Topology Preliminary Exam
June 11, 2014

. (a) Prove that the image of a connected space under a continuous map is
connected.

(b) Prove that the image of a compact space under a continuous map is com-
pact.

. Show that the retract of a contractible space is contractible.

. Let f,g : X — Y be continuous functions and assume that Y is Hausdorff.
Show that {z|f(z) = g(z)} is closed in X.

. Let X = D? x S! be a solid torus, and let A = S* x S? be its boundary.
Compute H,(X, A) for all n.

. Let C[0,1] denote the set of all continuous functions f : [0,1] — R.

The functions L
pl1.9) = [ 15(0) -~ gla)| do
0

and

wlf9) = max{|f(z) — g(z)[}
z€[0,1]
define metrics on C[0, 1]. Which metric induces the finer topology?

. Counsider the following three identification spaces of the disk.

(a) Compute the fundamental group of each of these spaces.
(b) Compute the homology groups of each of these spaces.
(c) Which of these are manifolds?




Wesleyan University
Doctoral Qualifying Topology Exam in Mathematics
Profs. Adeboye and Collins, August 7, 2013

This is a 3-hour exam; no books or notes or consultations are permitted.
The exam has two parts. Please choose at least two problems from each
part and at least five questions total. Always explain your reasoning.

Good luck!



Part I

1. Let w be the cardinality of the natural numbers, and R be the set of
real numbers. Let

U={-2<z<0}uU{l<z<2}CR
with the subspace topology.

Which of the properties below does U* with the product topology have?
Give a reason for each.

(a) connected
(b) path-connected
(c) compact
(d) Hausdorff
(e) first countable
(f)

)

)

)

f
(g) completely regular

metrizable

h

normal

[N

(
(a) Let X be a set and (X,77),(X,Ty) be two topologies on X. Sup-
pose that Ty is finer than T, (that is, every open set in 75 is also
in T1). Let (X,T;) be compact and (X,75) be Hausdorff. Prove

that T1 = TQ,
(b) Let I =[0,1]. Let (I, K) be the topology of I as a subspace of

- Ry and let-(455) be the topology of I-as-a subspace-of Ry:-Let — —— — = -

X = [laes Yo where Y, is either (I, K) or (I,L) for each o (if
a # f, then Y, need not equal Yz), with the product topology.
Use (a) to prove that X is not compact.

3. Let C, be the circle of radius 7, centered at the origin, in R2. De-
termine the connected components, path-connected components and
quasi-connected components of the subspaces of R? below.

() §={Cy |n € Z,}U{(0,0), (1, 1)}
b) T={C.|reQand 0<r<1}U{(~1,0),(0,0),(1,0)}
4. (a) State the Urysohn Metrization Theorem. Illustrate the theorem
with two examples.

(b) Describe in detail a metric space which does not satisfy the hy-
potheses of the Urysohn Metrization Theorem.




Part I1

1. Let a and b be the generators of 7(S*VS?). Draw a picture of a covering
space of S* V S corresponding to the normal subgroup generated by
a?, b* and ab.

(T

2. Consider a cylinder S* x I. Identify the antipodal points of the bound-
ary circle $* x {0}. Also identify the antipodal points of the boundary
circle §* x {1}. Calculate the fundamental group of this surface.

3. Consider the space obtained from two tori 7% = S* x 5* by identifying
the circle S x {(0,1)} in one with S* x {(0,1)} in the other. Calculate
the fundamental group of this space.

4. (a) Calculate the simplicial homology groups of S*.

(b) Calculate the simplicial homology groups of the torus using the A
complex given below.

o

L
£

b

(c) Let T¢ denote the the torus with the interior of a disk removed.
Use the Mayer-Vietoris sequence for the torus, viewed as T¢ at-
tached to a disk D? along a circle, to calculate the homology

groups of T¢.
(=> (> o
T?’ T, Ug’ Dz

==

o



Wesleyan University
Department of Mathematics
PhD Qualifying Exam, Written Part: Topology
Profs. Leidy and Rasmussen

August 15, 2012

This exam consists of eight questions. You have three hours to complete this exam. You may not
use any outside sources, and you should work alone.

You should do as much as you can of the exam in the allotted time, which does not mean that we
expect you to finish every problem. Partial credit will be awarded when significant progress on a
problem has been achieved.

1. Several statements are given below regarding either a pair of path-connected topological spaces
X and Y, or a path-connected topological space X. (We consider only path-connected spaces
so that we do not have to worry about basepoints.) For each statement, either give an explicit
example of path-connected space(s) that satisfy the statement, or state that no example exists.

a. X is homotopy equivalent to Y, but X is not homeomorphic to Y.

v

X is homotopy equivalent to Y, but X is not a deformation retract of ¥ and Y is not a
deformation retract of X.

X is a deformation retract of ¥, but X is not homotopy equivalent to Y.
X is a retract of Y, but X is not a deformation retract of ¥.

X is a deformation retract of Y, but X is not a retract of Y.

X is homotopy equivalent to Y, but m1(X) 2 m(Y).

m1(X) = 71(Y), but X is not homotopy equivalent to Y.

_X is a deformation retract of Y., but 1 (X) Zm(Y).

X is contractible, but 71 (X) is not trivial.

m1(X) is trivial, but X is not contractible.

Hi(X) = H(Y), but m(X) 2 m (V).

m1(X) & (Y), but Hy(X) 2 Hi(Y).

Hy(X) =2 Hy(Y), but m(X) 2 m (Y).
. (X)) 2 m(Y), but Ho(X) 2 Ha(Y).

R I

b-—-'wf—nw'
- 0 T 0

5 B

2. Suppose that
0 A B C 0

is a short-exact sequence of chain complexes of abelian groups. Describe the induced long-
exact sequence on homology, including a definition for all maps in the long-exact sequence.
If necessary, show your definitions are well-defined. (However, you do not need to show the
sequence is exact.)



. Prove or disprove each of the following statements.

a. The image of a Hausdorff space under a continuous map is Hausdorff.
b. The image of a connected space under a continuous map is connected.

. a. Define the notion of a CW-complex.

b. Give an example of a CW-complex for the spaces RP? and CP*.

c. Compute the homology of CP4, using the CW-complex structure you gave in part b.
. a. Show that every closed subspace of a compact space is compact.

b. Show that every compact subspace of a Hausdorff space is closed.

. Let A be a discrete set of r > 1 points in 2. Determine the relative homology groups H, (52, A)
for all n > 0.

. Prove or disprove each of the following statements.

a. If A is a subspace of X and X is simply connected, then A is simply connected.

b. If r: X — A is a retraction, then r, : 71 (X)) — m1(A4) is surjective.
. Let X be'the Klein bottle.

a. Give a A-complex structure on X.

b. Using the structure in part a, compute the simplicial cohomology groups of X with coeffi-
cients in Z/2Z.



Wesleyan University
Department of Mathematics
PhD Qualifying Exam, Written Part: Topology
Profs. Hovey and Scowcroft

August 10, 2011

This is a 3-hour exam; no books or notes or consultations are permitted. The exam
has two parts. Please choose at least two problems from each part and at
least six questions total. Good luck!

Part I

(1) State definitions of the following:

(a) product topology

(b) normal space

(c) regular space

(d) second-countable space.
And state the following theorems:

(1) Tychonoff Product Theorem
(i) Urysohn’s Lemma
(iil) Urysohn’s Metrization Theorem
(iv) Tietze’s Extension Theorem.

(2) Show that every connected metric space with more than one point is un-
countable.

(3) (a) State Zorn's Lemma.
(b) Use Zorn’s Lemma to prove that every commutative ring with identity
1 # 0 has a maximal ideal. =~ o - o

(4) When X is a topological space, C(X) is the ring of all continuous real-
valued functions on X (with the usual operations: for example, (f+¢)(y) =
fly)+gly) forall f,g € C(X) andy € X). When f € C(X) and S C X,

let
Z(f) ={peX: f(p)=0}
and
IS)={feCX):SCZ(f)}
(a) When S C X, show that I(S) is an ideal of C(X) and that I(S) =
I(cl(S)). When S; C S, C X, show that I(S;) € I(S1).
(b) If X is completely regular and p € X, show that I({p}) is a maximal
ideal of C'(X). .
(c) If X is a compact Hausdorff space and I is a maximal ideal of C(X),
show that I = I({p}) for some p € X.

(over)




Part 11

(5) (a) Give a detailed definition of the singular homology group H,(X) of a
topological space X, where p is a fixed positive integer.
(b) Find a CW complex X with Hs(X) = Z/2011Z, H¢(X) = Z, and all
other positive-dimensional homology groups being 0.
¢) State the Mayer-Vietoris theorem.

(

(6) (a) Prove the simplest case of the van Kampen theorem: namely, that if
X = U UV where U and V are open and simply connected, and UNV
is nonempty and path connected, then X is simply connected.

(b) State (precisely) the full van Kampen theorem. '

(7) Suppose X is a Hausdorff space that has a basis of sets that are both open
and closed. Show that X is totally disconnected: that is, that the only
connected subsets of X are one-point sets.

(8) Let X be the 2-holed torus with a little disc removed. Let A be the boundary
of the little disc that was removed. Calculate the maps induced by the
inclusion A — X on the fundamental group and on homology. Use this to
prove that A is not a retract of X.

(9) Suppose X is the space 5% together with the straight-line segment from the
north pole to the south pole. Find a simply-connected covering space of X
and use this to compute the fundamental group of X.




Wesleyan University
Department of Mathematics
PhD Qualifying Exam, Written Part: Topology
Profs. Collins and Leidy
August 11, 2010

This s & 3-hour exam; no books or notes or consultations are permitted. The exam has two parts.
Please choose at least two problems from each part and at least five guestions total.
Good luck!

Part I

1. Let I = [0,1]. Compare the product topology on I x I, the dictionary order topology on
Ix I, and the topology I x I inherits as a subspace of R X R in the dictionary order topology.

2. (a) Which of the properties below does R™ have? Give a reason for each.

1. connected

ii. path-connected
iii. compact

iv. Hausdorff

v. completely regular
vi. normal
vil. metrizable

‘ (b) Which of the properties below does S have? Give a reason for each.

i. connected

ii. path-connected
iii. compact

iv. Hausdorff

v. completely regular
vi. normal
vil. metrizable

3. (a) State the Urysohn metrization theorem.
(b) Prove that the continuous image of a compact metric space in a Hausdorff space is
metrizable.
4. (a) Give an example of space which has infinitely many elements, is connected but not

path-connected, nor metrizable.

(b) Give an example of space which has infinitely many elements, is normal, Hausdorff and
first countable, but not metrizable, nor connected.

(¢) Give an example of space which has infinitely many elements and is metrizable, first
countable and second countable.

(d) Give an example of space which has infinitely many elements, is completely regular, but
not compact, connected or first countable.




Part IT

1. (a) Describe a space X such that 71 (X) & (z,y, zloyz Ly, 22).
(b) Describe a space X such that 73 (X) 2 (z,ylz?, v?, zyz~1y~2).
(¢) Describe two (connected) spaces X and Y such that Hy(X) = Hy(Y), for all 4, but
TI(X> %" 7('1(Y)‘
2. Let (X,p) be a covering space of X.

(a) Show that if X is Hausdorff, then X is Hausdorff.
(b) Show that if X is compact and p~! (z) is finite for each z € X, then X is compact.
3. (a) A (thickened) knot is an embedding K : S* x D? — % The knot complement is
5% —im(K). Calculate H,(S® — im(K)) for any knot K.

(b) A knot K : S x D* — S% is slice if it extends to an embedding A : D? x D? — B4
where §* = 8D” and S° = 9B*. The slice disk complement is B4 — im(A). Calculate
Hn(Bé—im<A))' -

4. Consider the following three identification spaces of the disk.

(a) Compute the fundamental group of each of these spaces.
(b) Compute the homology groups of each of these spaces.

(c) Which of these are manifolds?
)

(d) Recall that every surface (compact, connected 2-manifold) is homeomorphic to S? or
a connected sum of tori or a connected sum of real projective planes. For each space
above that is a surface, determine which of these it is homeomorphic to.



Wesleyan University
Department of Mathematics
PhD Qualifying Exam, Written Part: Topology
Profs. Hovey and Leidy
August 6, 2009
This is a 3-hour exam; no books or notes or consultations are permitted. The exam has two parts.

Please choose at least two problems from each part and at least six questions total.
Good luck!

Part I

(1) One's first exposure to topology is often through metric spaces (or, really, metrizable
spaces). This problem asks why we can’t just stick with metrizable spaces.

(a) Define a metric d and a metrizable space X.
(b) Give an example of a space that is not metrizable (with some justification).

(¢) There are 3 basic constructions that build new spaces out of old ones in topology:
(possibly infinite) products, subspaces, and quotient spaces. Under which of these
operations are metrizable subspaces closed? (That is, are products of metrizable
spaces metrizable? Subspaces? Quotient spaces? I want short explanations if the
answer is yes and counterexamples if the answer is no).

(2) One of the common “weird” spaces we did not look at is the slotted plane X. This is R2
with an unusual topology. We define a set U to be open in the slotted plane if for every
point z € U, there is an open disk D around z of positive radius, a number k > 0, and
straight lines L1,..., Ly, through z so that

{x}U(D—Ll—Lg—---—Lk)QU.

(a) Prove that the slotted plane is a topological space, with more open sets than the usual
topology.

(b) Prove that the slotted plane is Hausdorff but not regular.
(c) Prove that the slotted plane is separable but not even first countable.

(3) All kinds of topologists agree that the unit interval J — [0,1] is crucially important. In
general topology, we often consider all the spaces X we can build from I by taking subspaces
of (possibly infinite) products of copies of 1. Exactly what spaces X do we get by doing
this? Some explanation of why your answer is true is needed, though a complete proof is
not.

(4) If I'is so irﬁportant, we should look at C(X, I), the set of continuous functions from X to
I. Let’s try to count them. Let ¢ denote the cardinality of I.

(a) Prove that if X is nonempty, there are at least ¢ functions in cX, 1.
b) Prove the collection of all functions from I to itself has more than ¢ functions in it.

(

(c) Prove that C(I,I) has exactly ¢ functions in it. (Hint: continuity must mean that
there is some smaller set A4 in I so if we know f on A then we know it on all of I ).
This means that the probability of a function from I to I being continuous is 0.

(6) One of the cool theorems about I that we did not get to is the Hahn-Mazurkiewicz theorem:
If X is Hausdorff, then there is a continuous onto map f: I — X if and only if X is
compact, connected, locally connected, and metrizable. In this problem, we will prove
that X is at least metrizable. So suppose X is Hausdorff and there is a continuous onto
map f: [ — X.




(a) Show that f is a closed map.

(b) Show that X is second countable. (Hint: choose a countable basis B for I. One’s first
thought might be to take f(U) for U in B, but there is no guarantee these are open,
so that won’t work. But f(I — U) is closed, so we can take X — fI=U) for U in
B. Unfortunately, that is not quite enough. Let C be the set of all finite unions of
elements of B, and take all of the X — f(I —U) for U in C. Prove this is a basis for
X).

(¢) Prove that X is metrizable.

Part IT

(1) Prove or disprove each of the following statements.
(a) If A is a subspace of X and X is simply connected, then A is simply connected.
((b) If r: X — A s a retraction, then r, : m (X) — m (A) is surjective.
“(c) If A is a deformation retract of X and i : A — X is the inclusion map, then i, :
m1(A) — 71 (X) is an isomorphism. ‘
(2) Compute the fundamental group of each of the following,
(a) M x RP(co), where M is the Mébius band.
(b) T2 x CP(2), where I is the orientable surface of genus 2.
(c) L(p,q) V K, where K is the Klein bottle. '
(d) The 1-skeleton of A3, the standard 3-simplex.

(8) (a) Classify all of the 2-sheeted covering spaces of SV S* up to covering equivalence. For
each one, calculate the associated subgroup of 71 (S v § 1) and the deck group.

(b) Construct an example of a covering space of S V S1 that is not regular.
(c) What is the universal cover of $1v §17

(d) Recall that the universal abelian cover is the covering space corresponding to the
commutator subgroup. What is the universal abelian cover of S1 v St?

(4) (a) Let X = D? x S be a solid torus, and let 4 = S x.S! be its boundary. Compute
H, (X, A) for all n. (

(b) A knot K is an embedding of S into S3. A knot is tame if there is an embedding
f: 8" x D? — S8 such that f restricted to S x § is the knot. Denote f(S* x D?) by
N(K). Compute H,(S% — N(K)) for all n.

(5) Suppose the diagram below is commutative and that the rows are exact. Show that if o is
surjective and 8 and & are injective, then v is injective.

0——A—tvp-Jd .ok, p_*t, ¢ - 0

'a
+
1

0—— A ——p w0 F>p s p— g

B ¥




Topology Qualifying Exam
August 4, 2008

Instructions: The exam has two parts. Please read the instructions for each
part. Briefly justify all answers for which no proof is specifically requested.
The exam is closed book and will run from 9 a.m. to noon.

Part I: Complete each of the three problems.

1. Let X,Y be topological spaces. If f : X — Y is a continuous map and
X is compact, show that f(X) is compact.

2. Let X,Y be topological spaces. If X and Y are Hausdorff, show that
X x Y is Hausdorff.

3. Let X be a topological space, and f : I — X be a path in X. Let f be
the path defined by f(s) = f(1 —s). Let e,, denote the constant path
that carries all of I to the point f(0).

Construct a specific path homotopy to show that

[T 11 = lea,)

The path homotopy must be described algebraically and in full detail,
with proofs.




Part II: Complete at least two of the four problems.
Additional credit will be given for additional problems worked.

1. For each part, either give an example of connected (so we don’t have to
worry about basepoints) topological spaces X and Y that satisfy the
statement, or state that no example exists.

(a) X is homotopy equivalent to Y, but X is not homeomorphic to
Y.

(b) X is homotopy equivalent to Y, but X is not a deformation retract
of Y and Y is not a deformation retract of X.

(c) X is a deformation retract of Y, but X is not homotopy equivalent
toY. '

(d) X is homotopy equivalent to Y, but 71(X) % m(Y).
(e) m(X) & m(Y), but X is not homotopy equivalent to Y.




2. (a) Determine the fundamental group of each space:

i. the-circle
il. the torus
iii. the infinite cylinder S x R
iv. the subset of R? which is S* U (R x 0)
v. R — (R x 0)
(b) Find the universal covering spaces of each space:

i. the circle
ii. the sphere
lii. the projective plane -
iv. the torus
(c) Compute the simplicial homology groups of each space:

i. the circle
ii. the sphere
ili. the projective plane

3. State the definition of a path-connected space.
Let X be a path-connected topological space and Zg, T1 be two points of
X. Describe in detail an isomorphism between 1 (X, z) and m (X, Z1).
4. State the definition of a covering space p : X=X,

Let X and Y be topological spaces. Prove the following: Given a
covering space p : X — X and amap f : Y — X with two lifts,
fiLfa 1 Y > X that. -agree at one point of Y, then if Y is connected,
these two lifts must agree on all of Y.




Wesleyan University

Department of Mathematics

PhD Qualifying Exam, Written Part: Topology
Profs. Davis and Hovey

June 13, 2007

This is a 3-hour exam; no books or notes or consultations are permitted.
We do not expect you to do all of the problems. Good luck!

(1) R™,
(a) Prove that R is not homeomorphic to R for any n > 1.
(b) Prove that R? is not homeomorphic to R™ for any n > 2.
(2) Computing the fundamental group
In this problem, a “triangle” consists of only three edges and three
vertices and does not include the interior region (inside the edges and
vertices). Let T be the triangle in the plane with vertices (5,5),
(7,5), (6,6); let Tp be the triangle with vertices (-5, ~5), (—6,-6),
(—4, —6); and let T3 be the triangle with vertices (17, —5), (18, —6),
(16,—6). Also, let P be the line segment from (-5, —5) to (5, 5) that
: includes the endpoints, and let @ be the line segment from (7,5) to
(17,-5) that includes the endpoints. Let X be the subspace of
R2 that is the union of Ty, To, T3, P, and Q. Find, with proof,
7T1(X) (0:0))'
(3) Products
(a) Suppose X; are topological spaces for i € I. Define the product
and box topologies on []; X;. Define the uniform topology on
I1; X; if the X; are assumed to be metric spaces.
(b) There is one property that is the reason the product topology
is the most important of all topologies on []; X;. What is it?

- (c) Give an example (with some proof) of a sequence that con-
verges in the product topology but not in the uniform or box
topologies.

(4) Surfaces
For this problem, let X be the quotient space of six disjoint polyg-
onal regions with labelling scheme .

be~la, abc, ded~tef, fgh, g~ ‘hik, ji~ljk~".

(a) List all the compact connected surfaces up to homeomorphism.
(b) Identify, with justification, X in terms of the surfaces in (a).
~ (5) Subspaces.
(a) Give an internal condition on X so that X satisfies the condition
if and only if X is an open subspace of a compact Hausdorft




space. Some explanation is required, though not a complete
proof.

(b) Give an internal condition on X so that X satisfies the condition
if and only if X is an arbitrary subspace of a compact Hausdorff
space X. Similarly, some explanation is required.

(c) Given an internal condition on X so that X satisfies the con-
dition if and only if X is an arbitrary subspace of a simply
connected space. (Simply connected means path connected
and trivial fundamental group). Again, some explanation is
required.

(6) Homotopy equivalences
Let f: X — Y be a homotopy equivalence.

(a) Prove that f induces a bijection between the set of path com-
ponents of X and the set of path components of Y.

(b) Also, prove that f restricts to ahomotopy equivalence from each
path component of X to the corresponding path component of
Y (under the bijection in part (a)).

(7) Separability.
: (a) Prove that every second-countable topological space is separable
(i.e. has a countable dense subset).

(b) Prove that R, (R with the lower-limit topology; the Sorgenfrey
line) is separable but not second countable.

(c) Prove that, if X is separable, then there are no more than ¢ con-
tinuous functions from X to R, where ¢ denotes the cardinality
of R.

(8) Covering spaces
Explain the covering space proof of the fundamental group of the
circle S1, writing the proof so it will apply to as general a situation
as possible (but, of course, no more general than is possible).
(9) A new example: the Moore plane
(a) Define a topology on the upper half-plane

X={(pqlg =0} CR?

by defining a basis to be the open disks B((p, q);€) centered at

(p,q) with radius € for 0 < € < g (so the disk stays above the

z-axis) and the sets B((p, q),q)U{(p,0)} (so the disk is tangent

to the z-axis at (p,0) and contains the point (p,0) but no other

point of its boundary). Prove that this is a basis for a topology.
(b) Prove that the set

C = {(»,q)|g > 0 and p, q rational}

is dense in X, so that X is separable. According to part (c)
of the separability problem, then, X has at most ¢ continuous
functions to R.




3

(c) Prove that the z-axis is a closed subspace of X whose subspace
topology is the discrete topology.
(d) State the Tietze extension theorem, and use it to prove that X
is not normal.
(10) Distinguishing surfaces
Let T}, be the n-fold torus (sometimes known as the torus with
n holes), where n > 1. Prove that if p and ¢ are distinct natural
numbers, then T}, and Ty are not homeomorphic.




Qualifying exam in Topology, June 2006

You have 3 hours. Do as many as you can. No one is expected to create
a perfect score. You are to be the judge of how much detail to provide in
responding to “why?”, “explain”, “prove”, “show”, “sketch”, etc. Try to
allocate time roughly as .5 to part A and .5 to part B.

Part A
1. Let X be a space. The density character 6X is deﬁned as 60X =

min{m | X has a dense set of cardinal m}.
(a) Why does that “min” exist?

Let C(X) = {f € R* | f is continuous} and let m be infinite.
(b) Prove: 6X <'m implies |C(X)| < 2™. ~

2. Let {X.|a € A} (or just {X.}a) be a set of spaces. (A is arbitrary,
not necessarily finite.)

(a) Define the topology of the topological (Tychonoff) product
H{X,|a € A} (or just I X,).

(b) Here is the definition of topological sum Y {X, |a € A} (or just
Y4 Xo); we assume a1 # ap = Xo, N Xy, = 0. Y, X, is the set
UaX,; G CULX, 1s “open” exactly when G N X, is open in X,,
Va € A. Verify (quickly) that this gives us a topology.

3. A topological property is a class P of spaces for which (X € P,Y home-
omorphic to X = Y € P). Consider these 6 topological properties: fi-
nite, countable, connected, locally connected, metrizable, normal. For
each of these topological properties, answer the questions below. ‘

(a) For exactly what |A] is it always true that {X,}4 C P = 14X, €
P? Explain.

(b) For exactly what | A]is it always true that {X,}4 CP =), X. €
P? Explain. '

4. Let C be a class of spaces. A space [ is called injectivein C if I € C
and whenever X,Y € C, X CY and f : X — I is continuous, then
there exists continuous f : ¥ — I with f|x = f. Let C = all compact
Hausdorff spaces. Explain why [0, 1] is injective in C.




5. For X a space, clop(X) = {U C X |U is closed and open}. X is called
zero-dimensional, zd, if clop(X) is a base. Recall that the weight of a
space Y, wY, is the minimum cardinal of a base.

(a) Let Q be the rationals (with the usual topology). Show that Q is
zd, and wQ < |clop(Q)].

(b) Prove: if X is compact Hausdorff zd, then wX = |elop(X)|.

6. Recall from algebra the definition of a commutative ring with identity,
R, (or (R,+,-,0,1)), and that I C R is called an ideal if I is a subring
and R- I C 1.

(a) Use Zorn’s Lemma to show that each proper ideal is contained in
a maximal ideal (“maximal” with respect to the partial order “C
of ideals”).

Note that C(X) (see 1.) is a ring, with (f + g)(z) = f(z) + ¢(=),
(f9)(z) = f(z)g(z) and 0 and 1 the constant functions. For f € C(X),

2(f) = o f(z) = 0}.

(b) Prove: for any X, S C X, I(S)={f € C(X) | Z(f) 2 X} is an
ideal in C(X). Note that I(S) = I(S), and S; C S = I(S1) 2
I(52).

(c) Prove: for compact X, the converse holds: if I is an ideal in C (X )s
then I = I(S) for some closed S.

(d) What are the maximal ideals in C(X) for compact X? Explain.

7. Prove: if X is locally compact, and X is dense in Hausdorff Y, then X
isopenin Y.

8. Recall the construction and characteristic properties of the Cech-Stone
compactification X, for X completely regular and Hausdorff. Recall
also zd from 5. A simpler version of the argument constructing 8X
will prove: If X is zd Hausdorff, then there is compact zd Hausdorff
2X containing X densely such that: if f : X — {0,1} (discrete) is
continuous, then there is unique f : 2X — {0,1} continuous with
Flx = f. Sketch the proof of this.



Part B

1 Let f,f': T — X.

(a) Define the term “path homotopy” as applied to 7, f'.

(b) Show that the relation of path homotopy among maps from I to
X is an equivalence relation.

(Ac) Let X =R? - {(0,0)}. Let f:I — X be
f(#) = (cos®(2rt),sin*(27t))

Sketch the graph of f and determine for which mtegers k, fis
path homotopic to gy : I — X where

9i(t) = (cos(2rkt), sin(2rkt))
2. Letg: X +Yand h:Y = X.
(a) Define the term “homotopy equivalence” as applied to g and h.

(b) Show that a map homotopic to a homotopy equivalence is a ho-
motopy equivalence,

(c) Prove that the three spaces below are homotopy equivalent.
O OO (D)

3. Let X bea topological space and A C X.

(a) Define the term “deformation retract” as applied to A and X.

(b) Construct an explicit deformation retraction of R™ — {0} onto
S,

4, Let X be a topological space, and given & € X, let ¢, denote the
constant path ¢, : I —+ X carrying all of I to the point z. Let f be
a path in X from zo to z;. Prove, by constructing a specific path
homotopy between them, both algebraically and with a diagram, that

[£] % few] = [] and [eg,]  [f] = [/]




5. Let ' : X x I — Y be a continuous map. Let 2o € X and let
a:I =Y by aft) = F(zo,t). Prove that the following diagram of
maps commutes.

F‘(z/)*' 771(1[7 F(3307 1))
T1(X, o) [é
m (Y, F(zo,0))

6. Compute the fundamental group, with proof, of the spaces X,Y below.

(a) Let X be the space which is two coples of the cylinder S* x I
identified at one point.

(b) Let Y be the space B? with 2 points on its boundary identified.

7. (a) Show that if a space X deformation retracts to a point € X , then
for each neighborhood U of z in X, there exists a neighborhood

T/ C u OJ. T Sub}l t a,t the IHCIuSLUﬂ T, — LT 18 uuLhOmOtOplb

(b) Let X be the subspace of R? consisting of the horizontal line
segment [0, 1] x {0} together with all the vertical segments {r} x
[0, 1—r] for r a rational number in [0, 1]. Show that X deformation
retracts to any point in the segment [0,1] x {0}, but not to any
other point.

8. (a) State the Lebesgue number lemma.
(b) Let p: E — B be a covering map, and let p(eo) = by. Prove that
any path f:[0,1] = B beginning at by has a unique lifting to a
path f in E beginning at e.




