,

L

(2 + y2)3/2

¢) Since f is positive, Tonelli’s theorem ensures that all three integrals coincide. Let p # 1. We

bt 1 : dx
/ /(l—xy)_pdydyz—/ (A-xt7-1) =
o Jo r—1Jp

This integral is finite if, and only if, p < 2. For p = 1 we have

1,1 1 dx
/ / (l—xy)_”dydy=—/ In(l — x) — < 0.
o Jo 0 X

get
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Problem 14.8 Solution:

(i) We have [—n,n] 1 R asn — oo and A([—n, n]) = 2n < oo. This shows o-finiteness of
A. Let (g;) ;e be an enumeration of Q; set A, 1= {q;,...,q,} U(R\ Q), then we have
A, T Rand {q(A,) = n < co. This shows o-finiteness of {g.

We will show that {R is not o-finite. Assume { were o-finite. Thus, there would be
asequence A, T R, n € N, such that {R(A,) < o. Since {R is a counting measure,
every A, is countable. Thus, R is a countable union of countable sets, hence countable

— a contradiciton.

(ii) The rationals Q) are a A null set, hence %Q is for each y a A null set. We have

/ Lo(x-y) Adx)=0 VyeR.
0,1

This implies
/ / Lo(x-y)dA(x)dir(y) = 0.
©,1) JO,1

(iii) Let x € (0,1). The set (%Q) N (0, 1) contains infinitely many values, so

/ ]IQ(X “Y) Er(dy) =0 Vx.
0,1

Therefore, the iterated integral is co.

(iv) Letx € (0,1) \ Q. Since y - x ¢ Q for any y € @, we have
/«)1)1Q<x~y> Lody) =0 Yxe©D\Q.
On the other hand, if x € Q@ N (0, 1), then y - x € Q for any y € Q) and so
,/(01)]1Q(x M dy) =00 Vxe(0,1HNnQ.

Since Q is a A null set, we get

/ / ]IQ(x - y) CQ(dy)/l(dx) = / ]lQ(x) o0 dA(x) =0.
0,1) J(0.1) 0,1)

(v) The results of (iii),(iv) do not contradict Fubini’s or Tonelli’s theorem, since these the-

orems require o-finiteness of all measures.

Problem 14.9 Solution:

(1) Since the integrand is positive, we can use Tonelli’s theorem and work out the integral

as an iterated integral

I ._/ dxdy
"~ S (L+y)(1 + x2y)

176



(i)

(iii)

Solution Manual. Last update 18th July 2019

=/ —1 </ 12 dx> dy
0.00) 1 Y \Jj0.00) 1 + X2y

/ | arctan(xy/y)|®

~ Jioeo) 1+ VY

y 4 1 1
== 0,00)———dy.
2/[ oo)1+y\/} y

(Observe that the integrand is continuous, which enables us to use Riemann integrals

dy
x=0

on bounded intervals. Note that /[0 o) = SUPeN /[0 n -+ because of monotone con-

vergence.) Using the substitution u = \/_ , we get

V3 1 © x?
I = —/ > du = m arctan(u) = —.
[0,00) 1+ u=0 2

We use partial fractions in (i):

1 11 1 X 1
l+yl+x2y 1-x21+4+y 1-x21+x2y

2
ot i)
[0,00) [O’W)l—le-f'y 1—x21+x2y

2 In(l1 +x%R
:/ <lim [ L n(1 4 gy— X I +x )D dx
[0.00) \R—0 | 1 — x2 1 —x2 x2

1 . 1+ R
= —— [ lim In dx
(0,00) 1 —x2 \Row0 1+ x2R
=/ ! ln(x'z) dx
[0,00) 1 — X2

=2 / ELIC
[0,00) x2 -1
2

From (i) we infer that /[0 o) % dx = é = ”7.

Thus,

I

Using the geometric series we find

D Y UEED WS Rt
o

n=0 n=0

as well as

1 1 1 N —2(n+1)
1 21lo —z_ﬁz(x )—Zx , [x]| > 1.

X n=0 n=0

Thus,

In x / 2n / 2(n+1)
dx =— x"Inxdx + X Inxdx. (%)
/( -1 2 ©.1) ) (1,00)

0,00) X7 — n=0 n=0
(In order to swap summation and integration, we use dominated convergence!) Using
integration by parts, we find

2n+1
/ *"Inxdx = = Inx
O, 2]’1 + 1

! 1
- / x"dx
x=0 2n+1 Jon
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1
(2n+1)2

and, in a similar fashion,

=2 1+1 o
X2+ D+ Inx 1 / 20D g
(1,00)

/ x 2D pxdx=———— _In -
(1,00) —2n+1)+1 =1 2m+1D+1
_ 1 _ 1
(=2n+ D+ D2 Q2n+ 1?2

Inserting these results into (), the claim follows from part (ii).

Problem 14.10 Solution:

(i) Since y is o-finite, there is an exhausting sequence (G,),cxy € B(R) such that u(G,) < oo

and G, T R. For each n € IN the set

B! := {xeGn;ﬂ({x})> %}

is finite. Indeed: Assume there were countably infinitely many (x;);ey C By, x; # x; for

i # j. Since the sets {x,},j € IN, are disjoint, we conclude that
uG,) > p <2 {x,-}> = ) u({x;}) = co.
JjeEN JjEN
This is a contradiction to u(G,) < oco.

Thus, the set

B" :={x € G, u({x})>0} = U {x € G,; u({x}) > %}

kelN

is countable and so is

D=UB"

nelN

as it is a countable union of countable sets.

(ii) For the diagonal 1,(x, y) = 1,,(x)1R(y) we find from Theorem 14.5:

X V(A) = /R ( / n{y}(xwwx)) v(dy)

_ /R (D1 p(y) v(dy)
= >, ndyhv(i).

yeD

(In the last step we use that D is countable.)
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Problem 14.11 Solution: Note that the diagonal A C RR? is measurable, i.e. the (double) integrals

are well-defined. The inner integral on the 1.h.S. satisfies

/ LAGx, ) Adx) = A({y) =0 Vyel0,1]
[0.1]

so that the left-hand side

/ / 1,6 3) 4(dx) p(dy) = / 0 u(dy) = 0.
[0,1]/[0,1] [0,1]

On the other hand, the inner integral on the right-hand side equals

/ TpGe ) uldy) = u({x}) =1 Vxe[0,1]
[0,1]

so that the right-hand side

/ / TA(x, y) u(dy) A(dx) = / 1 A(dx) =1.
[0,1]J[0,1] [0,1]

This shows that the double integrals are not equal. This does not contradict Tonelli’s theorem since

4 s not o-finite.

Problem 14.12 Solution:

®

(i)

Note that, due to the countability of IN and IN X IN there are no problems with measurability

and o-finiteness (of the counting measure).

Tonelli’s Theorem. Let (a;;); rev be a double sequence of positive numbers a;; > 0. Then

ZZ%fZZaﬂc

JjEN kelN kelN jeIN

with the understanding that both sides are either finite or infinite.

Fubini’s Theorem. Let (a;;); yew C R be a double sequence of real numbers a;. If

> D lagd or X Y layd

JjeEN kelN kelN jelN

is finite, then all of the following expressions converge absolutely and sum to the same value:

2 < > |"jk|>’ > <Z |ajk|)7 > laul

jeIN N kelN kelN N jelN (j,k)eINxIN

Consider the (obviously o-finite) measures u ;= Zke 4 6 and v = > jeN Hj- Tonelli’s
J

theorem tells us that

Y ¥ =/ [ @0
NJIN

JEN kEA;
_ / / el (k) p(dk) ()
NJIN
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_ / / ¢ 1 L, (0 () ()
NJIN

= [ 1xl ( / nAj(k>u<dj>> u(dk)
N N

. 7/
v

=1, asthe Aj are disjoint

=/ x| u(dk)
N

= 2 Ixl.

kelN

Problem 14.13 Solution:
(i) SetU(a,b) :=a—b. Then

U@u(x), Npey(») 20 = u(x) 2y =0

and U (u(x), y)Lp o) (») is a combination/sum/product of % (IR?) resp. % (IR)-measurable func-
tions. Thus S[u] is % (R?)-measurable.

(i1) Yes, true, since by Tonelli’s theorem

A(S[u]) = / g (x, ») A2(d(x, )
]RZ

= [ Emrmmmmor ) 410 21
RJR

:// 1 AY(dy) Aldx)
RJ[0,u(x)]

= / u(x) A'(dx)
R

(iii)) Measurability follows from (i) and with the hint. Moreover,

A2([[u]) = /]R RAPICHY A(d(x, y))

= / / Ly ey ymuto) (%> ) A (dy) A1 (dx)
RJR

:// 1 A% (dy) Al(dx)
R [u(x),u(x)]

N / A({ux)})) A (dx)
R

= / 01 (dx)
R

Problem 14.14 Solution: The hint given in the text should be good enough to solve this problem....
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Problem 14.15 Solution: Since (i) implies (ii), we will only prove (i) under the assumption that both
(X, d, n) and (Y, B, v) are complete measure spaces. Note that we have to assume o-finiteness of
u and v, otherwise the product construction would not work. Pick some set Z € P (X)\ & (which

is, because of completeness, not a null-set!), and some v-null set N € % and consider Z X N.

We get for some exhausting sequence (A,), C &, A, T X and u(A;) < oo:

UX V(X XN)=sup uXv(4; XN)
kelN

= sup ( u(Ay) - v(N) )
keElN S N —

< oo =0

=0;

thus ZXN C XXN is asubset of a measurable #Xv null set, hence it should be & ® 9% -measurable,
if the product space were complete. On the other hand, because of Theorem 14.17(iii), if Z X N

is & ® J8-measurable, then the section
yEN
X Lzun(x,y) =121 () "= 17(x)

is &/-measurable which is only possible if Z € o .

Problem 14.16 Solution:

(i) Let A € B[0, 0) ® P(IN), fix k € IN and consider
1,(x,k) and By 1= {x : L1 ,(x, k) =1};
because of Theorem 14.17(iii), B, € %[0, o). Since

(k) EA < 1,(x, k=1
e JkeN:1,(xk=1

< JkeN:xeB,

itis clear that A = | J, .y By X {k}.

(i) Let M € (IN) and set { := Zje]N 6;; we know that ¢ is a (o-finite) measure on S(IN).

Using Tonelli’s theorem 14.8 we get

Z(BX M) := Z (B x {m})

meM

. - "

= Z e —',u(dt)
meM B m:

_ /M /B e Lty camy
_ //B e ;—": p X £(dt, dm)
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which shows that the measure z(dt,dm) := e’ :n—m' u X {(dt,dm) has all the properties re-

quired by the exercise.

The uniqueness follows, however, from the uniqueness theorem for measures (Theorem 5.7):
the family of ‘rectangles’ of the form B X M € [0, o) X P(IN) is a N-stable generator of
the product o-algebra B[0, ) @ J(IN) and contains an exhausting sequence, say, [0, co) X
{1,2,...k} 17 [0,00) X IN. But on this generator x is (uniquely) determined by prescribing
the values 7 (B X {m}).

Problem 14.17 Solution: Assume first that A > 0. The point here is that Corollary 14.15 does not

—As

apply to the function s — e~ since this function is decreasing and has the value 1 for s = 0.

Consider therefore ¢(s) := 1 — e, This ¢ is admissible in 14.15 and we get

/q,’;(T)d]P = / (1-e*)dP = /Oo A P(T > s5)ds.
0

Rearranging this equality then yields
/e-” dP =1- ,1/ e M IP(T > 5)ds.
0

If 4 < O the formula remains valid if we understand it in the sense that either both sides are finite
or both sides are infinite. The above argument needs some small changes, though. First, e=*
is now increasing (which is fine) but still takes the value 1 if s = 0. So we should change to
¢(s) := e * — 1. Now the same calculation as above goes through. If one side is finite, so is
the other; and if one side is infinite, then the other is infinite, too. The last statement follows from

Theorem 14.13 or Corollary 14.15.

Problem 14.18 Solution:

182

(1) This is similar to Problem 6.1, in particular (i) and (vi).

(i1) Note that

1p(x,y) = ]l(a’b](x)]l[x’b] »)
= LML ()
= ]l(a,b](X)]l(g,b](Y)]l[o,oo)(y - X);
the last expression is, however, a product of (combinations of) measurable functions, thus 1
is measurable and so is then B.
Without loss of generality we can assume that a > 0, all other cases are similar.

Using Tonelli’s theorem 14.8 we get

uXv(B) = // Tp(x,y) u X v(dx,dy)
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= "// L0 Oy () X v(dx,dy)

=/ / u(dx)v(dy)
(a,b] J (a,y]

= / u(a,ylv(dy)
(a,b]

=/ (1(0, y1 = (0, al) v(dy)

(b

= / u(0, ylv(dy) — u(0, a] v(dy)
(a,b) (a,b]

=/ F(y)dG(y) = F(a)(G(b) - G(a)). )
(a,b]

We remark at this point already that a very similar calculation (with 4, v and F, G inter-

changed and with an open interval rather than a semi-open interval) yields

// Lo DLy 1 (0) udx) v(d y)

(*%)
= / G(y-)dF(y) — G(a)(F(b) - F(a)).
(a,b]
(iii) On the one hand we have
uxXv((a,b]l X (a,b]) = u(a,blv(a,b]
( ) (+)

= (F(b) - F(a))(G(b) - G(a))
and on the other we find, using Tonelli’s theorem at step (T)
1 x v((a,b] X (a,b])
_ // 1011 010 () V()
- // L0 (O Ly () () V(d )+
+ // Ly 5 ()L 5 (¥) u(dx) v(dy)
r // L (L 513 V(@) p(d)+
n // 1,41y () () v(dy)
= /( ) F(y)dG(y) — F(a)(G(b) — G(a))+
+ /( , G(y-)dF(y) - G(a)(F(b) - F(a)).

Combining this formula with the previous one marked (+) reveals that

F(b)G(b) — F(a)G(a) = /

o F(y)dG(y)+/ G(y—)dF(y).

(a.b]
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@iv)

184

Finally, observe that

/ (F(») = F(y=)) dG(») / u({y}) v(dy)
(a,b] (a,b]

> uyhviiyh

a<y<b

= ) AF(»)AG®).

a<y<b

(Mind that the sum is at most countable because of Lemma 14.14) from which the claim

follows.

It is clear that uniform approximation allows to interchange limiting and integration proced-
ures so that we *really* do not have to care about this. We show the formula for monomials

L1285, . by induction. Write ¢, () =", n € IN.

Induction start n = 1: in this case ¢ () = ¢, ¢’1 (t) =1and p(F(s))—p(F(s—))—AF(s) =0,

i.e. the formula just becomes

F(b) — F(a) = / dF(s)

(a,b]
which is obviously true.
Induction assumption: for some n we know that
¢, (F(b)) — ¢,(F(a)) = &, (F(s=)) d F(s)

(a,b]

+ 2 |#uF6) =, (F(s-) = ) (Fs-DAF(s)].

a<s<b

Induction step n ~ n + 1: Write, for brevity F = F(s) and F_ = F(s—). We have because
of (iii) with G = ¢, o F and because of the induction assumption

Gpi1(F (D) — ¢y (F(a))
= F(b)¢,(F(b)) — F(a)¢,(F(a))

=/ F_"dF+/ F_dF"+ ) AFAF"
(a,b] (a,b]

=/ Fde+/ F_¢/(F_)dF+
(a,b] (a,b]

+ [F_d)n(F) —F_¢,(F)— F_¢;(F_)AF] + ) AFAF"

=/ Fde+/ F_nF" 'dF+
(a,b] (a,b]

+y [F_F" — F"™! _ F_aF"AF + AFAF"]
= (+DFdF+Y [F_F” — F™! _4F"AF + AFAF”]
(a,b]

-/, ¢, oF dF + Y [F_F" _ F™! _uF"AF + AFAF"]
a,
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The expression under the sum can be written as

F_F"— F"™*!' — nF"AF + AFAF"

= (F_— F)F"+ F"! — F"™! _ yF"AF + AFAF"

— g AF( _F —nF" AF")

— Fr g AF( CF"—nF" 4+ F' - Ff)

= F"™' — F"!l _(n+ 1)F'AF

=4 10F — ppy0F_ —

and the induction is complete.

q'):H_loF_AF

Problem 14.19 Solution:

(i) We have the following pictures:

S(x) 4
4 e
2| e—e i i |
‘ ] [ ] : : :
1 345 6 9 x
Hs(t) 4
M3 pemee———
LN S e @—0
T e

This is the graph of the original func-
tion f(x).

Open and full dots indicate the con-
tinuity behaviour at the jump points.
x-values are to be measured in u-
length, i.e. x is a point in the measure
space (X, <, u).

This is the graph of the associated
distribution function u (@), It is de-
creasing and left-continuous at the
jump points.

t-values are to be measured using Le-
besgue measure in [0, c0).

my = M([4’ 5])

my —m; = u([6,9])

my —m, = ,u([4,5])
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186

This is the graph of the decreasing re-
P arrangement f*(&) of f(x). It is de-
creasing and right-continuous at the
e jump points. (Please note that the
picture is wrong and actually depicts
: : the left-continuous inverse which is
2 ......... @_. inf{t : p () < £} — mind the “<”

' : : vs. “<” inside the infimum)

&-values are to be measured using

Lebesgue measure in [0, c0).

m; my,  my & my,my, my are as in the previous pic-

ture.

/Ifl"du=p/ 7 () dt,
R 0

follows immediately from Theorem 14.13 with u = | f| and u (@)= ul{|f| =1t}.

(ii) The first equality,

To show the second equality we have two possibilities. We can...

a) ...show the second equality first for (positive) simple functions and use then a (by now
standard...) Beppo Levi/monotone convergence argument to extend the result to all positive
measurable functions. Assume that f(x) = Zj]io
standard representation, i.e. ¢y = 0 < a; < -+ < a, < oo and the sets B; = {f = a;} are

a1l B, (x) is a positive simple function in

pairwise disjoint. Then we have

u{f=a; ) =ul{f Z2a;}\{f 2a;4})
=M({f>aj})_,“({f>aj+1})

= Mf(aj) - Mf(aj+1) (a4 = OO,IJf(an.H) =0)
= 2 ((usajy)s npal)
=A'(f* = ay).

This proves

n

/f” du=Y duB)=7 di(f*=a)= /(f*)”dfll

J=0 J=0
and the general case follows from the above-mentioned Beppo Levi argument.

or we can

b) use Theorem 14.13 once again with u = f* and u = A! provided we know that

u({1f1=13) =24 ({f* = 1}).
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This, however, follows from

ff@ 2t & inf{s:pup(s) <&} =1
= pu;)2¢ (as uj is right cts. & decreasing)

= u({lfl=1))=¢

and therefore
AAEZ0: @ =) =2 (€20 u(f1 2= E}) =ulfl > 0.

Problem 14.20 Solution: (By Franzsika Kiihn) Fix r € R. Applying the fundamental theorem of

calculus and Fubini’s theorem, we find

t+h
F(t+h)—F(t)=/(¢(t+h,x)—¢(t,X))u(dx)=// 0,p(r, x) dr p(dx)
X X

z+ftz
= / / 0,9(r,x) u(dx) dr.
t X

=:1f(r)

for all h € R. Since f is (by assumption) continuous, this implies

im L Fas = Faoy = tim 2 [ rvdr= 10 [ a5 ud
hl—%ﬁ( t+h)— (t))_hli%ﬁ/, f(r) "—f(f)—/X ,p(t, x) u(dx).
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15 Integrals with respect to image

measures.
Solutions to Problems 15.1-15.16

Problem 15.1 Solution: The first equality

/ud(T(f/t)) = /uond#
is just Theorem 15.1 combined with Lemma 10.8 the formula for measures with a density.

The second equality

/uond/,t = /ufoT_l dT (p)
is again Theorem 15.1.

The third equality finally follows again from Lemma 10.8.
L]

Problem 15.2 Solution: Observe that T, is represented by the n X n diagonal matrix A with entries

€. Since det A = €", the claim follows from Example 15.3(iii).

|
Problem 15.3 Solution: Let x,y € R. We have
Lo (x = Mo = Ly ey (0L
= T T ()
0, x<0orx>2,
(), x €101, (%)

]]'[X—l,l]’ X e [1,2]
This shows that

(Ljo,17 * Lo (%) = /}R]l[o,u(x =W (»dy

0, x<0or x>2,

Jo dy=x, x €[0,1],
[ldy=2-x xe[l,2],
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Since convolutions are linear and commutative, we get

(]l[O,l] *]1[0’1] % ]1[0,1])()6)
= (Lo * Mgy * Lyg1) )

:/]1[0,11(x—y)(y]llo,u(y)‘i'(z—y)ﬂu,zJ(Y)) dy
=/y]l[o,l](x—J’)]l[o,l](J’)dY‘i'/(2—J’)]l[o,l](x—Y)ﬂ[l,z](Y)dy
=: 1,(x) + I,(x).

Let us work out the two integrals separately. For the first expression we find using ()

0, x>0 or x> 2,
L) =15 y="%, x €0, 1],

Sloydy=1201-1-xP), xell.2].

X2 1 2

A similar calculation for the second integral yields

0, x<1 or x>3,
Lo = WL (0 = Loy (L 1 (0) = Ly 4O, x €[1,2],

L1 9(0), x €[2,3].

This gives
0, x<1or x>3,
L) =1 [@=ydy=2x~1~ 36 =D, x € [1,2],
[o@=ydy=203-x-1a-1-x?, xe23]
1 2 1 2
- <2(x — - 50 - 1)) 1y (%) + (2(1 +3) = S@4=(1-x) )) 1.3 (%).
Finally
1 1 1 _ Xy 213y 2)1
(Ljo,17 * Ljo1q * Ljo (%) = 5 (0,17(x) + (—x +ox — 5) (1,27()+

(2(3 —X)— %(4 -(1- x)2)> Ly 3 (x).

Problem 15.4 Solution: Observe that the assertion is equivalent to saying

(supp u + supp w)¢ C (supp(u * w))°.
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Assume that x, € (suppu + supp w)¢. Since this is an open set, there is some r > 0 such that
B,(xq) C (suppu + supp w)¢. Pick any x € B,(x,). For all y € supp w we find x — y & suppu. In
particular,

ux—y)-wly)=0 Vyesuppw.
On the other hand, the very definition of the support, gives
u(x—y)-w(y)=0 Vy¢&suppw.

This implies that u(x — y)w(y) = 0 for all y € R”". From the definition of the convolution we see
that (u * w)(x) = 0. Since x € B,(x,) is arbitrary, we get x, & supp(u * w).

Problem 15.5 Solution:

(1) The measurability of u, w entails that (x, y) — u(xy " Hw(y) is again measurable. From
Tonelli’s theorem we see the measurability of x — u ® w(x). In order to show com-

mutativity, we use the transformation theorem (Theorem 15.1) for the linear map z :=
D(y) 1= xy

v®ww = [y hum
(0,00) y

= / u(z)w(x_lz)E
(0,00) z

=w ® u(x).

Again by Tonelli’s theorem

d
/ u® w(x)uldx) = / (/ u(xy_l)w(y)—y> dx
(0,00) (0,00) (0,00) y X
d
= / </ u(xy™h ﬂ) w(y) . (%)
(0,00) (0,00) x y

Fix y € (0,00) and define 6, := y~!x. From Theorem 7.10 we know that the image
measure Hy(/l)(d z) of A is given by yA(dz) gegeben ist, and because of Theorem 15.1 we

_1. dx _ _1. dx
/ u(xy™H ==y l/ uxy H—=
(0,00) X (0,00) Xy

0,(A)(d
:y—1/ w(2) y(A)(dz)

- / u(z) %2, (% %)
(

get

If we insert this into (%), we obtain

d
/ U ® w(x) u(dx) = / ( / u(z)ﬂ> w2
(0,00) (0,00) (0,00) Z y
= / ud,u/ wdu.
(0,00) (0,00)
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(ii) Consider first the case p = oo0: As |u(xy~ )| < llull ooy for p-a.a. y € (0, 00), we get

lu @ w(x)| </|u(xy'1)W(y)|/4(dy)< IIMIILoo/IW(y)Iﬂ(dy)= llull oo l20]l ;-

This proves |lu @ w||;« < |lull L« |lw0]l;-

Now we take p € [1, o0). Note that

v(dy) =

|w(y)| u(dy)
llwll;

is a probability measure. Jensen’s inequality (for V' (x) = x?) yields
P
4 ® wel? < < [ e o) ﬂ(dy)>
(0,00)
P
= Nl < / JuGey ™| v<dy>)
(0,00)
<llwl? / Gy ™I vidy)
(0,00)
= [lwl|l?™! / lu(xy™ )Pl w)| u(dy),
(0,00)
and from Tonelli’s theorem we get

[ @ wwir dueo < i |

(0,00)

= [lwll?! / < / Iu(xy'l)l"ﬂ(dX)>IW(y)IM(dy)-
(0,00) (0,00)

Just as in (% %) we conclude that

_ def _ dx dz
/ uGey™HIP u(de) & / uGeyHp 45 = / () 4
(0,00) (0,00) X (0,00) Z

o / ()1 p(dz).
(0,00)

If we insert this result into the estimates from above we see

/ @ )P d () < el / ( / Iu(Z)I”u(dZ)> 0G| u(dy)
(0,00) (0,00)

-1
= Nl /Iul”dﬂ/IWIdﬂ

— p
= lleoll, ull?.

( /(o D) M(dy)) (dx)

Finally, take pth roots:

llu @ wil, < llwwlly[fell,-

Problem 15.6 Solution: We have for any C € %

T(W)|p(C) =T(u)(BNC)

192



Solution Manual. Last update 18th July 2019

=u(T"'(BnO))
=u(T'B)NT(C))
=u(AnT1(0)

= ul,(T71(0))

= T(ul )(O).

Problem 15.7 Solution: By definition, we find for any Borel set B € %(R")
8, *x 6,(B) = // Tp(s +1)6,(ds)6,(dr)
= / Tp(x +1)6,(dt)
= 1p(x+)
= / 15(2) 6,4,(dz)

which means that 6, x 6, = 6, ,. Note that, by Tonelli’s theorem the order of the iterated integrals

is irrelevant.

Similarly, since z+t € B <= t € B — z, we find
6, x u(B) = [/ 1p(s+1)6,(ds) u(dt)
= /]IB(z + 1) u(dr)

= / Tp_ (1) u(dr)

= u(B-1z)
=7_,(u)(B)

where 7,(t) := 7(t — z) is the shift operator so that T:; (B)=B -z

Problem 15.8 Solution: Since x+y € B < x € B —y, we can rewrite formula in 15.4(iii) in the

following way:

u* v(B) = //]IB(X+y)M(dX) v(dy)

=/ [/ﬂB_y(X)M(dX)] v(dy)

= /u(B —y)v(dy).

Similarly we get

M*V(B)=/ﬂ(B—y)V(dy)=/V(B—X)ﬂ(dX)-
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Thus, if u has no atoms, i.e. if u({z}) = 0 for all z € R", we find

M*V({Z})=/M({Z}—y) V(dY)=/M({Z—y})V(dY)=O-
——

=0

Problem 15.9 Solution: Because of Tonelli’s theorem we can iterate the very definition of ‘convolu-

tion’ of two measures, Definition 15.4(iii), and get
My Kk ek l’ln(B) = / / ]lB(xl + et xn)/’ll(dxl) iun(dxn)
so that the formula derived at the end of Remark 15.5(ii), page 156, applies and yields

/ o] P*"(de)

=/~--/|a)1+a)2+---+a)n|]P(da)l)IP(da)z)---IP(da)n)

*

< [ [ (1onl #10a] 4 = + 1o, Pl Pl - P(aa,)

— Z/.../|wj|IP(da)1)IP(da)2)...IP(da),,)
j=1

= 2/|wj|1P(dwj)-H/lP(dwk)
j=1

k#j

I
3
—
g
hac
o
S

where we use the symmetry of the iterated integrals in the integrating measures as well as the fact
that P(R") = / P(dw,) = 1. Note that we could have 4+oco on either side, i.e. the integrability

condition is only important for the second assertion.

The equality f o P*(dw) =n [ w P(dw) follows with same calculation (note that we do not get
an inequality as there is no need for the triangle inequality at point (*) above). The integrability
condition is now needed since the integrands are no longer positive. Note that, since ® € R",
the above equality is an equality between vectors in R”; this is no problem, just read the equality

coordinate-by-coordinate.

Problem 15.10 Solution: Since the convolution p — u % p is linear, it is enough to consider monomi-

als of the form p(x) = x*. Thus, by the binomial formula,
u* p(x) = /u(x -y y*dy

= / u(y) (x — )k dy
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k
=y (k)x’/u(y)y"‘j dy.
=0 \J

Since supp u is compact, there is some r > 0 such that suppu C B,(0) and we get for any m € N,

and in particular for m = k — j or m = k, that

' / u(y)y'"dy‘ < / lullolyI™ dy
supp u

< / lulloor” dy
B.(0)

=20l

which is clearly finite. This shows that u * p exists and that it is a polynomial.

Problem 15.11 Solution: That the convolution u x w is bounded and continuous follows from The-

orem 15.8.

Monotonicity follows from the monotonicity of the integral: if x < z, then

u*bU(X)=/ uy) -w(x-—y) dy</u(y)-W(z—y)dy=u*LU(y)-

N~—~N— ~——
20 Sw(z—y)
|
Problem 15.12 Solution: (This solution is written for u € C.(R") and w € C*(R")).
Let 0, = 0/0x; denote the partial derivative in direction x; where x = (x,, ..., x,) € R". Since

weC® = JqweC™,

it is enough to show 0,(u * w) = u * d;w and to iterate this equality. In particular, we find
0%(u * w) = u % 0%w where
g%t ey,

0= ——8M—
0% -+ 0% X,

n
, a€ ]NO.
Since u has compact support and since the derivative is a local operation (i.e., we need to know a
function only in a neighbourhood of the point where we differentiate), and since we have for any
r>0

92

Xi

sup  sup
y€supp u x€B,(0)

wix y)' <),

we can use the differentiability lemma for parameter-dependent integrals, Theorem 12.5 to find for

any x € B, »(0), say,
d d
I / u(yyw(x —y)dy = / u(y)=—w(x —y)dy
X; 0x;

= /u(y)%w)(x—y)dy
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= u % 0;w(x).

Problem 15.13 Solution: Let y, be a Friedrichs mollifier. From Lemma 15.10 we know

ueC.(R") = ux*y € CIMR".

Since u € C.(IR") is uniformly continuous, we find that

lim sup lu(x) —u(x —1z)| =0
and since [ z,(n)dy = [ z,(x — y)dy = 1 we get
JuCo) — 5 7,00) = ‘ / (u(x) - u(y) 7, x — ) dy
< [ o0 -l (52) dy
= [ )~ tx = 9121
< [ supluto) - utx - 12) )z
dom. conv.

— 50
t—0

In the last step we use the integrable dominating function 2||u||, ¥ (u).

Problem 15.14 Solution: The measurability considerations are just the same as in Theorem 15.6, so

we skip this part.

By assumption,

1 1 1
—+-=1+-;
P q r
We can rewrite this as
l+ 1_1 + l_l:|=1 (*)
r p r q r

=1-1 =1-1
=1 qe[O,l) 1 pE[O,l)

Now write the integrand appearing in the definition of u x w(x) in the form

juCx = )] = [luGe = I T | - [luee =91 - 1wl

and apply the generalized Holder inequality (cf. Problem 13.5) with the exponents from (*):

|lux w(x)| < / lu(x — yyw(y)| dy
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/|u<x—y)|p|w<y>|4dy]’[/|u(x—y>|f’dy] ’[/|w<y>|4dy]

Raising this inequality to the rth power we get, because of the translation invariance of Lebesgue

_1
r

=
==

<

measure,

|lux w(x)|" <

[ - y>|"|w<y>|qdy] ull = - ol

= ul? e |w]?(x) - [lull 77 - llwll;72.
Now we integrate this inequality over x and use Theorem 15.6 for p = 1 and the integral
/ Jul? x |0](x) dx = [[lul? * [w]?ll; < lull? - [lw]l?.
Thus,
r __ r P . q . r=p . r—q — r . r
lu % wll? = / Jux W) dx < 2 el - ull?? - o]~ = flull’ - ],

and the claim follows.

Problem 15.15 Solution: For N = 1 the inequality is trivial, for N = 2 it is in line with Problem
15.14 with p = q.

Let us, first of all, give a heuristic derivation of this result which explains how one arrives at the
particular form for the value of p = p(r, N). We may assume that N > 2. Set F; 1= f; x ... % fy
forj=1,2,... N —1. Then

1fy % Sl
<A BN, = 11,05 % Fyll,,
1

by Pr. 15.14 where l+1:l.|-l=(__1)_i_i_4_1
r p a9 p 4]

< WAL IS N, = WA NS5 > Eall,
byPr.15.14where 2+ 1= (1 -1)+ 1+ L =2(1-1)+1+1
r p p U] p a3

——

=—+1
and repeating this procedure N — 2 times we arrive at

If1 % =% Sl S WAl = W woall, - W vt % Fllg,

<Al = W n=2llp - N il - 1N g,

with the condition

=(N—2)<1—1)+1+L
p P 4N

l+1=(N—2)(1—1)+1+
r p dnN-1
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and since we need gy = p we get
l+1=(N—2)<1—1>+2=£—N+2
r 4

and rearranging this identity yields

Nr
PN
If you do not like this derivation of if you got lost counting the repetitions, here’s the formal proof
using induction—but with the drawback that one needs a good educated guess what p = p(N, r)
should look like. The start of the induction N = 2 is done in Problem 15.14 (starting at N = 1

won’t help much as we need Young’s inequality for N = 2 anyway...).

The induction hypothesis is, of course,

M
Ify* - fall, < NI forall M=1,2,..,N -1
j=1

Mt
(M-Dt+1°

where t > 0 is arbitrary and 7 =

The induction step uses Young’s inequality:

fy % fo ke ke Sl < Sl - 1fa ke x Al

_ Nr . .
where p = Nyl and g is given by
1 1 1 (N=-Dr+1 1 1 1 1
—Hl=-t-—=—————— =1+ —+—
r q q Nr q q N Nr
so that
_ Nr
T=N+r-1

Using the induction hypothesis we now get

1k ek Sl S Wil - L % ek S llg < DAL - (Il - 1 )

where s is, because of the induction assumption, given by

G _(N-1yg
(N =2)q+1

_ (N_I)Nfrr—l
(1\/—2)N1+"r’_1 +1

B (N = 1)Nr

“(N=-2Nr+N+r-1

(N —1)Nr

" N2 —2Nr+r+(N-1)

B (N —1)Nr

C(N=-D2r+(N-1)

“TWN-Dr+1 7

and we are done.
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Problem 15.16 Solution: Note that v(x) = j—x(l =08 X)L 2, (X) = L9, (x) sin x. Thus,
@
2r 2
u* v(x) = / IR(x—y)sinydy = / sinydy=0 Vx.
0 0

(i1) Since all functions u, v, w, ¢ are continuous, we can use the usual rules for the (Riemann)

integral and get, using integration by parts and the fundamental theorem of integral calculus,
v * w(x) = / %(;b(x—y) / () di dx
d N
= / (- d—yd)(x—y)) /_ooqﬁ(t)dtdx
d y
= /¢<x—y>d—/ (1) dt dx
"
= /¢(x—y) ¢ dy
= ¢ * P(x).

If x € (0,4x), then x — y € (0,2x) for some suitable y = y_ and even for all y from an
interval (yy — €,y + €) C (0,2r). Since ¢ is positive with support [0, 2], the positivity

follows.

(iii) Obviously,
(@)
wxv)yxw=0%xw=0
while
u* (v* w)(x) = / Ig(x —y)v*x w(y)dy
= / vxw(y)dy

=/¢*¢(y)dy

> 0.

Note that w is not an (pth power, p < o) integrable function so that we cannot use Fubini’s

theorem to prove associativity of the convolution.
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16 Integrals of images and Jacobi's

transformation rule.
Solutions to Problems 16.1-16.12

Problem 16.1 Solution: Since F and F; are F,-sets, we get

F=Jca. F=Jc

kelN kelN

for closed sets C;, resp. C,i. Since complements of closed sets are open, we find, using the rules

for (countable) unions and intersections that

n

o Nr=-NUe-U Nd.

i=1 kelN keN i=1
——
closed set
@ Ur-UUca- U
ielN ielN keIN (i,k)eEINXIN
—

countable union!

Moreover, ﬂ Fl.C = ﬂ ﬂ [C,’;]C = ﬂ [C,i]c .

ielN ielN kelN (i,k)eINxIN
| ——

countable intersection!

(iii) F=UCk=> FC:[Uck]c:ﬂ ce

kelN kelN keN N —
open
(iv) Sete; :=Cand C;=#,i>2. Then C = | J C;is an F,-set.
ielN

Problem 16.2 Solution: Write 4 = A" and # = #(R"). Fix B € %. According to Lemma 16.12
there are sets ' € F_ and G € G such that

FcCcBcCG and A(F) = AB) = AG).

Since for closed sets C; and open sets U; we have F = | J C; and G = [ U; we get for some € > 0
and suitable M = M, € N, N = N, € IN that

C,U-UCyCBCUN-NUy
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and

|,1(U1 N NU,y) - ,1(3)| <e, (%)

'/1(3) - MCyU---U CN)| <e. )

Since finite unions of closed sets are closed and finite intersections of open sets are open, (*) proves

outer regularity while (**) proves inner regularity (w.r.t. close sets).

To see inner regularity with compact sets, we note that the closed set C' := C, U --- U C, is

approximated by the following compact sets
K, :=B,0)nC'1C" as £ -
and, because of the continuity of measures, we get for suitably large L = L, € IN that
|,1(1<L) — MC, U U CN)| <e
which can be combined with (**) to give
|/1(KL) _ ,1(3)| < 2e.

This shows inner regularity for the compact sets.

Problem 16.3 Solution: Notation (for brevity): Write A = A", 1 = M, B = BR") and B* =
B*(R"). By definition, B* = BU N* where N* is a subset of a 98-measurable null set N. (We
indicate 9*-sets by an asterisk, C (with and without ornaments and indices C’ ...) is always a

closed set and U etc. is always an open set.

Solution 1: Following the hint we get (with the notation of Problem 11.6)

A(B) = A(B*) = A*(B")

= inf MA by 11.6
gt (A) (by 11.6)

= inf inf by 16.2
@i3L g 4L, A0 (by 162)

< inf inf A(U) (as B*xC BUN)
U'D>BUN UDU’

= inf AU’ by 16.2
Jnf, AU (by 16.2)

= A(BUN) (by 16.2)

< A(B) + A(N)
= A(B).

Inner regularity (for closed sets) follows similarly,

MB) = A(B*) = 4,(B")
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= sup A(A4) (by 11.6)
B>ACB*

= sup sup A(C) (by 16.2)
BSACB* CCA

= sup sup A(C)

C'cB*CccC’

= sup ACH (by 16.2)
C’'cB*

> sup A(C") (as B C B¥)
C'cB

= A(B), (by 16.2)

and inner regularity for compact sets is the same calculation.
There is a more elementary ....

Solution 2: (without Problem 11.6). Using the definition of the completion we get

A(B*) = A(B) = sup A(C")
C'cB

< sup A(C)
CcB*

< sup AC")
C"CcBUN

= AMBUN)
= A(B)

as well as

AMB*) = AB) = Ui,anB AU

<.
< Jif. 40

< inf AU
U"D>BUN

= ABUN)
= A(B).

Problem 16.4 Solution:

(i) Using the result of Problem 7.12 we write x, y € C as triadic numbers:

0 [oe]
X; Vi
x = Z 3_1’_:0.x1x2x3... and y= E 3—;=0-J’1Y2J’3---
i=1 =l

where x;,y; € {0,2}. In order to enforce uniqueness, we only want to have truly infinite
sums, i.e. we use 0.002222 ... instead of 0.01000... etc.

203



R.L. Schilling: Measures, Integrals & Martingales

Obviously, every z € C — Cisof the form z = x — y withx,y € Cand so z = 0.z,z,25 ...
with z; = x; — y; € {-2,0,2}. Thus,

1 1o X—V w2 Il X—yt+t2 ow
5<Z+1>=5<2x3fy +Z§>=EZ%=Z?

i=1 i=1

By construction, w; = %(xi -y,+2) e %{0, 2,4} ={0,1,2}, i.e. the numbers %(z+ 1) make
up the whole interval [0, 1].

This shows that C — C = [—1,1].

(i) Leta(x,y) = x—yasinthe hint. This is a Lipschitz (Holder-1) continuous map from R? - R
and it has the following property: C X C — a(C,C) = [-1, 1]. But C X C is a Lebesgue null

set in R? while A'[—1, 1] = 2. This situation cannot occur in Corollary 16.14.

Problem 16.5 Solution:

(i) Obviously, & C A0, ). On the other hand, (&) contains all open intervals of the form

@p) =] [e—1.0)\[fo), O<a<p<oo *)

nelN

and all intervals of the form
[0, ) = [0, 00) \ [B, 00), p>0. (%)
Thus,
0(€) D> O(R)N [0, )
since any open set U € O(R) is a countable union of open intervals,

v= |J @n,

a<p,a,fEQ
(a,p)cU

so that U N[0, o0) € O N[0, o) is indeed a countable union of sets of the form (*) and (**).
Thus,

R[0,00) =6(0NJ0,0)) C (%) C B[O, o).

(i) That u is a measure follows from Lemma 10.8 (for a proof, see the online section ‘additional

material’). Since

p(B) = u(T; 5(B)) = Ty 5(p)(B)

1 . .
where T /5(x) = 5 * X, p is an image measure, hence a measure.

Since

pla, ) = u[Sa, ) < ula, ) Vaz=0,
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we have piy < ,u|?. On the other hand,

p[%,%) =u3,4)=1>0=pu %‘5*)

This does not contradict Lemma 16.6 since & is not a semi-ring.

]
Problem 16.6 Solution: We want to show that
a) A'(x+ B)=A"(B),Be BR"), xeR" (Theorem 5.8(1));
b) A'(t-B)=1"A'(B),Be B(R"), 1>20 (Problem 5.9);
c) A(A") = |det A2, Ae R™ det A#0 (Theorem 7.10).
From Theorem 16.4 we know that for any C' diffeomorphism ¢ the formula
A(p(B)) = / |det D¢p| d A"
B

holds. Thus a), b), ¢) follow upon setting
a) ¢ =x+y = Dp=1 = |det Dp| =1;
b) ¢()=t-y = Dp=t-id = |det Dp| =1";
c) o(»)=A"'y = D@(y)=A"" = |det D@| = |det A|7".

]|

Problem 16.7 Solution:

(i) Themap @ : R 2 x — (x, f(x)) is obviously bijective and differentiable with deriv-
ative D®(x) = (1, f/(x)) so that | D®(x)|> = 1 + (f'(x))?. The inverse of ® is given
by @ : (x, f(x)) — x which is clearly differentiable.

(i) Since |D®(x)| = \/l—i-(fw is positive and measurable, it is a density function
and u := |D®(x)| - A is a measure, cf. Lemma 10.8, while 6 = ®(u) is an image
measure in the sense of Definition 7.7.

(iii) This is Theorem 15.1 and/or Problem 15.1.

(iv) The normal is, by definition, orthogonal to the gradient: D®(x) = (1, f’(x)); obvi-

() ()
1 f'(x)

n(x) - DO(x) = =0

V14 (f(x))?

ously |n(x)| = 1 and

Further,

o )
B(x.r) = VIHF P

S VIH 0P

’
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so that
DE)(x, " = 0D(x, r)
a(x,r)
l—p0_JS® g o__ 1
_|' e virer SOt avnrer
__ ™ 1
For brevity we write f, f/, f” instead of f(x), f'(x), f”(x). Now
"I+ F12 = F! £
i f’(x) _ f [f ] f /—1+[f’]2
ox /1 + ()2 L+ [f']?
and
_ Vb
) 1 _ VI
ax1/1+[fl(x)]2 1+[f’]2.
Thus, det D(T)(x, r) becomes
"\/1 2 _ rLfRs”
1+[f1]2 1+[f']2
rf/f//
i ( ) VR >
1+ [f'2 1+ [f']?
n_ rlf s rlfA s
S AVl 1P e
VI+[f? 1+ [f"? V1I+[f2 1+ [f')?

_ 1+[f/]2 _ rf/l
ViFUE 1+UT
=\/1+[f/]2_L

L+ 12

If x is from a compact set, say [c, d], we can, because of the continuity of f, f/ and

S, achieve that for sufficiently small values of |r| < e we get that det DP > 0,ie ®

is a local C!-diffeomorphism.

(v) The set is a ‘tubular’ neighbourhood of radius r around the graph I'; for x € [c,d].

Measurability follows, since @ is a diffeomorphism, from the fact that the set C(r) is

the image of the cartesian product of measurable sets.

(vi) Because of part (iv) we have, for fixed x and sufficiently small values of r, that the

determinant is positive so that

.1
lim —
rl0 2r (=r,r)

.1 /
=lim —
rl0 27’ (=rr)

rl0 2r
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— lim - / V14 (f(x)* A (ds)
(=r.r)

rl0 2r

T i Sf,l(x) 1
o /(_,,r) T+ @Y

- T A CONRT L/ |
Vs Tor - s img [ sda
= VI1+(f'(x)?

- |det Dd(x, 0)|.

(vii) We have

1 2

5 /IRZ ]lc(r)(xv y) A (dx’dy)

— 1 2

= 5 /]RZ ]la)(fl)_l(C)X(—r,r))(x’ Y) A (dx, dY)

- 2L L1 Cp(rr (35 5) )det Dd(z, s)|/12(dz, ds) (Thm 16.4)
r R2

= / Lo-1(0)(2) [% / det DD(z, s)|/11(ds)] Al(dz). (Tonelli)
R FJ(=rr

W |det DD(z,0)|
Since ®~!(C) is a bounded subset of R, we can use the result of part (vii) and domin-
ated convergence and the proof is finished.

(viii) This follows from (i)—(iii) and the fact that

det DB(x, 0)| = V1 +(f(x)?

and the geometrical meaning of the weighted area % A2(C(r))—recall that C(r) was a

tubular neighbourhood of the graph.
|

Problem 16.8 Solution:

(1) |det D®(x)| is positive and measurable, hence a density and, by Lemma 10.8, |det D®]|-
A% is a measure. Therefore, ®(|det D®| - A9) is an image measure in the sense of

Definition 7.7.

Using the rules for densities and integrals w.r.t. image measures we get (cf. e.g. Theorem
15.1 and/or Problem 15.1)

/ua’iM=/ udcb(|deth>|-M)=/ uo® - |det DP| d A?.
M M d-1(M)

(i1) This is the formula from part (i) with @ = 6,; observe that 6.(R") = R".

/ma”:/ / u(r x) " o(dx) AN(dr)
0,00)/ {lIxlI=1}

(iii) The equality
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is just Theorem 16.22. The equality

/ / u(x) o(dx) A'(dr)
(0.00) {IIx[I=r}

= / / u(r x) " o(dx) A'(dr)
0.00)/ {l1xl|=1})

follows from part (ii).

Problem 16.9 Solution: We have
r(3) = / v e Ady).
(0,00)
Using the change of variables y = ¢(x) = x2, we get D¢p(x) = 2x and

I(

SRR

16.16
)=2 / e Adx) =2 / e Mdx) = 4/z.
(0,00) (—00,00)

Problem 16.10 Solution: Write ® = (®,, ®,, ®;). Then

0@ 0n 00
B, b, b
DO(r,0,w) =] —= —=2 ==
or 20 dw
oD, 0D, 0D
or a0 dw

cosf@cosw —rsinfcosw —rcosfsinw

=|sinfcosw rcosf@cosw —rsinfsinw

sin @ 0 FCcosw

Developing according to the bottom row we calculate for the determinant

det D®(r, 0, w)

) —rsinfcosw —rcosfsinw
= sin w det ] ]
rcosfcosw —rsinfsinw

cosf@cosw —rsinf cosw
+rcoswdet|
sinfcosw rcosfcosw
s 2 .2 . 2 2 .
=sinw| r“ sin” 8 cos w sin @ + r~ cos~ 0 cos w sin @

+ rcos w(r cos? 0 cos® w + r sin® Hcoszw>

2 2

2 CUCOSCO+I‘2COSCOCOS w

= r“sin

= I‘2 CcCoOS w

where we use repeatedly the elementary relation sin” ¢ + cos2 ¢ = 1.

/// u(x, y,z)d A3 (x,y, z)
R3

Thus,
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= /// uo®(r, 0, w) |det DO(r, 0, w)| d A3(r, 0, )

O-I(R3)

o 27 rrx/2
=/ / / U(rcochosco,rsin@cosa),rsinw)r2coswdrd&da).
0o Jo J-z)2

Problem 16.11 Solution:

(i) We change in

[(x) = / e dr
0

variables according to u> = ¢, and get

I(x) =2 / e du,
0

Using Tonelli’s theorem we find

T()C(y) =4 </°° oty 251 du> </°° ot 21 du)
0 0

=4 / e B, v).
(0,00)2
(i) We have to show that B(x, y)['(x + y) = I'(x)I"(y). Using polar coordinates in (i) we see

[ 2
C()C(y) = 4 / / e PP (cos ) (sin )P dp dr
r=0 J ¢=0

© /2
=4 ( / o ] dr) < / (cos ¢! (sin >~ d¢>. (%)
r=0 ¢=0

2 W€ S€€

Setting s :=r

/ e PPl gy = l/ e sl g = 1Iﬂ(x + ).
r=0 2 Js=0 2

Change variables in the second integral of (%) according to ¢ = cos® ¢ and use sin® ¢ +

cos? ¢ = 1. This yields

/2 1
/ (cos p)**(sing)? L dop = 1 / 1 =P ar = lB(x, y).
¢ 2 Jo 2

=0

Problem 16.12 Solution: We introduce planar polar coordinates as in Example 16.15:

(x,y)=(rcos@,rsinf), r>0, 0 €]0,2n).
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Thus,

X" y" dA*(x, y)

1 2
=// P cos™ @ sin” 0 dr dO
0o Jo
1 2r "
= </ prmtl dr> </ cos™ 6 sin”0d9> )
0 0
r=1 2r
_— </ cos™ 0 sin"9d9>
m+n+2 r=0 0
1

2
=—/ cos™ @ sin" 0dé.
m+n+2 0

lIxlI2+llylI2<1

rm+n+2

Consider the integral

1

2
—/ cos™ 0 sin” 0 d9;
m+n+2J,

Since sine and cosine are periodic and since we integrate over a whole period, we can also write

;/ cos™ 0 sin" 0 d9;
m+n+2 [,

If nis odd, sin” 0 is odd while cos™ @ is always even. Thus, the integral equals, for odd n, zero.
Since the 1.h.s. of the expression (*) is symmetric in m and n, so is the r.h.s. and we get
// X"y dA*(x,y) =0
Ixl2+lIyl12<1
whenever m or n or both are odd.
If both m and n are even, we get

// X"y d A% (x,y) = // X"y dA*(x, y)

llxlI+]y1*<1 lIxII>+lyl1*<1
x>0, y>0 +x>0, +y>0

for any choice of signs, thus

// X"y d A3 (x,y) =4 // X"y d A*(x, y).

Ixl2+Iyl12<1 X112+ lIylI2<1
x>0, y>0

Introducing planar polar coordinates yields, as seen above, for even m and n,

2
4 // X"y d A% (x, y) L/ﬂ/ cos™ @ sin" 0 d6
m+n+2 0

llx[I?+]lyl1><1
x>0, y>0

4 11 2m—l 2n—l d
= — —1 2 (t 2 tdt
m+n+2/0( )2 ()
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where we use the substitution f = sin 8 and cos 8 = \/ 1 —sin’0 = \/ 1 — 2. A further substitution

s = 12 yields
1 m—1 n—1
= 2 (1-s5)2s52ds
m+n+2 0
1 m+1 n+1
= 2 /(1—s)2 Lo las
m+n+2 0
__ 2 (ml nely
m+n+2 272

which is Euler’s Beta function. There is a well-known relation between the Euler Beta- and Gamma

functions:

_T'™rw)

B(X’J’) - F(X+y)

(*)
so that, finally,

0 m or n odd;

,» ()
X"y d A2 (x, y) = & mtnt2 F(n+m+2)

2
lIx[I2+I1ylI2<1 r(’"T“)p(%)

else

where we also use the rule that xI'(x) = I'(x + 1).
Let us briefly sketch the proof of (*): our calculation shows that

/2
B(x,y) =2 / sin?*~! 9 cos®~1 0 do;
0

2x+2y—1 e~

multiplying this formula with r ” integrating w.r.t. r over (0, c0) and changing variables

according to s = r? yields on the one hand

/ B(x, y) P21 o gy = 1 / B(x,y) s e 5 ds
0 2 Jo
1
=3 B(x, ) I'(x +y)
while, on the other hand, we get by switching from polar to cartesian coordinates,
/ B(x,y) p2xA2=1 o=
0
o prr/2 5
=2 / / sin® " @ cos™ ™ O P e dr do
0o Jo

o rr/2
=2 / / (rsin 0> 1 (rcos )21 e rdrdo
0 0

=2 / 52"_1 nzy_l e dédn
(0,00)%(0,00)

=2 / 21 e e e dn
(0,00) (0,00)
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= l'/ s*1 e_sds/ Pl dt
2 (0,00) (0,00)

- %r<x)r<y)

with the obvious applications of Tonelli’s theorem and, in the penultimate equality, the obvious

substitutions.
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17 Dense and determining sets.
Solutions to Problems 17.1-17.9

Problem 17.1 Solution: Let f € £P(u) and fix € > 0. It is enough to show that there is some 4 € C
such that || f — Al , < €. Since D is dense in LP(u), there exists some g € D satisfying || f —gl[, <
€/2. On the other hand, as C is dense in D, there is some 2 € D such that ||g — A||, < €/2. Now

the triangle inequality gives

€
If = hll, < I1f - gll, + llg = All, < 5 +

NN

Problem 17.2 Solution:
(i) Continuity follows from the continuity of the function x — d(x, A), cf. (17.1). Clearly,
0<u <landug|g =1landulU; =0. Since Ug | K, we getu; | 1. Sinceﬁk is

closed and bounded, it is clear that ﬁk is compact, i.e. supp u, is compact.
(ii) This follows from (i) and monotone convergence.

(iii)) We have u(K) = v(K) for all compact sets K C R” and the compact sets generate
the Borel o-algebra. In particular, this holds for [—k, k]* T IR", so that the conditions

for the uniqueness theorem for measures (Theorem 5.7) are satisfied. We conclude that

u=v.

(iv) Since each x has a compact neighbourhood, we can choose k so large that B, /k(x)

becomes compact. In particular, K C | J B /i(x)(x) is an open cover. We can choose

xeK
each k(x) so large, that B /,,(x) has a compact closure. Since K is compact, we find
finitely many x; such that K C | J; B, Jk(x,)(Xi) = Uy where k := max; k;. In particular,
ﬁk c U; B Jx(x;) is compact. This produces a sequence of Uy | K. The rest follows

almost literally as in the previous steps.

Problem 17.3 Solution:

(i) We have to show that ||z, f ||§ = || f|l, for all p € LP(dx). This is an immediate con-

sequence of the invariance of Lebesgue measure under translations:

It = [ V=l dx= [ 17y =11,
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(i) We show the assertion first for f € C.(R). If f € C.(R), then K := supp f is compact.
Pick R > 0 in such a way that K + B;(0) C By(0). Since lim,,_,, f(x — h) = f(x) and

|f(x = h) = FOOI < 201 f Nloo L 55(%) € L7(dx)

for any 2 < 1, we can use dominated convergence to get

lonf = 11 = [ 15 x= = FP dx— o
Now take f € LP(dx). Since C.(R) is dense in LP(dx), cf. Theorem 17.8, there is a

sequence (f,),en C C.(R) such that || f, — f||, = 0. From part (i) we get

Nzenf = fll, < 2wl = Sl Hllen o = Full, + 1150 = I,
N— —
W=7,

— 2|/, = fll,—— 0.

This finishes the proof of the first assertion. The second claim follows in a similar way.
Consider first f € C,(R) and K := supp f. Since K is compact, there is some R > 0
with (h + K) N K = @! forall h > R. If h > R, then

[f(x=h) = fOF = |f(x = WIPLg(x + h) + | f()PT g (x)
and so

laf =11 = [ Afee=nax+ [ 1roras
+

= / 1FIP dy + / | ()IP dx
K K
=2[|f11.

This proves the assertion for f € C,(IR), and the general case follows via density as in the

first part of (ii).
N

Problem 17.4 Solution:

(i) Continuity is an immediate consequence of the dominated convergence theorem: assume
that (x,,),en 1s a sequence converging to x € R. Since L, _j p) = Ljc_p cqp €. and
f € L£'(dx), we see that M, f(x,) = M, f(x) as n — 0.

Contractivity of M, follows from

1 x+h
/ M, S0 dx = 5 / o dx
1 h
<o [ [irccennaxar<is,
—-h
N ———
S1r»ldy=IIfll

(use Tonelli’s theorem to interchange the order of integrations).

"We use the notation A + K := {h + x;x € K}.
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(i1) Assume first that f € C.(IR). Because of the continuity of the function f we find

h
|th(x)—f(x)|<L/ lf&x+D—fX)dx< sup |f(x+1)— f(x)|—0
2h —h t€[—h,h] h—0

for all x € R. Since the support of f, K := supp f, is compact, there is some R > 0
such that K + B(0) € Bg(0). For h < 1 we get M, f(x) =0 = f(x) if x € Bg(0). Since
IM, f(x)] < |f(x)| for x € R, we get

|Mpf () = fOOl = My f(x) = fOlg-500 < 20 S oo 1g57(x) € £'(dx).
An application of the dominated convergence theorem reveals
h—0
IMyf—=flly= [ IMpf(x)=f)|dx——0,

1.e. the claim is true for any f € C.(IR). Now we take a general f € L£'(dx). Because of
Theorem 17.8 there is a sequence (f,,),eny € C.(R) such that || f,, — f|l; = 0. Therefore,

M f = flly < IMu(f = flli My fy = fulls + 11F = flly
N —
=l7=r

— 2| fy = flli——=0.
h—0 n—o0

Problem 17.5 Solution:

(i) Let A € B(X) such that f := 1, € LP(u). Clearly, u(A) < oo and because of the
outer regularity of u there is an open set U C X such that A C U and u(U) < oo.
Literally as in the proof of Lemma 17.3 we can construct some ¢, € CLip(X )N LP(u)
with || = .|, < € (just replace in the proof C;(X) with Cy3,(X)).

(i) If f € LP(u), then the Sombrero lemma shows that there is a sequence of simple func-
tions (f,),en satisfying 0 < f, < f, f, T f. Using the monotone convergence
theorem, we see / (f = f)Pdu | 0; in particular, there is some n € IN such that
I/, = fll, < e. Using linearity and the result of part (i), we get some ¢, € Cp;,(X)
such that || f,, — ¢ ||, < €. Therefore,

I = @ell, < W = Full, + 115 = @ell, < 26

(iii) We use the decomposition f = ft* — f~. Since f*, f~ € LP(u), part (ii) furnishes
functions ¢,y € Cp;p(X) N LP(u) such that || f* - ¢ll, < eand || /T -y, < e

Consequently,
If =@ =-wll, <IfM =l + I/ —wll, < 2e
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Problem 17.6 Solution: A set U C X is said to be relatively compact if it closure U is compact.

216

@)

(i)
(iii)

@iv)

v)

Let (x,),e be a countable dense subset of X. By assumption, each x,, has a relatively
compact open neighbourhood: x, € V, and 7,, is compact. Since By /i (x,) C V, for
sufficiently large values of k > k((x,), we see that the balls B, /. (x,), k = ko(x,), are

also relatively compact. Thus,
{By/k(x,) i n€ N, k> kyx,)}=: {U,;;ne€ N}

is a sequence of relatively compact, open sets. For any open set U C X we find

v=J U,

nelN
U,cU

(The inclusion ‘D’ is obvious. In order to see ‘C’ we observe that for any x € U there
is some r > 0 with B,.(x) C U. Since (x,),c 1s dense, we may choose n € IN and

k > ky(x,) such that Bl/k(x,,) CB.(x)ycU.)
The sets K, := U, U -- U U, are compact and increase towards X .

Assume that U C X is an open set such that 4(U) < oo and let (U,),cy be the sequence
from part (i). Because of (i), there is a subsequence WUpi)kew € (Up)pen such that
U = U Uy Set W, := UU;_, Uy and observe that W, € D. Since W, 1 U,

Beppo Levi’s theorem shows that
Iy, - 1yl,— 0.
h—00

This tells us that 1,; € D.

First we show that yu is outer regular. Set

G, = LnJ U.
k=1

Obviously, the G, are open sets, G, T X and u(G,) < oo — here we use that the U, are
relatively compact and that y is finite on compact sets. This means that the assumptions

of Theorem H.3 are satisfied, and we see that u is outer regular.

Let B € #(X), u(B) < oo and fix € > 0. Since u is outer regular, there is a sequence
of open sets (U,),cy such that U, O B and u(U,) < co. By monotone convergence,
"]lUn —1gll, > 0asn — oco. Pick n € IN such that ||ILUn — 1gll, < €. Because of (iii),

there is some D € D with ||]lUn —1p|l, < e. Consequently,

1Ly = 1pll, < 175 =Ly ll, + 1y, —Lpll, < 2e.

By definition, Dc LP(u), i.e. it is enough to show that for every f € LP(u) and
€ > 0 there is some D € D such that ||/ — 1pl[, < €. Using the Sombrero lemma

(Corollary 8.9) and the dominated convergence theorem we can construct a sequence
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of simple functions (f,),eny C LP(u) such that || f— f,||, = 0. If nis sufficiently large,

we have || f — f,ll, < e. Since f,, is of the form

N

Ful) = D ¢lg (x)

j=1
where ¢; € R, B; € AB(X),j =1,...,N, we can use part (iv) to get D € D with
I/, — Lpll, < e. With the triangle inequality we see that || f — 1pl|, < 2e. The

separability of L£?(u) now follows from the fact that D is a countable set.

Problem 17.7 Solution:

(1) Assume first that A is an open set. Without loss of generality A # @. Fix ¢ > 0. Since
{xeardxar<i}1o asn— o
the continuity of measures furnishes some N € IN such that
u{d(-,Ac) < %} <e¢ Vn>=N.

Define ¢, (x) := min{nd(x, A°), 1}. Clearly, ¢, € C,(X) and |$,lloo < 1 = [I14lo-
Since 0 < ¢, < 14 € L? we even have ¢, € LP(u). Moreover,

(1, # ¢} {de a9 <}

therefore, u{1, # ¢,} < eforall n > N. Using dominated convergence gives |1, —
¢ull, —— 0. If n > N is large enough, we get |14, — ¢,[|, < €. For such n, the

functions ¢, satisfy all requirements of the theorem.

In order to show the claim for any Borel set A € 9B (X), we proceed as in the proof of
Lemma 17.3: let U C X, u(U) < oo, and define

D ={Ae€RBWU) :Ve>0 3¢, € C,)(X)NLL(u) satistying the assertion for f =1, }.

As in the proof of Lemma 17.3 we see that & is a Dynkin system. By construction, the

open sets are contained in &, and so B(U) C 9.

If A € B(X) is an arbitrary Borel set with 1, € L£P(u), we have u(A) < oo. Since u
is outer regular, there exists an open set U C X such that A C U and u(U) < 0. Since
A€ HBWU) C D, the claim follows.

(i) Let f € LP(u), 0 < f < 1, and fix € > 0. Without loss of generality we may assume
that || f]|, = 1, otherwise we would use f /|| f||- The (proof of the) Sombrero lemma
(Theorem 8.8) shows that

k
<2n

NTES

]
1}+”1{f>n}0<£<1,;) Mhgeay nE,

an an

o
I
2
=
—_—
=|W
VA
~
3
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monotonically converges to f. With f;, := 0 we get

f = lim(f, - fo>—hm2(f [0 = 25— fo) = 22,¢

izl Jjzl

for ¢, :=2/(f; = f;_1). We claim that

k
¢,(x) €{0,1} Vxe {fj_1 - F} . (k%)
.\ . 1
Indeed: By definition, f; attains on { fio = WL_]} = { 2,k1 <f< ];1 } only the val-
ues Z—k and =—— 2k+1 . In the first case, we have ¢; = 0, in the latter ¢; = 1. Thus, ¢;(x) =1

happens if, and only if,

2k + 1 2k + 1 2k +2
e{f/_ 2J }_{ 2J S/< 2J }

Therefore, we can write A; 1= {¢; = 1} in the following form

2=l
2k +1 2k +2
AJ:U{ - S5 }
k=0
Since ¢; = ]lAj, we get
1
f=2 51
izl

Observe that 1 A, < 2/ f € L£P(u). Because of part (i), there is for every j > 1 a function
®; e € Cp(X) N LP(p) such that

l#;c—&jll, < .,M{flﬁ,g 7 ¢} < 2— and  [[¢; elleo < Nl <1

The function ¢, 1= ), >l q; enjoys all required properties:

e ¢, is continuous (since it is the uniform limit of continuous functions):

n d)j,e (o) 1 [¢5) 1
b= 25| <X Fbicle< X 5o
j=1 o Jj=n+1 j=n+1

b ell oo
o lplle ST 2= < Yoy 5 =1=Ifllw
L4 ”d)e‘ - f”p S Z}>l 2J ”¢J € ¢ ”p <X €Z}>1 2J €' In particu]ar’ ¢g S £p(M)
o o #F 1< Y s uldj #d} < X277 =e.

(iii) Observe, first of all, that the theorem holds for all g € L£P(y) with0 < g < ||g]l, < o0

for this, apply part (ii) to g/||g]| - Without loss of generality we may assume for such
g that ¢, > 0; otherwise we would consider $€ =¢,.VvO0.

Let f € LP(u) and || f ||, < 0. We write f = f+ — f~ and, because of the preceding
remark, there are functions ¢, y, € C,(X) N LP(u), ¢, = 0, y, > 0, such that

IPellee SN lleos H{SfT# ¢} <e and |If*=¢cll,<e
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and
Wello SN/l u{f~#w.}<e and |f” -y, <e

For®, := ¢, -y, € Cy(X) N LP(u) we find

u{®. # [y <plop. # Y +ulw # 7)1 <2
as well as
1Pl < Max{|lf Tl I/ TN} = I fllo

(this step requires that ¢, > 0 and y,. > 0). The triangle inequality yields

If =@, <IfT = @ell, + 1f7 —well, < 2e.

Consequently, @, satisfies the conditions of the theorem for f.

(iv) Fix f € LP(u) and € > 0. Using the Markov inequality we get

1
u(lf1> R} < ﬁ/wd,,l.

In particular, we can pick a sufficiently large R > O such that u{|f| > R} < €. Using

monotone convergence, we see

/ P du < e
{IfI>R}

if R > Ois large. Setting fr :=(—R) V f A R, we can use (iii) to construct a function
¢, € Cy(X) N LP(u) with

€

Pelleo < I/ Rllcos M{fR#fﬁe}Sﬁ and  [|fg = ¢cll, < e

Obviously, |[¢. ]l < || fle- Moreover,

b — £17
_ / \be — F1P du+ / \be — 1P du + / (b — F1P dn
{IfI<R} {IfI>R} {IfI>R}

N{p.=/r} N{d#fr}
" ~ _J/ e ~ _J/
=1, =1

<lge — frll) + 11 + 1.

Let us estimate /; and I, separately. Since fgl; s >r; = R, we get

I, =/ (f—R)"du+/ (-R— fYdu
{f>RIn{p.=/r} {f<—RIn{p.=fr}

< / £2 o dut / () du
(/> RINbe=F 7} et (f<=RIN($=T 1) e
[f1P Fills

</ 1P du <e.
{lfI>R}
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With the elementary estimate
la+b” < C(p)a”+bP) Va,b>0, p>1 ()
(in fact, C(p) = 27~') we get

I, < C(p) |p.|P dpu+ C(p) |17 du
US> RIN{b AR} {1/1>RIN{p# SR}

S CON PN uide # fr} +Cp) |f1Pdu
(I/1>R)

p €
< C(pR I + C(pe.

Therefore,
lpe = fIIF < €” +€+2C(pe.

Since e > 0 is arbitrary, ||¢, — f|, is as small as we want it to be. Finally,
ulf # b} < ulfr # @+ ullfl 2 R} < 2e.

This shows that ¢, enjoys all required properties.

Remark: () follows from Holder’s inequality

n n i n é
DIEIRE? <<Z|xj|f’> '(Z'yﬂq)
j=1 j=1 =1

for x, y € R" and conjugate indices p, ¢ > 1. If we take, in particular, d = 2, x = (a, b),
y =(1,1), then

1 1
la-1+b-1] < (|a|? + |b|P)» - 24.
Raising both sides to the pth power proves the estimate.

Problem 17.8 Solution: We see immediately that fab p(x)f(x)dx = 0 for all polynomials p. Fix
g € Cla, b] and € > 0. By Weierstral}’ theorem, there is some polynomial p such that ||g—p||, < €.

Therefore,

b b
/ (8(x) = p(x))f(x) dx + / p(x)f(x)dx

a

|
=0

b
/ g0 f(x)dx

a

b
< / 1p(0) — g0 17 (o)l dx
a N —  —

b
< e/ /(0] dx.

From this we conclude that

b
/ g0)f(x)dx =0 Vg e Cla,b].
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Define measures p* by pu*(dx) = 1, ()1, ;50)(x)dx. Then fgd,u+ = /gd,u‘ for all
g € Cla, b]. According to Theorem 17.12, C[a, b] is a determining set, and so u* = u~. This is
only possible if 4 = 0, hence f = 0 Lebesgue a.e.

Problem 17.9 Solution:

(1) First of all, we note that it is enough to know that the polynomials are uniformly dense
in the set C[—1, 1]. This follows immediately from the observation that any function in
C[0, 1] can be mapped onto C|a, b] using the affine transform a + t(b — a), t € [0, 1] -

and vice versa. Fix u € C[—1, 1] and define a sequence of polynomials (p,),c by

1 (x? "
= — ——1
Pyp(X) . <16 > , x €R,

wherec, := /_44(x2/16— 1)" dx. Since u € C[—1, 1], there is some # € C(IR) such that
u(x) = 0 for |x| > 2 and u(x) = u(x) for x € [~1,1]. Define p,(x) := p,(x)1|_4 4y(x)

and
@ =Tx G @ = [ - DFmdn  xeR
We find
U, (x) = / u(x = y)p,(y)dy Vx €[-2,2],
since

x| <2 = ulx—y)=0 V|y|>2.
Using the fact that

u,(x) = / uyp,(x -y dy, xe[-2,2]

we see that u,|_, ) is a polynomial. Let us show that u, — % converges uniformly —

and since u|;_; ;; = u, the claim follows. Using that p, > 0 and [ p, dx = 1 we get

4, (x) — ()| = ' / @x = ) — TP, O) dy‘

< /[ fix — y) — TIF, () dy

rxl
+ / [u(x — y) —u(x)|p,(y) dy
R[]
=: I)(x) + I,(x)

for all R > 0. Let us bound I; and I, separately. Since u(x) = O for |x| > 2, the

function # is uniformly continuous and we get

Ii(x) < sup ]Iﬁ(x—y)—ﬁ(X)I/[ () dy

ye[_i’ﬁ ’

==
==
[MA—
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(ii)

(iii)

< sup Jul(x - y) —u(x)]

uniformly for all x. Because of the boundedness of u we see that
Lo <2l / P dy.
\[%7)
Since p,(y) | Oforall y # 0, we can use the monotone convergence theorem to conclude

that [, —— O uniformly in x. This proves the claim.

n—>o0
Fix u € C,[0, ). Since u has compact support, u(x) = O for large x; in particular,

uo(—log)(x) = 0 if x is small. Therefore,

uo(—log)(x), x € (0,1]
0, x=0,

defines a continuous function on [0, 1]. According to (i), there is a sequence of polyno-
mials (p,),en With p, = uo(—log) uniformly.

For p(x) := x" we obviously have p(e™) = e™ = ¢,() and, by assumption,

/P(e_’)ﬂ(dl)=/en(t)/«t(dt)=/€n(l) V(dt)=/p(e_’)\/(dl)- ()

Using the linearity of the integral, this equality extends to arbitrary polynomials p.
Assume that u € C,[0, o) and (p,),cy as in (ii). Since p, converges uniformly to

uo(—log), we can interchange integration and limit to get
/udu=/(u0(—10g))(e_’)/4(dt)

= tim [ b utan

2 lim / pae™) v(d1)
= / (uo(~log))(e™) v(d1)

=/udv.




18 Hausdorff measure.
Solutions to Problems 18.1-18.7

Problem 18.1 Solution: This is clear from the monotonicity of the infimum and the fact that there

are more JP-6-covers than €-6-covers, i.e. we have

—¢ —
Hy (A) < Hy (o (A).

Problem 18.2 Solution: From the proof of Corollary 18.10 we know, using the monotonicity of

measurcs

ﬁ¢(A)=H¢(G) = lim HPU*)

Uko A UDA__y
> inf {H®(U): U DA, Uopen} > H (A

When using the monotonicity we must make sure that H?(U¥) < oo — this we can enforce by

U* ~» UK N U (where U is the open set with finite Hausdorff measure).

For counting measure this is clearly violated: Any open set U D A := {a} has infinitely many

points! Nevertheless A is itself a G5-set.

Problem 18.3 Solution: By Corollary 18.10 there are open sets U; such that H := (), U; D B and
H®(H \ B) =0or H?(H) = H?(B). Now we can write each U, as an F-set:
Ui = U Br/Z(-x)
B.(x)cU,;,xeU;

is indeed a countable union of closed sets, since U; C X contains a countable dense subset. So we

have

U, = U F;, for closed sets Fj.

k
Without loss of generality we may assume that the sets F;;, increase in k, otherwise we would
consider F;; U --- U F;;. By the continuity of measure (here we require the measurability of B!)

we have

Jlim H?®(Bn F,)=H*(BNU,) =H*B).
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In particular, for every € > 0 there is some k(i) with
H?(B\ Fy ) <e/2', i€l
Consider the closed set F = (), F;(; and observe that

HP*(F) > H*(F 0 B) > H(B) - ) H*(B\ Fy) > H*(B) - )] 2£ = H?B) —e.

1

Since F C (), U;, we get
H?(F \ B) < H¢<ﬂUi\B> =H*H \ B) = 0.
i
By Corollary 18.10, the set F \ B is contained in a G4-set G = [, V; (where the V; are open sets)
such that H¢(G) = 0 = H?(F \ B). Thus,
F\G=Fn|Jve=JFnVf
i i

——

closed

is an F_-set inside B—we have F\ G C F \ (F \ B) C B-and
HP(F\ G) > H*(F) — H?(G) > H?(B) —¢.

Now consider ¢ = % and take unions of the thus obtained F_-sets. But, clearly, countable unions

of F_-sets are still F_.

Problem 18.4 Solution: Fix A C R”. We have to show that for any Q C R” the equality

#0 =#HO N A)+#Q \ A)

holds. We distinguish between two cases.

Case 1: #0O = oo. Then at least one of the terms #(Q N A), #(Q \ A) on the right-hand side must

be infinite, so the equality is clear.

Case 2: #Q < oo0. Then both sets (O N A), (Q \ A) are finite and, as such, they are metrically separ-
—0
ated. Therefore we can use the fact that H (A) = #(A) is a metric outer measure (Theorem 18.5)

to get equality.

Problem 18.5 Solution: Use Lemma 18.17 to see 0 < dimy; B < dim;; R” as B ¢ R". From

224

Example 18.18 we know that dimy, R" = n.

If B contains an open set U (or a set of non-zero Lebesgue measure), we see H"(B) > H"(U) > 0;
intersect with a large open ball K to make sure that H"(BN K) < co and U N K C Bn K. This
shows n = dimy (B N K) < dimy(B) < n.
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Problem 18.6 Solution: By self-similarity, we see for the Sierpinski triangle of generation i, S'~!
and its follow-up stage S' = S} U S} U S} that the S, ’s are scaled versions of .S with a factor %
So,

HA(S™) = HA(S)) + HY (S) + H(S,) =3 - 27 HY (8™
and dividing by H*(S*~!) and solving the equality 1 =3-275 < 25=3 < s =1log3/log2
Koch’s snowflake § has in each subsequent generation stage 4 new parts, each scaled by 1/3, so
H(S) = H(S)) + H(S,) + H(S3) + H(Sy) =4 -37H(S)

and dividing by H*(S) and solving the equality 1 =4 -37° < 3° =4 < s =1og4/log3.
]|

Problem 18.7 Solution: Let (.S;),cy be an e-cover of A. Then we have

e v ¢diamU;)
Z‘ P(diam U,) = ; mw(dlam U,

o px)
< 23y damU)

= sup ¢x) 2 y(diam U,).
i=1

x<e Y(X) -

Taking the inf over all admissible e-covers shows

7)< sup 227 () < sup 07" (),

x<e w(x) x<e W(X)
Letting € — 0 yields

#H(4) = lim 7’ (A) < lim sup d)(x))ﬁW(A) = Tim sup
€—

€=0 x<e x—0 WX

d)(x)ﬁ"'(A) —0
) .
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19 The Fourier transform.
Solutions to Problems 19.1-19.9

Problem 19.1 Solution:

(a) By definition,

I 1 »
L 3= E/]l[—l,l](x)e X dx

_L _e—ixf 1
Y iE

x=—1
_ L1 e e
_27;15(" )
_ 1siné
=

for & # 0. Here we use that sin & = Im /¢ = %(eif — e, For & = 0 we have

I @ = ' / Iy nGodx = P

(Note that % — las & — 0, 1i.e. the Fourier transform is continuous at £ = 0 — as one would

expect.)

(b) The convolution theorem, Theorem 19.11, shows that f/;k\g = (2x) f - §. Because of part (a)

we get

. 2 .

(c) We get from the definition that

F (€M o) (NE) = 1 / ) e e dx
0

2
1
=5 i
_ 1 1 —x(14+i &)1
e prued G
11
T2rl+ié

00
e—x(1+i.§) dx

(d) Obviously, we have

/e_ixée_lxl =/ e I Xe* dx +/ eI Xe™x dx
(—00,0) (0,00)
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= / el ey dy+/ e e  dx.
(0,00) (0,00)

Thus,

F (e (&) = F (e 1 00))(—8) + F (e g 0))(©)

© 1 1,1
S 2 \l—-ié 14i¢

_ 11
ml+&

(e) From (d) and FoF u(x) = (2z)~'u(=x) (cf. Corollary 19.24) we find

%( )(5) FoF (e = 3¢ = 27
1+x 2

(f) Note that

(=111 [-1.1] [~1,0] [0.1]
= / e dx+ [ (=p)e ¥ dy- / xe™i
[-1,1] [0,1] [0,1]

= / e 1 x¢ dx—/ x(eix§+e_ix§) dx.
(-1.1] 01 —_——

2 cos(x&)

The first expression is as in part (a). For the second integral we use integration by parts:

1 . 1 1
/ xcos(xé)dx = [x sm(xé)] _1 sin(x&) dx
0 x=0 0

4 ¢
Csin@® 1 [eosxd)]!
N [ ¢ LO
_ sin(&) 3 cos(&) + L

¢ &2 &2

Thus,

FA A =1-& = 1 Sm(’& i (Siné _cos¢ + é) _ lﬂ

3 ¢ & T &

(g) By definition,

< ! -5 _ 1 —ixiootk -t _ 1 ¢ —t —iké
(Z‘k_ k>(§)—g/e };Ee 5k(dx)_§;)5e e ke,

Since e %€ = (e~6)K, we conclude that

- tk (te” lé)k 1 —ie 1 —ig
et L —tpteTte L t(e7'e-1)
9}(2 PG 5k> &) = Z = = .
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(h) The same calculation as in (g) yields

k n
_ 1 i _
F <Z <”>p"q" k5k>(5> = / ey <">p"q” £6,(d)
k 2r k
n=0 k=0
1 % <n> k n—k —ick
=— p*q" e
2w = k

1 . n —i n—
.

k=0

1 .
=55 (e )"

In the final step we use the binomial theorem.

Problem 19.2 Solution: Observe that for complex numbers u, v € C

|u+v|2:(u+v)(u+v)
=+ v)(i+ D)
=uu+ub+ v+ v0

= |u|*> + 2Re ud + |v|?
and so, setting v w» —v
lu—v|® = |u]> = 2Reud + |v|?
and so, setting v w iv
lu+iv)* = |u]*> + 2 Imud — |v|?
and so, setting v w» —iv
u—iv> = |ul?> =2Imud — |v|?
And this gives
lu+v)? = |u—v|>+ilu+iv)® —ilu—iv|> = 4Reud + 4i Im ud = 4ub.

Thus, we have the following ‘polarization’ formula

/uﬁdxzi[/|u+v|2dx—/|u—u|2dx+i/|u+iv|2dx—i/|u—iu|2dx]

1 2 2 . .2 . T
=7 [llu+ oll5 = llu—oll3 + illu+ iv|l; = illu - iv])3]

and now the claim follows directly from the statement of Plancherel’s theorem.

Alternative solution: Mimic the proof of Theorem 19.20: We have u, v, @, 0 € L*(4") (as a result

of Theorem 19.20), and so u - ¥ and # - E\are integrable. Therefore,

/ WOVE dE = Q)" / WE(E) dE
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19.12 A
= Qo)™ / u(x)F [0 (x) dx

19.9

= Qr)™" / u(x)v(x) dx.

Problem 19.3 Solution: Assume that 7 = y. We have

/?4ﬁuwm
g / e~ Ti(dx)
21 / e~ L(dx)
L/Fﬁﬁwm
/ e~ pu(dx)

1.

x(&)

=1

—_
| W

Therefore, y is real-valued. On the other hand, the above calculation shows that
ﬂ®=/fﬁmw>

This means that y =  entails  u = F ji, and so u = ji because of the injectivity of the Fourier
transform.

Problem 19.4 Solution: From linear algebra we know that a symmetric positive definite matrix has
a unique symmetric positive square root, i.e. there is some B € R™" which is symmetric and

positive definite such that B> = A. Since det(B?) = (det B)?, we see that det B = /det A > 0.
Now we change coordinates according to y := Bx

/e—i(x,.f)e—(x,Ax) dx = /e—i(x,f)e—(Bx,Bx) dx

1 —i(B1 &)~y
= : d
g [ e

__ 1 / BT b g,

Vdet A

If we set
. 2
g1/2(x) .= meXP (—|x| ) )
cf. Example 19.2(iii), then the calculation from above gives

—(- A7) x"/? -1
F (e~ A& = F (g1 (B'¢).

Vdet A
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Example 19.2(iii) now shows

n/2 B! 2
F e M@ = \/d—A(Z’lr)n p(—' 45'>.
et

Finally, since B~ = (B~HT,

|B~'¢)? = (B¢, B7E) = (¢,(B7' BT)e),
—

Al

RN DS T (A7)
F (e )(5)_\/m2”/2(2”)”/2 eXp< 1 .

we infer that

Problem 19.5 Solution: g (x) = (2zt)"'/2e™"/% and §,(&) = (2x)~ e €"/2. By Plancherel’s the-

orem (Theorem 19.20, plus polarization) or by Problem 19.2 we see that
/ a&)e™ 2 dg = 2 / WEE (&) dé
= / u(x)g,(x)dx
= / u(x)(2xt)"V2e= /2 gx
= Q)2 / u(ty)e ™% dy
< cllullo

(In fact, ¢ = 1, see Example 14.11). Now let ¢ T 0 using monotone convergence and use that, by

assumption, u > 0.
The same argument holds for L?-functions since g, € L.

Problem 19.6 Solution: We follow the hint and find using Fubini’s theorem

Ry [U/R 1/R _
3> / / — D) u(dx) dé, ... dé,
~1/R 1/R
l/R 1/R '
s / R / / — D) e, . de, u(dx)
n\2 1/R 1/R
1/R 1/R _
=2 / / / (1 — ™ deg, .. dE, u(dx)
" R 1/R

= / (1—5/ —/ ’<x’5>d§1...d§d) u(dx)
R” 2 1/R
_ R i

= / < 11 2/_ dcfn) u(dx)
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n . &,=1/R
R [el'xnéﬂ:l n
= 1- I I 5 | u(dx)
_/n< 2l 2| ix, §,,=—1/R>

n

no. .
eiXn/ R _ o=ix,/R
= -JT—— " ) uw
/”< H 2ixn/R ) ﬂ( X)

n=1

- sin(x,,/R)
-2 [ (TR e

n=1

% sin(x,/R)
>2 1- _ dx).
/IE{"\[—ZR,ZR]" ( H x,/R ) udx)

n=1

In the last step we use that the integrand is positive since | siny/y| < 1. Observe that

X €R"\[-2R,2R]" <> In=1,...,n: |x,| > 2R

and so
& sin(x,/R) 1
25 <4
e x,/R 2
hence
R\ [V/R 1/R '
5) / / — &) u(dx) ¢, ... d&,
-1/R 1/R
. sin(x, /R)
>2/ 1- —2 ") u(dx)
g ]R"\[—ZR,ZR]"( g x,/R >

[a—

>2 / (1- 5) u(dx)
m\[=2R,2R]"

P / u(dx).
R"\[-2R2R]"

Remark. A similar inequality exists for the Fourier transform (instead of the inverse Fourier

transform). This has the form

u(R"\ [-2R.2R]") < 2(zR)" / (A(0) - Re i(©)) dé.
—1/R,1/R]"

Problem 19.7 Solution:

(i) Leté,,....¢, € R"and 4, ..., 4, € C. From the definition of the Fourier transform

we get

e~ X(&;=¢0) du(x)

Z G — E)A Ay =

i,k=1

Z“k

jkl

Z A ﬂk/e_ix‘ffe‘ixgk d pu(x)

Jj.k=1

" Qay / <Z e > (ZT Ake_ixgk) .

\

(27r)”

(27r)”
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2

du(x) = 0.

_ 1 /
© Qa)n

Note that this already implies that ¢p(—¢&) = ¢(&). The argument is as follows: If we

n

—ix&;
Z/lje J
Jj=1

have for a matrix (a;;) that ij ajk/ljﬁj > 0, then

Jk Jjk Jjk kj
which means that a;, = a,;. Apply this to the matrix a;; = ¢(§; — &) with m = 2 and
&, = &and & = 0 to infer that ¢p(&) = Pp(=¢&).

(i) We want to use the differentiability lemma for parameter-dependent integrals. For this
we define

u(& x) = ﬁe‘”‘f.

Since y is a finite measure and |u(x, &)| < (27)™", we find u(&, -) € L'(u). Moreover,

|0 u(&, x)| = m)~|x;] < @) ™|

<@n)™ (1,0 + X" gy —1.11(X)) =2 w(x) € L'()

is an integrable majorant. With Theorem 12.5 we find

08,48 = 0, / u(E, %) u(dx) = / (=ix;)e™ * u(d).

2r)"
Iterating this argument, we see that 0“¢ exists for any a € IN|/ such that [a| < m.

(ii1) We follow the hint and consider first the case d = 1 and n = 1. We can rewrite the

expression ¢(2h) — 2¢(0) + ¢p(—2h) using Fourier transforms:
P(2h) = 2¢(0) + ¢(=2h) = % / (€72 =2 4 &) p(dx)
= 1 /(cos(th) — Du(dx).
b4

L’ Hospital’s theorem applies and gives

1 —cos(2y) »=0 1
4y? 2

Now we can use Fatou’s lemma

21 _ 5. 1 —=cos(2hx)
/x 2pt(dx)—/x }lll_r)% —4(hx)2 u(dx)
. 1
< - —
< hrhn_)l(l)lf o /(1 cos(2hx)) u(dx)

= —x lim inf 4%2 (¢2h) = 2(0) + P(=2h))

= —n¢"(0) < 0.
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(@iv)

If n > 1, we use induction. Assume that ¢ € C?*(RR) and that the assertion has been
proved for n—1. Since ¢ € C*"(R) = ¢ € C*>"~ D, we see by the induction assumption
that f [x]2"=D d u(x) < o0. Thus, v(dx) := x*"Dy(dx) is a measure and

%E) = 5 / X2 De™E d p(x)
2z

1 1 d2n=1) Cixe
- Z(_iﬂ(n—l) dEg2n=1) /e dpu(x).

Consequently, we see that ¥ € C2(IR). The first part of the proof (n = 1) gives

/|x|2"d,u(x)=/|x|2dv(x)<oo.

Ifd > 1, then we set z;(x) :=x;,x € R", j € {1,...,d}. Apply the case d =1 to the

measures 7; ().

Assume that z € C". If K := supp u is compact, then we get, because of the continuity

of e7'#* that M := sup,cg |e”"**| < co. From

/ud,u=/ udyu foranyu >0
supp u

we conclude that

/ e =] d () < Mu(R") < oo,

ie.

— 1 —izx
b0 =5 / e du(x)

is well-defined. Setting

1 < (—i zx)k
1= , R",
u,(x) 2ny 1;) o x €

we get

n
1 |Zx|k 1 |zx|
< <
|un(x)| I Qn)" ];) T (27[)”6 A Qry

sup el < co.
x€K

Since y is a finite measure, we can use the dominated convergence theorem to get
#(2) = / lim 1, (3) ()
= lim /un(x) du(x)
n—oo
S il/(zx>kd )
@y & HE

This proves that ¢ is analytic.
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Problem 19.8 Solution: Note that ¢/*/” — 5 1 for all x € R. On the other hand, we gather from
/3 e*/"dx = 0 that 1ge/" € L'(dx). As |e/*/"] = 1, we get A'(B) < 0. By dominated
convergence

0=lim [ &*"dx = / lim ¢'*/" dx = A'(B).
n—oo B B n—0o0
1
Alternative solution: Set f(x) := 15(x); by assumption, f (1/n) = 0. Since the Fourier trans-

form is continous, cf. 19.3, we get
£(0) = lim f(l> —0.
n—00 n

On the other hand, £(0) = (27)"!A(B).

Problem 19.9 Solution:
(i) <: Since u(R \ %”Z) = 0 we find

H= Z pj52_er
jez ¢

with p ;= ,u(z?’r Jj). From the definition of the Fourier transform we get

) = 5- / ¢ (dx)
T

i g ()]

JEZ

for all € R. Setting = &, we see

. 1 o
) = > Z p; exp(—i2zxj)
¥/
jEZ H_/
1

1 . N
= 3 Z p; exp(—i 0) = 4(0).
JEZ

=: From i(¢) = /1(0) we conclude
27(A0) — A) = / (1 — ™) u(dx) = 0.
In particular, /(1 —e™*) u(dx) € R, i.e.
/(1 — e ) p(dx) = Re/(l — ™) u(dx) = /(1 — cos(x¢)) u(dx) = 0.
Since 1 — cos(x¢) > 0, this implies
i {x € R;1—cos(x¢) >0} =0.

Consequently,

O=pu{xeR;cos(xE)# 1} =pu <]R\2?”Z>.
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(ii) Because of |f(&,)| = p(0) there is some z; € R such that

AE) = Ay 4,

Therefore,

[ e ) = 400)
v/

Observe that the left-hand side is just the Fourier transform of the measure v(B) := u(B—
z,), B € #(R), and so

V(&) = a(0) = ¥(0).

From part (i) we get that v(R \ 25—”Z) = 0. This is the same as
1

M{R\<21+2—”Z>} 0.
<

Using the same argument we find some z, € IR, such that

,u{]R\ <z2+2—”z>} =0.
&
2 2
A= <z1 +§—TZ> N <z2+ 5—’5%)

we see that (IR \ A) = 0. Let us show that A contains at most one element: Assume, on

Setting

the contrary, that there are two distinct points in A, then there are n,n’ € Z and m,m’ € Z

such that
z, + 2—”n =z, + 2—ﬁn'
g 2hg
Zl + 2—7["’1 = Z2 + 2—ﬂ:m’.
& &
Subtracting these identities, we get
2T - m) = Z( - )
& &
& W —w
22 _ Q

This is clearly contradicting the assumption ? ¢ Q.
2




20 The Radon—Nikodym theorem.
Solutions to Problems 20.1-20.9

Problem 20.1 Solution: The assumption v £ u immediately implies v < p. Indeed,
U(N)=0 = 0K v(N) S u(N)=0 = w(N)=0.

Using the Radon—Nikodym theorem we conclude that there exists a measurable function f &
M* (o) such that v = f - u. Assume that f > 1 on a set of positive y-measure. Without loss
of generality we may assume that the set has finite measure, otherwise we would consider the

intersection A; N { f > 1} with some exhausting sequence A, 1 X and u(4,) < .

Then, for sufficiently small € > 0 we know that u({ f > 1 +€}) > 0 and so

V({f>1+€})=/ fdu

{f>1+e}

2 (1+e) du
(f214e)

2l +eu({f21+e€})

zu({f21+¢€})
which is impossible.

Problem 20.2 Solution: Because of our assumption both 4 < v and v < u which means that we
know
v=fu and u=gv
for positive measurable functions f, g which are a.e. unique. Moreover,
v=fu=f-gv

so that f - g is almost everywhere equal to 1 and the claim follows.

Because of Problem 20.4 (which is just Corollary 25.6) it is clear that f, g < oo a.e. and, by the

same argument, f, g > 0 a.e.

Note that we do not have to specify w.r.t. which measure we understand the ‘a.e.” since their null

sets coincide anyway.
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Problem 20.3 Solution: Take Lebesgue measure 4 := A! on (R, %(IR)) and the function f(x) :=

x + 00 - Ly 3e(x). Then f - 4 1is certainly not o-finite.

N
Problem 20.4 Solution: See the proof of Corollary 25.6.

N
Problem 20.5 Solution: See the proof of Theorem 25.9.

]

Problem 20.6 Solution: (i) If F is AC, continuity is trivial, just take N = 2 in the very definition of
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AC functions.

To see that F is also BV, we take ¢ = 1 and choose 6 > 0 such that for any subcollection a <
X <y < <xy <yy <bwith ) (y, — x,) < 6 wehave ) |F(y,) — F(x,)] < 1. Let
M =[(b—a)/6]+1anda; = a+i(b—a)/M fori =0,1,..., M. Clearly, a;,—a;_, = (b—a)/M < 6
and, in particular, V'(f,[a;_;,q;]) < 1foralli =0,1,... M. Thus,

M

V(fila,b) < Y V(filaipa]) < M.

i=1

(i1) Following the hint, we see that f is increasing. Define g := F — f. We have to show that g is

increasing. Let x < y. Obviously,
V(fila,xD+ F(y) = F(x) < V(fila, xD) + |[F(y) = F(x)| < V(fila, y])

(since the points x < y can be added to extend any partition of [a, x] to give a partition of [a, y]).
This gives g(x) < g(¥).

(iii) Fix € > 0 and pick R = R(e) in such a way that

/ If1da< <.
{IfI>R) 2

This is possible since f is integrable: use, e.g. monotone convergence. Now pick x; < y; < x, <
Yy < o < Xy < yy With 2,1,\/:1 |y, — x,| < 6 where 6 = 6(¢) := €/(2R) with the R we’ve just

chosen. Then

IF(,) = F(x,)| < / /0] Adr)

[x,:9)
=/ | f @D A(dD) +/ | (D] A(dD).
[XpyIN{lfISR} [XpyIn{lf1>R}
Summing over n = 1, ..., N gives
N N N
S IFG) = Fe)l S R Y 1y, = x,] + Z/ If1da. < R5+/ Ifldi<e.
n=1 n=1 n=1 [x,.y,)0{ >R} {I/1>R}
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(iv) Write F = f, — f, with f; increasing (see part (ii)). From (ii) we know that we can pick
f1(x) = V(F,|a, x]). Since F is absolutely continuous, so is f|, hence f,. This follows from the

observation that
V(Fa[a,J/])_V(Fa[aax])=V(F,[X,J/]) Vx<y

Since the f; are continuous, the set-functions y;[a, x) := f;(x)— f;(a) are pre-measures and extend

to measures on the Borel o-algebra — see also Problem 6.1.

Now let N be a Lebesgue null-set. For every 6 > 0 we can cover N by finitely many intervals
[x;, ;] such that },(y; — x;,) < 6. Without loss of generality we can make the intervals non-
overlapping and their length is still < 6. Since the f; are AC, we find for every e some § such

that
D 1fi) = fix)l <€
In particular,
#(N) < D (%, 3, < €,

which shows that the Lebesgue null-set is also a y;-null set, i.e. 4; < A and therefore the claim

follows from the Radon—Nikodym theorem.

Problem 20.7 Solution: This problem is somewhat ill-posed. We should first embed it into a suitable
context, say, on the measurable space (R, %(R)). Denote by 4 = 4! one-dimensional Lebesgue

measure. Then
=14 and v="1 54
and from this it is clear that
v=1gv+Losv=1 194+ 1n54

and from this we read off that

Lygv<u
while

Losvip.

It is interesting to note how ‘big’ the null-set of ambiguity for the Lebesgue decomposition is—it
is actually R \ [0, 3] a, from a Lebesgue (i.e. 4) point of view, huge and infinite set, but from a

u-v-perspective a negligible, namely null, set.
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Problem 20.8 Solution: Since we deal with a bounded measure we can use F(x) := u(—oo, x) rather

240

than the more cumbersome definition for F employed in Problem 6.1 (which is good for locally

finite measures!).

With respect to one-dimensional Lebesgue measure A we can decompose u according to Theorem
20.4 into

u=pu°+ut where pu° <A, ptla

Now define pu, := u° and F, := u°(—o0,x). We have to prove property (2). For this we observe
that y° is a finite measure (since 4° < p and that, therefore, 4° = f - A with a function f € L'(4).
Thus, for every R > 0

F(.Vj) - F(xj) = ﬂo(xjayj)

=/ f (@) Adr)

(x,wy,-)

=/ f(f)i(df)+/ f (@) A(d1)
(f<RINGX,.3,) (F2RINGE,5,)

< R/ Adt) + / f () AdY).
(x,-,y,-) {f?R}ﬂ(X,-,y,-)

Summing over j = 1,2, ..., N gives
N
Y IF0) - F(x)I < R-6+ / £ Adr)
il {f2R)

since Uj(xj, ¥;) € R. Now we choose for given € > 0
e First R = R(e¢) such that f{sz} S Adr) <e/2
e andthené :=¢/(2R)

to confirm that
N
Y IBY) - Bl <e
j=1

this settles b).

Now consider the measure y*. Its distribution function F*(x) := p*(—c0, x) is increasing, left-
continuous but not necessarily continuous. Such a function has, by Lemma 14.14 at most countably

many discontinuities (jumps), which we denote by J. Thus, we can write
wh= oy
with the jump (or saltus) AF(y) := F(y+)— F(y—)ify e J.

=Y AF(y) -6, and py 1= pt - pg
yeJ
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u, is clearly a measure (the sum being countable) with p; < ut and so is, therefore, 1, (since the

defining difference is always positive). The corresponding distribution functions are

F(x) = ) AF(@)

yed,y<x

(called the jump or saltus function) and
F(x) 1= FY(x) - F|(x).

It is clear that F, is increasing and, more importantly, continuous so that the problem is solved.

Itis interesting to note that our problem shows that we can decompose every left- or right-continuous
monotone function into an absolutely continuous and singular part and the singular part again into

a continuous and discontinuous part:

8 = &ac T 8&sc T &

where
g —is a monotone left- or right-continuous function;
g, —is a monotone absolutely continuous (and in particular continuous) function;
g, —1s a monotone continuous but singular function;

8.4 —is a monotone discontinuous (even: pure jump), but nevertheless left- or right-continuous,

and singular function.

Problem 20.9 Solution:

(1) In the following picture F| is represented by a black line, I, by a grey line and Fj is a dotted
black line.

(ii),(iii) The construction of the F,’s also shows that

1
|F,(0 = Fy 0] < 55
since we modify F, only on a set [ }fﬂ by replacing a diagonal line by a combination of
diagonal-flat-diagonal and all this happens only within a range of 27" units. Since the flat bit
is in the middle, we get that the maximal deviation between F, and F, is at most % - 27

Just look at the pictures!

Thus the convergence of F, — F is uniform, i.e. it preserves continuity and F is continuous
as all the F,’s are. That F is increasing is already inherited from the pointwise limit of the
F.’s:

x<y = Vn: F,(x)<F,()
= F(x)=IlimF,(x) <lim F,(y) = F(y).
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@iv)

v)

Let C denote the Cantor set. Then for x € [0, 1]\ C we find n and £ such that x € T nf (which

is an open set!) and, since on those pieces F, and F do not differ any more
F,(x)=F(x) = F'(x)=F/(x)=0

where we use that F, |1 f is constant. Since A(C) = 0 (see Problem 7.12) we have A([0, 1]\
C) = 1 so that F’ exists a.e. and satisfies F/ =0 a.e.
We have 1 nf = (ay, b,) (we suppress the dependence of a,, b, on n with, because of our

ordering of the middle-thirds sets (see the problem):

a; < b] < a, < - < Ayn_q < b2”—1

and
2"—1
Y. [Fby) = Flap)| = Fby_y) = Fla)——= F(1) = F(0) = 1
=1

while (with the convention that a; := 0)

2"—1

D (@, —by)—— 0.
=1 n—oo

This leads to a contradiction since, because of the first equality, the sum

2"—1
Y [Flap) - Flb,_))
=1

will never become small.
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21 Riesz representation theorems.
Solutions to Problems 21.1-21.7

Problem 21.1 Solution:

(i) Let f € LP(u) and g € L9(u) such that ||g[[, < 1. Holder’s inequality (13.5) gives

=gl < AN lelly < 1A

Therefore

LA, > sup {/fgdu 1 g € Lw), ligll, < 1}.
For the converse inequality ‘<’ we use g := sgn(f) - | f|?~!. Since g = ﬁ, we have
lgl? = 1F177D = |fIP € Li(w),

andso g € L) and |Igll, = I f11/%. Setting § := g/llgll, € L(u) we find [|]], < 1

as well as

- 1 1 1-1/9)
FEdu = /Ifl"du - A2 = 1719010 = iyl
/ lgll, e ? g

In the last stepe we use % + é =1.

(i) Let D c L9(u) be a dense subset. Since D C L9(u) we obviously have

||f||p>sup{/fgdu :geD, llgll, < 1}.

Converesly, let € > 0. Because of (i) there is some g € L(p), ||gll, < 1 such that

/fgduz 171, —e.

Since D is dense, there is some & € D with ||g — h|, < e. The Holder inequality now

/fhdﬂ=/f(h—g)du+/fgdﬂ

>—||f||p||h—g||q+/fgd/4

shows

> -Wflle + [ redn

z =\ flle+ 1111, —e

— £l -€) —e.

Letting € — 0 proves the claim.
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(iii)

If fg € L'(p)forall g € Li(u), then I.(g) := f | f|g d u is a positive linear functional
on L9(u). From Theorem 21.5 we know that there exists a unique f € L9(u) such that

I(g) = / fedu Vg e L.

Therefore, f = f~e Li(p).

Problem 21.2 Solution:
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®

(ii)

We use a classical diagonal argument (as in the proof of Theorem 21.18). Let (g,),en

denote an enumeration of D,. Holder’s inequality (13.5) tells us

' / 0y, du‘ < Nyl Nl < <sup ||un||p> lgll,
nelN

forall i,n € N. If i = 1, the sequence (/ u,g; d),cn is bounded. Therefore, the
Bolzano—Weierstrall theorem shows the existence of a subsequence (u,l,)ne]N such that
the limit

. 1

lim u,g du

h—0o0

exists. We pick recursively subsequences (u'*!), v C (i), such that the limits

: i+1
Jim, [ " g

exist. Because of the recursive thinning, we see that

lim u;gk du
n—00
exists for all k = 1,2,...,i. Thus, for the diagonal sequence v, := ”Z the limits

lim,_,, / v,8; du exist for each i € IN.

Let g € L9(u) and (u,;));en be the diagonal sequence constructed in (i). Since R is
complete, it is enough to show that ( / U8 d y)iE]N is a Cauchy sequence. Fix ¢ > 0.
By assumption, D, is dense in LI(u), i.e. there exists some & € D, such that ||[g—A||, <
e. Part (1) shows that we can take N € IN with

‘/”n(i)hdﬂ—/“n(k)hdﬂ'Se Vi,k > N. (%)

Holder’s inequality and the triangle inequality show

'/un(i)g du _/un(k)g dﬂ'

= '/(un(i) = un(k))(g —h)ydu+ /(”n(,') - ”n(k))h d#’

< '/(un(,-) — Uy ))& — h) dﬂ‘ + /(un(i) — Upgy)hdp

. /
'

<e blo (%)
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< Nuy = waollpllg = Rl + €
< (”Mn(i)”p + “un(k)“p)”g - h”q +e€

< 2sup [lu,ll llg = Ally, +€
nelN

< <2 sup |[u,|l, + 1> €
nelN

for any i, k > N. This proves that (f Upi\& d,u)ie]N is Cauchy.
(iii) Without loss of generality we may assume that the limits
P + e s -
I(g) := ilir?o/un(i)g du, and J(g) := ilir?o/un(i)g du

exist for all g € L9(u). Indeed: From (i),(ii) we see that there is a subsequence such
that I(g) exists for all g € L9(u). Thinning out this subsequence once again, we see
that J(g) exists for all g € L9(u). Since I and J are positive linear functionals on
L9(u), Theorem 21.5 proves that there are unique functions v, w € L9(u), v,w = 0

representing these functionals:

I(g)=/vgdu and J(g)=/wgdu-

Therefore,
. _ . + _ . —_—
,-ILTO / Uyp8 dp = ,-lilg / Uyin8 du illglo / U8 du

= /(v— w)g du.

The claim follows if we use u :=v — w € Li(u).

Problem 21.3 Solution:

(i) By Problem 19.7(i) or 21.4(a), p, is positive semidefinite, i.e. for any choice of m € IN,
AMsoshy, € Cand &y, ..., &, € R” we have

m
A& - E0AA > 0.
i,k=1

Since lim,_, , f1;(§) = ¢(&), we see
Y & — )4, > 0.
ik=1
Since fi;(—=¢) = %, this also holds for the limit
$(=&) = lim f(-0) = lim 7,(&) = (&) VEER".

This shows that ¢ is positive semidefinite. If m = 1 resp. m = 2, we see that the matrices
0 -
<¢(0)> and $0)  H(=%)
#©&)  $0)
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(ii)

(iii)

(iv)

are positve hermitian for all £ € R". Since determinants of positive hermitian matrices

are positive, we find ¢(0) > 0 and
< ¢(0)2 = GEOP(—E) = P(0)2 — P(E)P(E) = P(0)* — |P(&)]%.

First of all we show that the limit exists. Pick u € C*(R"). Because of Theorem 19.23,
F~'u € S(R") and we can use Plancherel’s theorem (Theorem 19.12), to get

/uduiz/F(F_lu)du,-=/F_1M(§)ﬁi(§)d‘f-

Since |z;(€)| < 1;(0) — ¢(0) is uniformly bounded, we can use dominated convergence

and find that
A@) = lim [ udp; = / Flu@d(&) dé
=00
is well-defined. The linearity of A follows from the linearity of the integral Moreover, if
u > 0, then
Au=lim [ udy; 2 0.

11— 00

The continuity of A follows from

| Aul < thUP/IMIdM, llull o lim sup M,(R") = 27)"p(0)lullo

100 i—00

(27r)" 1;(0)

Since C*(R") is uniformly dense in C.(R"), (see Problem 15.13, the proof resembles the
argument of Theorem 15.11), we can extend A to a positive linear functional on C_ (IR"):
Foru € C (R") we take (4;);cy C C°(R"), such that ||u; — u||,, — 0. Since

|A@) = Aw)l = [Aw; — u)] < Q)" eO0)lu; — uy |l o,

we conclude that (Au;),cy is a Cauchy sequence in R. Therefore, the limit Au =
lim;_, , Au; exists and defines a positive linear functional on C,(R"). By Riesz’s rep-
resentation theorem, Theorem 21.8, there exists a unique regular measure representing
the functional A

Au = /udy Yu e C,(R").

Let € > 0. Since ¢ is continuous at & = 0, there is some 6 > 0 such that

16(6) —p(0)] <e VIE[ <6

Because of Lévy’s truncation inequality, Problem 19.6,
W\ SR R 2R [ (10) - Re @) de
[-1/R,1/R]"
(note that s1;(&) = (27)" i;(—£)). With the dominated convergence theorem we get

lim sup p;(R" \ [-R, R]") < 2(Rm)" / (¢(0) —Re ¢(8)) d¢
[=1/R,1/R]"

i—o00
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<202n)%e
for R > %. In particular we find for i > ny(e), p;(R" \ [-R, R]") < 3(27)"¢. In order to
get 4;(R" \ [-R, R]") < 3(2n)"e fori =1, ..., ny(e), we can increase R, if needed.

(v) Let (y)renw C C.(R") be a sequence of functions such that 0 < y;, < 1and y; T 1y.
(use, e.g. Urysohn functions, cf. page 239, or construct the y, directly). Because of (iii)

we have
/ Xedu =AMy < 2n)"¢(0).
The monotone convergence theorem shows that y is a finite measure:

u(R") = sup / Xk dp < 2n)"$(0).
kelN

Moreover, M := sup;cy #;(R") < oo since p;,(R") = (27)"1;(0) = ¢(0). It remains to

show that y; converges weakly to u. First of all,

/udui—f»/udu VYu € C,(R"). (%)

Letu € C.(R"). Since CX(R") is dense in C.(R"), there is a sequence (fy)reny C
CX(R") such that || f — ull,, = O. Thus,

/ud,ui—/ud,u'
<‘/<u—fk>du,- +‘/fkdu,-—/fkdu'+‘/(fk—u>du‘

< ””_fk”oo/"i(Rn)""/fkd:“i_/fkd:“‘+||fk_””oo.u(Rn)

<l = fillo(M + u(R™) + '/fkdﬂi —/fkdﬂ
— = £yl (M + u(R) — 0.

Assume that f € C,(R"). For € > 0, Party (iv) shows that there is some R > 0 such that
with K :=[—R, R]"

ui(Ky) = w;(R"\ K) < e
Without loss of generality we may assume that u(R"” \ K) < e. Pick y € C.(R"),
0< y<1land y|x = 1. Then

’/fdu, /fdu’
< /f)(du, /fm '/(l—x)fduﬁ/(l—;()fdu‘
< /fxdui—/fxdﬂ + 11/ o (/]lmdptﬁ/ﬂz«du)

< /f;(du,»—/f)(dﬂ £ 2l Nl e

Since f - y € C,(R"), the first term on the right vanishes as i — oo, cf. (iii). So,

[ rau= [ ra <2slae— o

lim sup

i—00
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(vi) Let (u;)ren be a weakly convergent sequence of finite measures. Define f(x) := e xE,

(vii)

& e R", we get

@) = o / ) o / ¥ u(dx) = Q).

i.e. the Fourier transforms converge pointwise. From part (iv) we know that the sequence
(Mken 1s tight. For e > 0 there is some R > 0 such that y,(R" \ K) < € for K :=
[—R, R]". Without loss of generality we can enlarge R to make sure that u(R" \ K) < e
too. Because of the (uniform) continuity of the function R > r +— e on compact sets,

there is some 6 > 0 such that
€G> _ 1| <e V|E—n| <6, xE€K.
If k e N, & n € R” with |€ — 5| < 6, then we see

/le’“ — | p(dx) =

|1 (&) = H(m)| < / "> — 1| p, (dx)

Q)" (2"
1 i(E—n)- i(E—n)-
= Gar / (€7 1] pdx) + o [ 16ET =1 ()
T K\ J T J G R ——
<e <2
#k(]R") 2
€+ (K¢
S ey et
1
< M+2
< (27[)”( )e
where M = sup,cy 4 (R") < oo. This proves the equicontinuity of the sequence

(ﬁk)ke]N-

Let ¢ € R" and € > 0. Use equicontinuity of the sequence (1) to pick some & > 0.

Since i is continuous, we can ensure that § is such that

|#() — Hml <e VIE—nl<é

This entails for all # € R” satisfying |n — &| < 6

|fai () = (| < VH(n) = O]+ (&) — @O + [HE) — i)
—_—— ———

<e <e

= sup |H(n) — @n)| < 2e + | (&) — i(§)| —— 2e— 0.
nEB;s(E) k—o0 e—0

Here we use that fi, converges pointwise to i, cf. (vi). The calculation shows that i, con-
verges locally uniformly to z. Since locally uniform convergence is the same as uniform

convergence on compact sets, we are done.

Problem 21.4 Solution:
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(i) Since u is a finite measure, the continuity of z follows directly from the continuity
lemma, Theorem 12.4 (cf. also 19.3). In order to show positive definiteness, pick m €
N, ¢&,....¢, € R"and 4, ..., 4,, € C. We get

m m
z 1 > —ixe(&,—
Y, 06 -0k = g 3 Ak [ 6 uta
J.k=1 Jj.k=1
1 - —
= Gy 2 M / e Hemid u(dx)
J.k=1

— 1 S —ix-§; N —ix-&y

_ (Zﬂ)”/(,-zl Aje ><;§1 Ae >,u(dx)
_ 1 /

Q)

(i) Form = 1 and & = 0 the definition of positive definiteness implies that the matrix (¢(0))

2
u(dx) = 0.

m

D Age

Jj=1

is positive definite; in particular, ¢(0) > 0.

If we have for a matrix (a;;) that ) ., a,.ka,.zj = 0, then

0< Z ayAidy = Z ayAidy = Za_ik/_li/lk = Za_ki/_lkﬂi

ik ik ik ki
which means that a;, = a;;. Apply this to the matrix a;;, = ¢(&; — &) with m = 2 and
&, = & and &, = 0 to infer that ¢p(&) = ¢p(—¢). Moreover, the matrix

$0) (=&
P& ¢0)
is positive semidefinite; in particular its determinant is positive:
0 < #(0)* — P(=&)p(&).

Since ¢p(—&) = p(&), we get the inequality as claimed.
(iii) Because of |¢p(&)| < ¢(0) we see that

| [ 6= (exser2eeR) (emne) g |

< 16(0)] // (kP e ) g ag < oo,

i.e. v, is well-defined. Let us show that v, > 0. For this we cover R" with countably
many disjoint cubes (I [k),E]N with side-length 1/k and we pick any él.k el ’.k. Using the

dominated convergence theorem and the positive definiteness of the function ¢ we get

V() = lim Z d)((:';; £y (e,-x.gfe—ze|¢§|2> (eix.éfne—Zeléntz)dg dn
k—)oo JE]N Ik Ik J
m, m j

—lim Y gk g (ke d ) (ke )
k—oco 4 J m
m,j€N
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= 0.
Because of the parallelogram identity
2061 + 200> = 1€ = nl* + &+l

we obtain

Ve(x)=/(eix~-§(eix~i1e—2€|'1|2—2€|5|2)) dédn
_ // (eix~(-§—n)e—|~f—f1|2—|§+n|2) dédn.

Changing variables according to

()=(2)- ) 6)=C)

leads to
= |de1A| / p(n)e™" eI gy g5
= l/(ﬁ(t)e_e't'zeix't dt
c
1 ix-t
= Z/dne(t)e dt. (%)
(iv) Define
(x) := I ex —ﬂ

Applying Theorem 19.12 for the finite measure u(dx) :=e™’ I g x yields
“hx L, 0 1 - AN 1 1, =L
/ vee 2 dx = 2 / Pl @ I0e dx = - / ¢ OF (2 &) ae

forall? > 0 (observe: ¢, € L'(R")). Example 19.2(iii) shows F(g,)(x) = (27) ™" exp(—t|x|?/2).
Therefore, F‘l(e_él'lz)(é) = (27)"g,(&). Since |p(&)| < ¢(0) and /gt(x) dx =1 we

thus get

Q2n)"

C

/ e i e = B2 / .05, dé < ZL 5(0).

Fatou’s lemma (Theorem 9.11) finally shows

1
/ve(x)dx=/klim ve(x)e_ﬁlx|2 dx
1
<liminf / v (x)e 3 dx

2xn)"
Cc

<

$(0).

Since v, > 0, see (iii), this means that v, € L'(R").
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(v) Parts (iii) and (iv) show that ji. = ¢, for the finite measure u.(dx) := cv.(x) dx. Since
¢. = ¢, Lévy’s continuity theorem (Problem 21.3) shows that there exists a measure

u which is the weak limit of the family y, as ¢ — 0 and ji = ¢.

Problem 21.5 Solution:

(i) Since uniform convergence preserves continuity, we see that every u € C,(X) is con-
tinuous. By construction, the set {|u| > €} is compact since there is some u, € C,.(X)
such that ||u —u,||, < €. This means that u vanishes at infinity. In particular C.(X) C

C,.(X).

Conversely, if u € C(X) and € > 0, there is some compact set K, such that |u| < €
outside of K,. Now we use Urysohn’s lemma and construct a function y, € C.(X) such

that 1y < y. < 1. Then we getu, := y.u € C.(X) as well as
lu—u=1=y)lul <e

uniformly for all x.

(i1) It is obvious that C  (X) is a vector space and that ||.||, is a norm in this space. The

completeness follows from part (i) since C(X) = C (X) = C.(X).

(iii) Let u € C(X) and € > 0. Urysohn’s lemma shows that there is a y € C.(X),
0< y <1,suchthat |ul| < eontheset {y <1} = {y = 1}¢. Therefore,

ssn- [ s
< /uxdun

—/uﬂrdﬂ +'/u(1—)()dﬂn—/u(1—x)du'
< /”Zdﬂn_/“){dﬂ + e [1,(X) + (X))

21.16
< /u;(d,un—/u;(dﬂ + 2e sup u,,(X).

melN

Since uy € C.(X), we findasn — oo

lim sup

n—0oo

/ud,u,,—/udy‘ < 2e sup u,,(X)— 0.
melN e—0

Problem 21.6 Solution:

(i) First we consider u € C*(R"). According to Theorem 19.23, F~lu € S(R"), and

Plancherel’s theorem (Theorem 19.12) gives

/udﬂi=/r(r—‘u)dy,.=/P“u(é)ﬁi(é)dé-

253



R.L. Schilling: Measures, Integrals & Martingales

Since |i1;(¢)| < 1;(0) = ¢(0) is uniformly bounded, we can use the dominated conver-

gence theorem to see
Aw = tim [ udy = [ Fiuepe as
i.e. A(u) is well-defined. Moreover,
mi(R") = (27r)"/7,~(0)700> (27)"$(0),

ie. M := sup; u;(R") < co. Assume now that u € C,(X). Since C°(IR") is dense in
C.(IR") (with respect to uniform convergence, cf. Problem 15.13), there is a sequence

(Uken C© CP(R") such that ||luy — ull, — 0. Thus,

S‘/(u—uk)dui‘+‘/(u—uk)dyj +‘/ukd,ul-—/ukduj

< ||u_”k||oo(ﬂi(]Rn)+Mj(Rn)) + |/“kdﬂi _/”k d/”j

<2||u—“k||ooM+'/”kdﬂi_/”kdﬂj

2|lu—u|| oM —— 0.
[ k— o0

L=

This shows that ( / ud '“i)ie]N is a Cauchy sequence in R. Thus, the limit A(u) :=

lim;_, / udp; exists. Since convergent sequences are bounded, we see

/udﬂi‘ < 0.

Since u € C.(R") = [u| € C.(R"), we get

sup
ielN

sup/ lu|dy; < 0 Vue C,(R"),
nelN

i.e. the sequence (y;);cny is vaguely bounded. According to Theorem 21.18, (u;);cy has

a vaguely convergent subsequence p,,;, — H.

(i1) We can use part (i) for any subsequence of (u;);cy. We will show the the subsequential
limits do not depend on the subsequence. Pick any two subsequences (#,;));en and
v v
(Um@i))ien Of (M) and assume that p,;) —> p, p;) — v. By definition, we find
forallu € C.(R")

lim ud,un(,-)=/ud/4,

i—o0

lim/ud,um(i)=/udv.
I—00

On the other hand, we have seen in (i) that A(u) = lim,_, / udy;. Thus,
/udu =A) = /udv.
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Since this holds for all u € C,(IR"), we can use the regularity of the measures y and
v to conclude that 4 = v. Since the limit does not depend on the subsequence, we
already have vague convergence of the full sequence (y;);cy. (Compare this with the
following subsequence principle: A sequence (a;);,cy C R converges if, and only if,
every subsequence of (a;);cy has a convergent subsequence, and all subsequential limits

coincide.)
(iii) In view of Theorem 21.17 it is enough to show that the sequence (y;);¢py 18 tight

Fix € > 0. Since ¢ is continuous at £ = 0, there is some 6 > 0 such that

|$() —d(0)] <e V|S[<6.

From Lévy’s truncation inequality, Problem 19.6, we get

W (R"\ [=R, RI") < 2(Rx" / (7.0) - Re (&) dé
[-1/R,1/R]"

(observe, that i,(&) = (27)"1;(—=€)). Now we can use dominated convergence to get
lim sup ;(R" \ [-R, R]") < 2(Rn)" / (¢(0) —Re ¢p(§)) d&
i—oo [-1/R.1/R]"

<2Q2n)"e

for all R > %. In particular, we find y;(R" \ [-R, R]") < 3(2x)"e for i > ny(e). In
order to ensure u;(R" \ [-R, R]") < 32x)"e fori = 1, ..., ny(e), we can enlarge R, if

need be.

Problem 21.7 Solution: Since

/ud,un=/ udy,
B Bnsupp u

we can assume, without loss of generality, that B is contained in a compact set. Denote by K := B
the closure of B and by U := B° the open interior of B. Moreover, we can assume that u > 0 —

otherwise we consider u* separately.

According to Urysohn’s lemma (Lemma B.2 or (21.6) & (21.7)), there are sequences (w; );en C
C.(X), Wheny CC(X), 0L, £ L,0< w, <1, withw, 1 1 and v, | 1. By assumption
\Y%

/ud,unS/ud,ung/u-vkdyn—>/u-vkd,u.
B K n—-oo

Beppo Levi’s theorem implies

li du, < inf copdu= [ udp.
lirligp/Bu Mo ,gg]N/u v du /Kuu

u,— u and so
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Similarly, we get from

/ud/,th/ud,u,,Z/u-wkd,un—>/u~wkd,u.
B U n—oo

and the monotone convergence theorem

liminf/udun>sup/u-wkd,u=/udu.
n—>o0 B kE]N U

Finally, since u(K \ U) = u(dB) = 0, we see that

limsup/ud,uns/ud,uz/ud,usliminf/ud,un.
n—oo B K U n—oo B
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22 Uniform integrability and Vitali's

convergence theorem.
Solutions to Problems 22.1-22.17

Problem 22.1 Solution: First, observe that

limu;(x) =0 < lir_nluj(x)l =0.
J J

Thus,
x €{limu; =0} < Ve>0 IN. €N Vj=>2N,:|uyx)|<e
J
< Ve>0 IN. €N : suplu(x)|<e
JjZN,
< Ve>0 IN. €N :xe{supluyl<e}
Jj=2N,
&< Ve>0:x€ U{sup|uj|<e}
NeN /2N
< VkeN:xe U{sup|uj|<1/k}
NeN /2N
e xe ) | {suplyl <1/k).
kelN NeN /2N
Equivalently,

(limu; =0} = U ﬂ {sup |u;| > 1/k}.

kelN NelN /2N

By assumption and the continuity of measures,

/4( (M) tsup ;| > 1/k}> =1i]{,n/4<{j$:11\)] juy > 17K} ) =0

NelN /=N

and, since countable unions of null sets are again null sets, we conclude that

{limu; =0} has full measure.
J

Problem 22.2 Solution: Note that

x € {suplujl > e} < sup |u;(x)| > €
Jjzk j=k
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= dj=2k: |uj(x)|>€

= xeJlyl>e)
Jj=k

and since
def _.
Ut > ey 1 () byl > e} = timsup{lu;] > e}
j=k kelN j>k Jo®
we can use the continuity of measures to get

li]£nu<sup|uj| > €> =1il£n,u<19<{|uj| > €}> =,u< ﬂ U{lujl >€}>.

jzk keN j>k
This, and the result of Problem 22.1 show that either of the following two equivalent conditions

lim ,u(supluj|>€)=0 Ve>0;

koot R ok

,u(limsup{|uj| > €}> —0  Ve>O0;

j— oo
ensure the almost everywhere convergence of lim; u;(x) = 0.

Problem 22.3 Solution:

e Assume first that u; — u in y-measure, that is,
Ve>0, VAed, u(A) < o : lijxny({|uj—u| >e}lnA)=0.
Since
uj—ukl < |uj—u|+|u—uk| Vj,ke N
we see that
{lu; —ul > 2e} C {lu; —ul > e} U {|u—u| > e}

(since, otherwise |u ; —u;| < e+e€ = 2¢). Thus, we get for every measurable set A with finite
p-measure that
,u({luj —u| > 2e} nA)
< u[({lu; —ul > e} N AU ({lu, —ul > e} N A)
< ,u[{luj —u|l > €} nA] +,u[{|uk—u| > ¢} nA]
and each of these terms tend to infinity as j, k — oo.

e Assume now that |uj — uy| — 0in y-measure as j,k — oo. Let (A,), be an exhausting

sequence such that A, 1T X and u(A ;) < o0.

The problem is to identify the limiting function.
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Fix £. By assumption, we can choose Nj € N, j € IN, such that
Vm,n2 N, : y({lum—unl > 27/} nAf) <27,

(Note that N; may depend on #, but we suppress this dependency as £ is fixed.) By enlarging

N, if needed, we can always assume that
Ny <Ny <+ <N;<Nj — .
Consequently, there is an exceptional set E; C A, with u(E; N A,) < 27/ such that
|uNj+1(x) — uNj(x)| <27 Vxe Ay \ E;
and, if Ef 1=, E; we have u(E; N A;) <2-27" as well as
luy,, () —uy (O <27 Vjzi, Vxe€A,\E.
This means that

Z(u Ny, U N/) converges uniformly for x € A, \ E;
J

so that lim; u N, exists uniformly on A, \ E;* for all i. Since u(ENA,) < 2-27" we conclude
that

limu N, 1, = uO1 4, exists almost everywhere
J

for some u”). Since, however, a.e. limits are unique (up to a null set, that is) we know that

u® =u™ ae. on A,NA,, so that there is a (up to null sets) unique limit function u satisfying
li}n Uy, =u exists a.e., hence in measure by Lemma 22.4. @)
Thus, we have found a candidate for the limit of our Cauchy sequence. In fact, since
luy —ul < |uy — ule + |uNj —u|

we have

u{lug —ul >efnAy)
<ullm = ux,| > €} 0 AN+ u((luy, —ul > €} N Ap)

and the first expression on the right-hand side tends to zero (as k, N (j) — oo) because of the

assumption, while the second term tends to zero (as N(j) — o) because of (*))

Problem 22.4 Solution:

259



R.L. Schilling: Measures, Integrals & Martingales

(1) This sequence converges in measure to f = 0 since for € € (0, 1)

A foyl > €)= 4G = D/n.j/m) = 1 — 0.

n—>oo

This means, however, that potential a.e. and L?-limits must be f = 0, too. Since for
every x

liminf f, ;(x) =0 < oo = limsup f, ;
the sequence cannot converge at any point.

Also the LP-limit (if p > 1) does not exist, since

/ | f 1P dA=n"Al(j = 1)/n, j/n] = Pl

(i) Asin (i) we see that g, — g = 0. Similarly,

/ g, 17 du = n?A(0,1/n) = n?~"

so that the £P-limit does not exist. The pointwise limit, however, exists since

lim nl g n(x) =0.
n—oo

for every x € (0, 1).

(iii) The shape of g, is that of a triangle with base [0, 1/x]. Thus, for every € > 0,
ARl > €) S A0, 1/m] =+

which shows that h, — h = 0. This must be, if the respective limits exist, also the
limiting function for a.e. and £P-convergence. Since

D
/ \h,|?dA=a’ L a10,1/n]) = 22
n2 2n

we have £P-convergence if, and only if, the sequence a), /